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CONNECTIONS BETWEEN SPATIAL DECAY OF INITIAL DATA
AND TIME ASYMPTOTICS IN A SUPERCRITICAL

PARABOLIC EQUATION∗

MICHAEL WINKLER†

Abstract. The article collects some recent results concerning the large time behavior of nonnegative
solutions to ut = ∆u + up with supercritical p. Quantitative connections between the spatial asymptotics of
the initial data and the grow-up rates (resp. convergence rates) of solutions are established. In particular, a
continuum of such rates appear whenever p and the space dimension are large enough.
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1. Introduction and examples. This paper deals with the Cauchy problem{
ut = ∆u+ up, x ∈ RN , t > 0,

u(x, 0) = u0(x), x ∈ RN ,
(1.1)

where u0 is a nonnegative continuous function on RN , N ≥ 11 and p is supercritical in the
sense that

p > pc :=
(N − 2)2 − 4N + 8

√
N − 1

(N − 2)(N − 10)
.

∗This work was supported by the European Community’s Human Potential Programme under contract
HPRN-CT-2002-00274, Fronts-Singularities

†Department of Mathematics, RWTH Aachen, 52056 Aachen, Germany
(winkler@math1.rwth-aachen.de).

http://www.river-valley.com


Home Page

Title Page

Contents

JJ II

J I

Page 2 of 15

Go Back

Full Screen

Close

Quit

That pc indeed appears as a critical exponent for (1.1) is suggested by an analysis of the
set of radially symmetric stationary solutions: In fact, let ϕα = ϕα(r), α > 0, denote the
solution of {

ϕα,rr + N−1
r ϕα,r + ϕp

α = 0,

ϕα(0) = α, ϕα,r(0) = 0,
(1.2)

where we interpret sp = |s|p−1s whenever s < 0. Then it is well-known that
• the solution of (1.2) remains positive if and only if p ≥ pS holds with the Sobolev

exponent

pS =


N + 2
N − 2

for N ≥ 3,

∞ for N < 3,

but
• if pS ≤ p < pc any of these positive steady states intersects with other positive

steady states (see [9]). However,
• for p ≥ pc, it was shown by Gui, Ni and Wang [5] that the set {ϕα | α > 0} is

ordered, that is, ϕα(r) is strictly increasing in α for each r.
The latter work furthermore reveals that

lim
α→0

ϕα(r) = 0 and lim
α→∞

ϕα(r) = ϕ∞(r),

where ϕ∞ is a singular steady state explicitly written as

ϕ∞(|x|) = L|x|−m, |x| > 0

with

m :=
2

p− 1
and L := {m (N − 2−m)}1/(p−1).

http://www.river-valley.com
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It is also shown in [5] that each positive regular steady state ϕα has the asymptotic behavior

ϕα(|x|) =

{
L|x|−m − a|x|−m−λ1 + h.o.t. if p > pc

L|x|−m − a|x|−m−λ1 log |x|+ h.o.t. if p = pc

(1.3)

as |x| → ∞, where λ1 is a positive constant given by

λ1 = λ1(N, p) :=
N − 2− 2m−

√
(N − 2− 2m)2 − 8(N − 2−m)

2
,

and a = a(α,N, p) is a positive number that is monotone decreasing in α. We note that the
quadratic equation

λ2 − (N − 2− 2m)λ+ 2(N − 2−m) = 0

has two positive roots if and only if p > pc; the smaller root is λ1 and the larger root is given
by

λ2 = λ2(N, p) :=
N − 2− 2m+

√
(N − 2− 2m)2 − 8(N − 2−m)

2
.

The goal of this paper is to study the behavior of positive solutions of (1.1) bounded
above by the singular steady state. If we assume that u0 satisfies

0 ≤ u0(x) ≤ ϕ∞(|x|) for |x| > 0, (1.4)

then the solution (1.1) exists globally in time (see [8]), and by comparison, the solution
remains between the trivial steady state and the singular steady state for all t > 0.

To get a first idea of what might happen, one can consider initial data u0 satisfying
u0(x) = A|x|−k + h.o.t. as |x| → ∞, where k = m and A ≤ L, or k > m. If either k > m
or k = m and A < L then for any α > 0, u0(x) lies below ϕα(|x|) for all sufficiently large

http://www.river-valley.com
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|x|, which gives rise to the conjecture that ϕα might eventually majorize u as well, so that
u should converge to zero as t→∞. In fact, Poláčik and Yanagida [8] proved that

• if lim sup
|x|→∞

|x|mu0(x) < L then ‖u(·, t)‖L∞(RN ) → 0 as t→∞.

As to the remaining case k = m and A = L, one may expand u0 one step further and assume
u0(x) = L|x|−m−b|x|−l +h.o.t. as |x| → ∞ for some b > 0 and l > m. Note that large values
of l correspond to small distances of u0 to ϕ∞(| · |). Correspondingly, if we assume some
appropriate stability of ϕ∞ then it is plausible that u(·, t) will tend to ϕ∞(| · |) as t → ∞
and thus be unbounded. Indeed, such a behavior was proved in [8] in the case l > m+ λ1:

• If lim
|x|→∞

|x|m+λ1(ϕ∞(|x|)− u0(x)) = 0 then ‖u(·, t)‖L∞(RN ) →∞ as t→∞.

If l = m + λ1, however, (1.3) shows that a similar statement cannot hold any longer. It
is basically due to the ordering property of the ϕα that all these regular steady states are
asymptotically stable ([8], [5], [6]) in the sense that for p > pc,

• if lim
|x|→∞

|x|m+λ1(u0(x)−ϕα(|x|)) = 0 then ‖u(·, t)−ϕα(| · |)‖L∞(RN ) → 0 as t→∞.

This particularly means that u0(x) = L|x|−m − b|x|−m−λ1 + h.o.t. as |x| → ∞ implies
u(·, t) → ϕα(| · |) as t→∞, where α has to be chosen such that b coindides with the number
aα in (1.3) (which actually satisfies aα = α−

λ1
m a1).

Once one knows qualitative grow-up and convergence results as listed above, the next
step is to determine the quantitative rates at which these occur. It turns out that in both
cases a continuum of possible rates appears, and that these can precisely be determined in
terms of the spatial decay of the initial data.

Before going into detail, let us remark that to the best of our knowledge nothing is known
about the behavior of solutions emanating from initial data satisfying u0(x) = L|x|−m −

http://www.river-valley.com
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b|x|−l + h.o.t. as |x| → ∞ when l is bigger than m but smaller than m + λ1. One might
guess that such solutions should tend to zero as t→∞, but we are not aware of a proof of
this conjecture.

2. Grow-up rates. The history of quantitative grow-up rates started in [2], where the
following upper bound was given in Proposition 3.3.

Theorem 2.1. Let p ≥ pc. Suppose that u0 satisfies (1.4) and

u0(x) ≤ L|x|−m − b|x|−l for |x| > R

with some constants l > m+ λ1 and b, R > 0. Then there exist positive constants C and T
such that the solution of (1.1) satisfies

‖u(·, t)‖L∞(RN ) ≤ Ct
m(l−m−λ1)

2λ1

for all t > T .

The upper bound in this theorem is not optimal for large l. In fact, it was shown in
[2] that there is a universal upper bound independent of the initial data. A sharp universal
upper bound was found by Mizoguchi [7].

Theorem 2.2. Let p > pc. Suppose that u0 satisfies (1.4). Then there exist positive
constants C1 and T such that the solution of (1.1) satisfies

‖u(·, t)‖L∞(RN ) ≤ C1t
m(λ2−λ1+2)

2λ1

for all t > T . Moreover, there exist u0 satisfying

u0(x) ≥ L|x|−m − be−|x|
2/4 for |x| > R

with some b, R > 0 such that the solution of (1.1) satisfies

‖u(·, t)‖L∞(RN ) ≥ C2t
m(λ2−λ1+2)

2λ1

http://www.river-valley.com
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with some C2 > 0 for all t > 0.

Concerning the lower bound, only a partial result was obtained in [2] in the case of
l ∈ (m+ λ1,m+ λ2].

Theorem 2.3. Let p > pc. Suppose that u0 satisfies (1.4) and

u0(x) ≥ L|x|−m − b|x|−l for |x| > 0,

with some constants l ∈ (m + λ1,m + λ2] and b > 0. Then there exists a positive constant
C such that the solution of (1.1) satisfies

‖u(·, t)‖L∞(RN ) ≥ Ct
m(l−m−λ1)

2λ1

for all t > 0.

This theorem implies that the upper bound obtained in Theorem 2.1 is optimal for
l ∈ (m+λ1,m+λ2]. However, it is clear from the universal upper bound in Theorem 2.2 that
Theorem 2.3 cannot be extended for all larger l; more precisely, comparing Theorems 2.2
and 2.3 suggests a borderline value of l located at l = m+ λ2 + 2. In fact, very recently this
conjecture could be proved [1]:

Theorem 2.4. Using the above notation, Theorem 2.3 is valid for any l ∈ (m + λ1,
m+ λ2 + 2).

Altogether we obtain

Theorem 2.5. Let p > pc. Suppose that u0 satisfies (1.4) and

L|x|−m − b1|x|−l ≤ u0(x) ≤ L|x|−m − b|x|−l for |x| > 1

with some l > m+ λ1 and 0 < b2 < b1. Then

http://www.river-valley.com
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i) if l < m+λ2 +2 then there exist positive constants C1 and C2 such that the solution
u of (1.1) satisfies

C1t
m(l−m−λ1)

2λ1 ≤ ‖u(·, t)‖L∞(RN ) ≤ C2t
m(l−m−λ1)

2λ1 ∀ t > 1;

ii) if l ≥ m+ λ2 + 2 then there exist C2 and, given any ε > 0, C1,ε such that

C1,εt
m(l−m−λ1)

2λ1 ≤ ‖u(·, t)‖L∞(RN ) ≤ C2t
m(l−m−λ1)

2λ1 ∀ t > 1.

Finally, the biggest possible rate in fact is attained by a class of solutions larger than
indicated in Theorem 2.2.

Theorem 2.6. Let p > pc. Suppose that u0 satisfies (1.4) and

u0(x) ≥ L|x|−m − b e−ν|x|2 for |x| ≥ 1

with some positive constants b and ν. Then there exists a positive constant C such that the
solution of (1.1) satisfies

‖u(·, t)‖L∞(RN ) ≥ Ct
m(λ2−λ1+2)

2λ1 ∀ t > 0.

2.1. Formal matched asymptotics. A powerful approach towards precise estimates
is provided by the tool of formal matched asymptotics. The first step of this method consists
of finding different asymptotic expansions of possible solutions to (1.1), each of these – hope-
fully – giving a good approximation to u within some subregion of the space-time cylinder.
Usually, those expansions contain some parameters which are linked to some unknown quan-
tity related to u (such as u(0, t), for instance). The matching condition, requiring that such
expansions must coincide at each intersection of these regions, is then expected to determine
the values of possible parameters and thereby provide some information about u.

http://www.river-valley.com
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Apart from giving an idea of how u might look like, such a procedure can very often be
used as the starting point for a rigorous proof of this behavior.

Let us briefly outline how formal matched asymptotics can be carried out in order to
derive the results in Theorems 2.1–2.6. For more detailed presentations, consult [2] and [1].

We first observe that any radial solution u = u(r, t), r = |x|, of (1.1) satisfies{
ut = urr + N−1

r ur + up, r > 0, t > 0,

u(r, 0) = u0(r), r > 0.
(2.1)

Let us seek an ‘inner’ expansion, describing u for small r (but large t). We therefore rewrite
u(r, t) as

u(r, t) = σ(t)
{
ψ(ξ) +

σt

σp
Φ(ξ, t)

}
, (2.2)

where σ(t) := u(0, t), ξ := σ1/mr, and ψ := ϕ1(ξ) satisfies{
ψξξ + N−1

ξ ψξ + ψp = 0, ξ > 0,

ψ(0) = 1, ψ′(0) = 0.
(2.3)

Substituting (2.2) in (2.1), we have

ψξξ +
N − 1
ξ

ψξ +
σt

σp

(
Φξξ +

N − 1
ξ

Φξ

)
+

(
ψ +

σt

σp
Φ

)p

∼ σt

σp

(
ψ +

1
m
ξψξ

)
under some reasonable assumptions on σ and Φ. In view of (2.3), we may put Φ = Ψ(ξ) +
h.o.t., where Ψ satisfies

Ψξξ +
N − 1
ξ

Ψξ + pψp−1Ψ = ψ +
1
m
ξψξ. (2.4)

http://www.river-valley.com
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Thus we obtain the two-term inner expansion

u(r, t) ∼ σ(t)
{
ψ(ξ) +

σt

σp
Ψ(ξ)

}
.

In the inner region, where ψ(ξ) dominates (σt/σ
p)Ψ, this can be reduced, using (1.3), to

u ∼ σ(Lξ−m − aξ−m−λ1) = Lr−m − aσ−λ1/mr−m−λ1 . (2.5)

Next, we consider a formal expansion in the ‘outer’ region which is to be understood as
having r � 1 as t→∞. Setting

u = Lr−m − v

and assuming v � r−m for r � 1, we have

vt ∼ vrr +
N − 1
r

vr +
pLp−1

r2
v, r � 1.

We will find a solution which behaves in a self-similar way for r � 1:

v(r, t) = t−l/2F (η), η = t−1/2r,

so that the specific scaling for r � 1 corresponding to the outer region is in fact r = O(
√
t)

as t→∞. Here F satisfies

Fηη +
N − 1
η

Fη +
η

2
Fη +

l

2
F +

pLp−1

η2
F = 0, η > 0. (2.6)

In order that the outer expansion matches with (2.5), F must satisfy

lim
η→0

ηm+λ1F (η) = c1 > 0. (2.7)

http://www.river-valley.com


Home Page

Title Page

Contents

JJ II

J I

Page 10 of 15

Go Back

Full Screen

Close

Quit

On the other hand, F is required to satisfy

lim
η→∞

ηlF (η) = c2 > 0; (2.8)

in view of the linearity of (2.6), c1 is an arbitrary constant (depending on the initial data),
while c1/c2 depends only on l, N and pLp−1. It has been shown in [1, Lemma 3.1] that (2.6)
has a positive solution satisfying (2.7) and (2.8) if and only if l ∈ (m+ λ1,m+ λ2 + 2). In
this case, we obtain the two-term outer expansion

u ∼ Lr−m − t−l/2F (t−1/2r). (2.9)

Now we match the inner expansion (2.5) and the outer expansion (2.9) for 1 � r �
√
t

to obtain

σ(t) ∼
(c1
a

)− m
λ1
t

m(l−m−λ1)
2λ1 .

This gives us a very plausible guess on the grow-up rate. Based on this formal argument,
one can construct, for instance, suitable subsolutions having a shape similar to (2.5) for
rt−

1
2 small, and similar to (2.9) wherever rt−

1
2 is large, and thereby prove the lower bounds

asserted in the Theorems 2.4–2.6 (cf. [1, Sections 3 and 4]).

3. Stabilization rates. In this section we state a result on the rate of convergence
towards regular steady states (cf. [3]).

Theorem 3.1. Let p > pc and suppose u0 satisfies (1.4) as well as

|u0(x)− ϕα(|x|)| ≤ c(1 + |x|)−l, x ∈ RN ,

with some l ∈ (m+ λ1,m+ λ2), α ≥ 0 and c > 0. Then there exists C > 0 such that

‖u(·, t)− ϕα(| · |)‖L∞(RN ) ≤ Ct−
l−m−λ1

2 ∀ t > 0.

http://www.river-valley.com
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3.1. Formal matched asymptotics. We again confine ourselves to a sketch of the
proof, outlining the main ideas of the formal approach and leaving out the technical details;
for these, see [3, Sections 3 and 4].
When dealing with convergence to some bounded steady state, it is natural to linearize the
equation about this equilibrium. For the formal expansion procedure, we therefore fix α ≥ 0
and let

PαU := Urr +
N − 1
r

Ur + pϕp−1
α U

denote the linearized operator at ϕα. Then, if u is radial then U(r, t) := u(r, t) − ϕα(r)
should, up to lower order terms, satisfy

Ut = PαU, r > 0, t > 0,

Ur(0, t) = 0, t > 0,

U(r, 0) = U0(r), r ≥ 0,

where U0 is a continuous function that decays to zero as r →∞.
We derive the formal expansion of U near the origin as follows. Set

U(r, t) = σ(t)f(r, t),

where we put σ(t) := U(0, t). Substituting this in the above equation, we obtain{
Pαf =

σt

σ
f + ft, r > 0,

f(0, t) = 1, fr(0, t) = 0, t > 0.
(3.1)

Assuming that

|ft| �
∣∣∣σt

σ

∣∣∣ � 1,

http://www.river-valley.com
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we may put

f(r, t) = ψ(r) +
σt

σ
Φ(r, t), (3.2)

where ψ satisfies {
Pαψ = 0, r > 0,

ψ(0) = 1, ψr(0) = 0.
(3.3)

The solution of this problem is given by

ψ(r) =
∂

∂α
ϕα(r).

Inserting (3.2) in (3.1) and using (3.3), we see that

PαΦ = f +
ft

σt/σ
.

Since the second term on the right hand side is expected to be small, we consider the
inhomogeneous equation {

PαΨ = ψ, r > 0,

Ψ(0) = 0, Ψr(0) = 0.
(3.4)

Using a solution of this equation, we may write Φ as

Φ(r, t) = Ψ(r) + h.o.t..

Thus, for each r > 0, a formal expansion near the origin is obtained as

U = σψ + σtΨ + h.o.t.. (3.5)

http://www.river-valley.com
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Next, let us consider the expansion near r = ∞ of a solution of the linearized equation that
behaves like r−l for large r. By (1.3), U atisfies

Ut = Urr +
N − 1
r

Ur +
pLp−1

r2
U + h.o.t., r ' ∞.

Setting

U(r, t) = r−l + V (r, t),

we have

Vt = PαV + g(l)r−l−2 + h.o.t.,

where we let

g(µ) := µ2 − (N − 2)µ+ pLp−1.

Upon the plausible assumption

|PαV | � r−l−2

we obtain

V (r, t) = g(l)(t+ τ)r−l−2 + h.o.t.,

where τ is an integral constant. Thus a formal expansion near r = ∞ is given by

U(r, t) = r−l + g(l)(t+ τ)r−l−2 + h.o.t., r ' ∞. (3.6)

Now let us math the inner expansion (3.5) and the outer expansion (3.6). Since it is known
(see [3, Lemmata 2.3 and 2.4], for example) that

ψ(r) = cαr
−m−λ1 + h.o.t., r ' ∞,

http://www.river-valley.com
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for some cα > 0 and

Ψ(r) = Cαr
−m−λ1+2 + h.o.t., r ' ∞,

with some Cα > 0, we obtain from (3.5)

U(r, t) = cασr
−m−λ1 + Cασtr

−m−λ1+2 + h.o.t., r ' ∞.

Equating the first and second order terms of this expansion with (3.6), we find

cασr
−m−λ1 = r−l and Cασtr

2−m−λ1 = g(l)(t+ τ)r−l−2.

Eliminating r, we obtain

Cασt = g(l)(t+ τ)(cασ)1+
4

l−m−λ1 .

Now if g(l) < 0 (which precisely corresponds to saying l ∈ (m+λ1,m+λ2)), this shows that

σ(t) = C(t+ τ)−
l−m−λ1

2

with some C > 0, which is exactly the convergence rate asserted by Theorem 3.1. Con-
versely, if g(l) ≥ 0, this does not necessarily lead to the convergence of U to the trivial
solution at all. In fact, if l < m + λ1, the trivial solution of the linearized equation is
unstable (see [5]). The case l ≥ m+ λ2 deserves a further study.
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