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MULTIPLE SOLUTIONS OF NONLINEAR BOUNDARY VALUE
PROBLEMS BY THE QUASILINEARIZATION PROCESS∗

INARA YERMACHENKO†

Abstract. We investigate second and fourth order boundary value problems (BVPs) for the Emden-
Fowler type equations using the quasilinearization process. We reduce the given nonlinear equation to
a some quasi-linear one with a non-resonant linear part so that both equations are equivalent in some
bounded domain. We show that modified problem has a solution of the same oscillatory type as the
linear part has. We prove that under certain conditions quasilinearization process can be applied with
essentially different linear parts and hence the original problem is shown to have multiple solutions.
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1. Introduction. Consider the nonlinear differential equation

x(n) = f(t, x), (1.1)

where n = 2, 4, t ∈ I := [0, 1] with some boundary conditions

Uµ(x) :=
n−1∑
ν=0

[α(ν)
µ x(ν)(0) + β(ν)

µ x(ν)(1)] = γµ, (µ = 1, . . . , n). (1.2)

Function f : I × R → R is supposed to be continuous. We investigate existence and
multiplicity of solutions to the BVP (1.1), (1.2) in some specific cases by reducing it to
multiple quasi-linear problems of different types.

Suppose that equation (1.1) can be reduced to the quasi-linear one of the form(
Lnx

)
(t) = F1(t, x), (1.3)

where F1 is continuous and bounded, that is, there exists M1 ∈ (0,+∞) such that∣∣F1(t, x)
∣∣ < M1 for any values of arguments, and

(
Lnx

)
(t) is a non-resonant linear part

with respect to the given boundary conditions (1.2), that is, the homogeneous problem(
Lnx

)
(t) = 0, Uµ(x) = 0 has only the trivial solution. Then the modified quasi-linear

problem (1.3), (1.2) is solvable.
Suppose also that equations (1.1), (1.3) are equivalent in some domain Ω1(t, x). If a

solution x1(t) of the quasi-linear problem (1.3), (1.2) is located in the domain of equiva-
lence Ω1(t, x), then this x1(t) also solves the original problem (1.1), (1.2).

If the equation (1.1) can be reduced to another quasi-linear equation(
lnx

)
(t) = F2(t, x), (1.4)

which is equivalent to (1.1) in the domain Ω2(t, x), then the original problem (1.1), (1.2)
in some cases has another solution x2(t)

(
x2(t) ∈ Ω2(t, x)

)
.
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If the linear parts (Lnx)(t) and (lnx)(t) are essentially different, then we can prove,
that there exist xL(t) and xl(t), which are the solutions of different types. In this way
one can obtain the multiplicity results.

Our research is motivated by the papers of R. Conti [1], L. Erbe [2], L. Jackson and
K. Schrader [3], who studied oscillatory properties of solutions of two-point second-order
boundary value problems. To obtain the results for the fourth-order BVPs we use the
oscillation theory by Leighton-Nehari [5] for the fourth-order linear differential equations.

2. Second-order boundary value problems.

2.1. Second-order quasi-linear problems and types of solutions. Consider
the quasi-linear problem (

L2x
)
(t) = F (t, x), x(0) = x(1) = 0, (2.1)

where F ∈ C([0, 1]×R, R) and
∣∣F (t, x)

∣∣ < M ∀(t, x) ∈ [0, 1]×R. Several definitions
will be used in the sequel.

Definition 2.1. We will say that the linear part
(
L2x

)
(t) is i-nonresonant in the interval

[0, 1] with respect to the Dirichlet boundary conditions x(0) = 0, x(1) = 0 if a solution
of the Cauchy problem (

L2x
)
(t) = 0, x(0) = 0, x′(0) = 1 (2.2)

has exactly i zeros in the interval (0, 1) and x(1) 6= 0.

If in the interval [0, 1] a linear part (L2x)(t) is i-nonresonant, but a linear part (l2x)(t)
is j-nonresonant and i 6= j, then we will say that the linear parts (L2x)(t) and (l2x)(t)
are essentially different.

For instance, the linear part
(
L2x

)
(t) := x′′ + k2x is non-resonant with respect to

the Dirichlet boundary conditions x(0) = 0, x(1) = 0 (it means that the respective
homogeneous problem has only a trivial solution), if coefficient k belongs to one of the
intervals

(0, π), (π, 2π), . . . , (iπ, (i + 1)π), . . .

For the values of k from different intervals the solutions of the Cauchy problems

x′′ + k2x = 0, x(0) = 0, x′(0) = 1 (2.3)

with different oscillatory properties are obtained and shown below.
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Fig. 2.1. 0-nonresonance, k ∈ (0, π).
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Fig. 2.2. 1-nonresonance, k ∈ (π, 2π).
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Fig. 2.1 shows the solutions of the problems (2.3) for k1 = π
2 and k2 = 2π

3 . The
linear parts x′′ + k2

1x and x′′ + k2
2x are 0-nonresonant (see Definition 2.1).

Fig. 2.2 illustrates the solutions of the problems (2.3) for k3 = 3π
2 and k4 = 5π

3 . The
respective linear parts x′′ + k2

3x and x′′ + k2
4x are 1-nonresonant. Therefore the linear

parts x′′ + (π
2 )2x and x′′ + ( 3π

2 )2x are essentially different.

We remark that a linear part
(
L2x

)
(t) := x′′ + k2x is n-nonresonant for k =

π

2
+ πn,

n = 0, 1, 2, . . .; the linear parts
(
L2x

)
(t) := x′′ + k2x for different values of k in the form

π

2
+ πn are essentially different.

Definition 2.2. We will say that ξ(t) is an i-type solution of the quasi-linear problem
(2.1) if for small enough α > 0 the difference u(t;α) = x(t;α)− ξ(t) has exactly i zeros in
the interval (0, 1) and u(1;α) 6= 0, where x(t;α) is a solution of the quasi-linear equation(

L2x
)
(t) = F (t, x), (2.4)

which satisfies the initial conditions

x(0;α) = ξ(0) = 0, x′(0;α) = ξ′(0) + α. (2.5)

In what follows we call the solution x(t;α) by neighboring solution.

Remark . An i-type solution ξ(t) of problem (2.1) has the following characteristics in
terms of the variational equation: a solution y(t) of the variational equation

(
L2y

)
(t) =

Fx(t, ξ(t))y, which satisfies the initial conditions y(0) = 0, y′(0) = 1, either has exactly
i zeros in the interval (0, 1) and y(1) 6= 0, or it has i-th zero or (i + 1)-th zero at t = 1.
(The corresponding examples for the cases of i-th or (i + 1)-th zero of y(t) being at t = 1
can be constructed). Therefore it may happen that y(t), corresponding to a solution ξ(t)
of i-type, has its (i + 1)-th zero at t = 1, and y(t), corresponding to a solution ξ(t) of
(i + 1)-type, also has (i + 1)-th zero at t = 1.

The following theorem is valid [7].

Theorem 2.3. Quasi-linear problem (2.1) with an i-nonresonant linear part
(
L2x

)
(t)

has an i-type solution.

Consider a nonlinear second-order boundary value problem

x′′ = f(t, x), x(0) = x(1) = 0. (2.6)

Function f is supposed to be continuous.

Definition 2.4. Let the differential equation in (2.6) and quasi-linear equation (2.4) be
equivalent in a domain

ΩN = {(t, x) : 0 ≤ t ≤ 1, |x| ≤ N}. (2.7)

Suppose that any solution x(t) of the quasi-linear problem (2.1) satisfies the estimate∣∣x(t)
∣∣ < N, ∀t ∈ [0, 1]. We will then say that problem (2.6) allows for quasilinearization

with respect to a linear part
(
L2x

)
(t) and a domain ΩN .

The propositions below follow from Theorem 2.3.

Proposition 2.5. If the problem (2.6) allows for quasilinearization with respect to some
domain ΩN and some i-nonresonant linear part

(
L2x

)
(t), then it has an i-type solution.
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Proposition 2.6. If the problem (2.6) allows for quasilinearization with respect to n
domains of the form (2.7) and n essentially different (in the sense of Definition 2.1)
linear parts, then it has at least n solutions of different types.

Analogous results on multiple solutions were obtained for the second-order Neumann
[8] and Sturm–Liouville [9] boundary value problems.

2.2. Second-order nonlinear BVPs. In this section we show by using the quasi-
linearization process how multiple solutions of different types can be obtained for the
Dirichlet boundary value problem to the Emden – Fowler type equation.

Consider the second-order boundary value problem

x′′ = −λ2 |x|p sign x, x(0) = x(1) = 0, (2.8)

where p > 0, p 6= 1, λ 6= 0.

Theorem 2.7. If the inequality

k

| sin k|
< β

p
p

p−1

|p− 1|
, (2.9)

where β is the positive root of the equation βp = β + (p− 1) · p
p

1−p , holds for some value
k ∈ (iπ, (i+1)π), (i = 0, 1, . . .), then there exists an i-type solution of the problem (2.8).

Proof. The equation in (2.8) can be reduced to the equivalent equation

x′′ + k2x = k2x− λ2 |x|p sign x, (2.10)

where k satisfies iπ < k < (i + 1)π for some i = 0, 1, . . ..
Denote the right side of the equation (2.10) by fk(x) and try to bound it by a number

Mk, which is an absolute value of the function fk(x) at the point of extremum. We can
calculate this number Mk

Mk = |fk(x0)| = λ
2

1−p ·
(k2

p

) p
p−1 · |p− 1| (2.11)

and corresponding number Nk such, that if
∣∣x(t)

∣∣ ≤ Nk, then
∣∣fk(x)

∣∣ ≤ Mk.

Fig. 2.3. Existence of a number Nk

Computation gives that

Nk =
(k2

λ2

) 1
p−1

β, (2.12)
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where β is a positive root of the equation βp = β + (p− 1) · p
p

1−p . Then one can consider
the quasi-linear equation

x′′ + k2x = Fk(x), (2.13)

where Fk(x) := fk

(
δ
(
−Nk, x, Nk

))
and δ is a “cut-off” function, that is,

δ
(
−Nk, x, Nk

)
=


Nk, x > Nk,

x, −Nk ≤ x ≤ Nk,

−Nk, x < −Nk

and max{|Fk| : x ∈ R} = Mk.
The given Emden-Fowler equation in (2.8) is equivalent to the equation (2.13) in

the domain Ωk = {(t, x) : 0 ≤ t ≤ 1, |x(t)| ≤ Nk}. The obtained quasi-liner prob-
lem ((2.13) with given Dirichlet boundary conditions) can be rewritten in integral form

x(t) =
1∫
0

Gk(t, s)Fk(x(s)) ds, where Gk(t, s) is the Green’s function of the respective

homogeneous problem. It is given by

Gk(t, s) =


sin k(s− 1) · sin kt

k sin k
, 0 ≤ t ≤ s ≤ 1,

sin k(t− 1) · sin ks

k sin k
, 0 ≤ s < t ≤ 1

(2.14)

and satisfies the estimate

|Gk(t, s)| ≤ Γk :=
1

k · | sin k|
. (2.15)

Then ∣∣x(t)
∣∣ ≤ Γk ·Mk. (2.16)

If the inequality

Γk ·Mk < Nk (2.17)

holds, then a solution x(t) of the quasi-linear problem satisfies the estimate
∣∣x(t)

∣∣ < Nk,
∀t ∈ [0, 1] and the original problem (2.8) allows for quasilinearization with respect to the
domain Ωk and the linear part

(
L2x

)
(t) := x′′ + k2x. It follows from Proposition 2.5

that the problem (2.8) has an i-type solution. It follows from (2.11), (2.12), (2.15) that
the inequality (2.17) reduces to (2.9).

Corollary 2.8. If there exist numbers kj ∈ (jπ, (j + 1)π), (j = 0, 1, . . . , n), which
satisfy the inequality (2.9), then there exist at least n + 1 solutions of different types to
the problem (2.8).

We have obtained the results, which show that certain values of k in the form
π

2
+πn,

n = 0, 1, 2, . . . for some values of p are good for the inequality (2.9) to be satisfied [10].
For instance, if p = 8

7 , then there exist at least three values k0 = π
2 ,

k1 = 3π
2 , k2 = 5π

2 ,which satisfy the inequality (2.9).
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Fig. 2.4. 0-type solution

0.2 0.4 0.6 0.8 1
-0.25

0.25

0.5

0.75

1

1.25

Fig. 2.5. 1-type solution
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Fig. 2.6. 2-type solution

We can show the solutions of different types, for example, considering the problem

x′′ = −10 |x| 87 sign x, x(0) = x(1) = 0. (2.18)

The solid line in the Figures 2.4, 2.5, 2.6 indicates respectively 0-type, 1-type and
2-type solution of the problem (2.18) and the dashed line relates to one of the correspond-
ing neighboring solutions (see Definition 2.2).

3. Fourth-order boundary value problems. We have obtained the similar mul-
tiplicity results for some the fourth-order nonlinear BVPs.

3.1. Fourth-order quasi-linear problems and types of solutions. Consider
two-point boundary value problem

x(4) = f(t, x), (3.1)

x(0) = x′(0) = 0 = x(1) = x′(1), (3.2)

where f : I ×R → R is continuously differentiable. We first prove results for quasi-linear
problems of the type

x(4) − k4x = F (t, x), (3.3)

(3.2), where t ∈ I := [0, 1], F, Fx : I × R → R are continuous, F is bounded and the
following condition is satisfied for any (t, x)

k4 +
∂F

∂x
(t, x) > 0. (3.4)
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In our investigation we use the oscillation theory by Leighton-Nehari for the fourth-
order linear differential equations [5]

x(4) − p(t)x = 0, p(t) > 0. (3.5)

We used their definition of a conjugate point.

Definition 3.1. A point η is called by a conjugate point for the point t = 0, if there
exists a nontrivial solution x(t) such that x(0) = x′(0) = 0 = x(η) = x′(η).

For example, if the linear equation is x(4) − k4x = 0, then the conjugate points η
satisfy cos kη · cosh kη = 1.

The conjugate points (or double zeros) in the oscillation theory for the fourth-order
linear differential equations play the same role as the ordinary zeros in the oscillation
theory for the second-order equations.

We define i-nonresonanse of the linear part and an i-type solution similarly as for
the second-order quasi-linear problems.

Definition 3.2. We will say that the linear part (L4x)(t) := x(4)− k4x is i-nonresonant
with respect to the boundary conditions (3.2), if there are exactly i conjugate points in
the interval (0, 1) and t = 1 is not a conjugate point.

For example, the linear part
(
L4x

)
(t) := x(4)−k4x is (n−1)-nonresonant for k = πn,

n = 1, 2, . . ..

Definition 3.3. We will say that ξ(t) is an i-type solution of the problem (3.3), (3.2), if
for small enough α, β > 0 the difference u(t;α, β) = x(t;α, β)− ξ(t) has exactly i double
zeros (for different values of α, β) in the interval (0, 1) and u(1;α, β) 6= 0, where x(t;α, β)
is a solution of (3.3), which satisfies the initial conditions

x(0;α, β) = ξ(0), x′(0;α, β) = ξ′(0), (3.6)

x′′(0;α, β) = ξ′′(0) + α, x′′′(0;α, β) = ξ′′′(0)− β. (3.7)

We call the solution x(t;α, β) by neighboring solution.

Remark. An i-type solution ξ(t) of the problem (3.3), (3.2) has the following character-
istics in terms of the variational equation: if a linear equation of variations y(4) − k4y =
Fx(t, ξ(t))y has exactly i conjugate points in the interval (0, 1) and t = 1 is not a conju-
gate point, then ξ(t) is an i-type solution. However, if t = 1 is a conjugate point, then
ξ(t) may be an i-type solution, or it may be an (i + 1)-type solution, or its type may be
indefinite. The respective examples can be constructed.

The following theorem is valid.

Theorem 3.4. The quasi-linear problem (3.3), (3.2) has an i-type solution, if the condi-
tion (3.4) is fulfilled and the linear part (L4x)(t) = x(4) − k4x is i-nonresonant.

Theorem 3.4 was proved in [11], [6].

3.2. Green’s function for the oscillatory fourth-order linear problem. Con-
sider the problem {

x(4) − k4x = 0,

x(0) = x′(0) = 0 = x(1) = x′(1),
(3.8)
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where k satisfies the non-resonance condition cos k cosh k 6= 1. We have constructed the
Green’s function for the problem (3.8) and give the respective formula and its estimate
below.

Proposition 3.5. The Green’s function of the problem (3.8) can be written in the form

Gk(t, s) =



1
4

(
− u∗(t, s) · v(1)− u(1) · v∗(t, s) +

∑
τ=s, t

[
u(τ) · v(t + s− τ)

−u(τ − 1) · v(t + s− 1− τ)− u(t− τ) · v(τ − s)
])

,

0 ≤ s ≤ t ≤ 1,
1
4

(
− u∗(s, t) · v(1)− u(1) · v∗(s, t) +

∑
τ=s, t

[
u(τ) · v(t + s− τ)

−u(τ − 1) · v(t + s− 1− τ) + u(t− τ) · v(τ − s)
])

,

0 ≤ t < s ≤ 1

(3.9)

where 4 = 4k3(cos k cosh k − 1) and u, v are vector-functions such that
u(τ) = [− sin kτ, cos kτ ] , u∗(t, s) = [− sin k(s− t + 1), cos k(t + s− 1)] ,

v(τ) = [cosh kτ, sinh kτ ] , v∗(t, s) = [cosh k(t+ s− 1), sinh k(s− t+1)], and the dot u · v
denotes the scalar product.

Proof. The Green’s function is constructed as an element of the Green’s matrix by reduc-
ing the linear problem (3.8) to a matrix form [4].

Proposition 3.6. The Green’s function Gk(t, s) (3.9) can be estimated by

∣∣Gk(t, s)
∣∣ ≤ Γk :=

(5 +
√

2)
√

cosh 2k + sinh k + 1
4k3

∣∣ cos k · cosh k − 1
∣∣ . (3.10)

Proof. Follows from a property of the scalar product |u · v| ≤ |u| · |v| taking into con-
sideration that |u(τ)| ≤ 1 , |v∗(t, s)| ≤ cosh 2k, |u∗(t, s)| ≤

√
2 , |v∗(t, s)| ≤

√
cosh 2k.

We can improve this estimate for some numbers k. For instance, if k = πn,
(n = 1, 2, . . .) the Green’s function Gk(t, s) can be simplified. We express hyperbolic
sine and cosine in terms of the exponential functions and obtain the following estimates

∣∣Gk(t, s)
∣∣ ≤ (1 +

√
2) ek

k3(ek +1)
=: Γ1(k), if k = (2n− 1)π, (3.11)

∣∣Gk(t, s)
∣∣ ≤ (1 +

√
2) ek

k3(ek −1)
=: Γ2(k), if k = 2nπ. (3.12)

3.3. Emden-Fowler equation. We apply the obtained estimates (3.11), (3.12) and
Theorem 3.4 to the Emden-Fowler type equation

x(4) = λ2 · |x|p signx, (3.13)

where λ 6= 0, p > 0, p 6= 1, with the boundary conditions (3.2).

Theorem 3.7. If there exists some k in the form k = πi, (i = 1, 2, . . .), which satisfies
the inequality

k · (1 +
√

2)ek

(ek + 1)
< β · p

p
p−1

|p− 1|
for k = (2n− 1)π (3.14)
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or

k · (1 +
√

2)ek

(ek − 1)
< β · p

p
p−1

|p− 1|
for k = 2nπ, (3.15)

where β is a positive root of the equation βp = β + (p − 1) · p
p

1−p , then there exists an
(i− 1)-type solution of the problem (3.13), (3.2).

Proof. Let us consider instead of the equation (3.13) the equivalent one

x(4) − k4x = λ2 · |x|p signx− k4x, (3.16)

where k satisfies cos k cosh k 6= 1. Denote fk(x) := λ2 · |x|p signx− k4x. We can calculate
the value of the function fk(x) at the point of extremum xextr

Mk = |fk(xextr)| = λ
2

1−p ·
(k4

p

) p
p−1 · |p− 1|. (3.17)

Choose Nk > 0 such that |x(t)| ≤ Nk ⇒ |fk(x)| ≤ Mk, ∀t ∈ I. Computation gives that

Nk =
(k4

λ2

) 1
p−1

β, (3.18)

where β is a positive root of the equation βp = β + (p− 1) · p
p

1−p .
The rest proof is similar to the proof of Theorem 2.7 for the second-order problems.
Consider the quasi-linear equation

x(4) − k4x = Fk(x), (3.19)

where Fk(x) = fk(x) ∀x ∈ {x : |x(t)| ≤ Nk} and rewrite the obtained quasi-linear
problem (3.19), (3.2) in the integral form. Then a solution x(t) of the problem (3.19),
(3.2) satisfies the estimate

∣∣x(t)
∣∣ ≤ Γk ·Mk, where Γk the estimate of the Green’s function

(3.9). If moreover the inequality

Γk ·Mk < Nk (3.20)

holds, then equations (3.13) and (3.19) are equivalent in the domain Ωk = {(t, x) : 0 ≤
t ≤ 1, |x| < Nk}. In other words if the inequality (3.20) holds, then the original problem
(3.13), (3.2) allows for quasilinearization with respect to the domain Ωk and the linear
part (L4x)(t) = x(4) − k4x.

Notice that in this domain of equivalence Ωk the condition (3.4) is fulfilled (i.e.

k4+
dFk

dx
> 0). So it follows from Theorem 3.4 that if the linear part (L4x)(t) = x(4)−k4x

is i-nonresonant, then the quasi-linear problem (3.19), (3.2) has an i-type solution, if
moreover the inequality (3.20) holds, then the original problem (3.13), (3.2) also has an
i-type solution.

Let us consider values k of the form k = πi (i = 1, 2 . . .). For such k the linear part
(L4x)(t) = x(4) − k4x is (i − 1)-nonresonant and the Green’s function Gk(t, s) satisfies
either the estimate Γ1(k) (3.11) or Γ2(k) (3.12). It follows from (3.17), (3.18), (3.11),
(3.12) that the inequality (3.20) reduces respectively either to (3.14) or (3.15).

Corollary 3.8. If there exist k = πi, i = 1, 2, . . . , m, which satisfy the inequalities
(3.14), (3.15), then there exist at least m solutions of different types to the problem (3.13),
(3.2).
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We have obtained the results, which show that certain values of k in the form πi, i =
1, 2, . . . for some values of p are good for the inequalities (3.14) or/and (3.15) to be
satisfied [11].

We illustrate our considerations by an example. Consider the problem

x(4) = 810 · |x| 87 signx,

x(0) = x′(0) = 0 = x(1) = x′(1).
(3.21)

We have computed the solutions of different types for this problem.
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Fig. 3.1. 0-type solution
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Fig. 3.2. 1-type solution

The solid line in Figure 3.1 indicates a trivial solution of the problem (3.21) and
the dashed line relates to one of the corresponding neighboring solutions (see Definition
3.3). All other neighboring solutions are such that the difference has no double zero in
the interval (0, 1), therefore the trivial solution is a 0-type solution.

Figure 3.2 shows another solution of the problem (3.21) in solid and it is an 1-type
solution; the difference between neighboring solution (dashed line) and this solution has
exactly one double zero (conjugate point) in some point of the open interval (0, 1). The
initial data of the 1-type solution are x′′(0) = 1.1, x′′′(0) = −5.03461937.
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Fig. 3.3. 2-type solution
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Fig. 3.4. Difference between 2type solution and
respective neighboring solution

Figure 3.3 illustrates a 2-type solution of the problem (3.21). The graph of the
respective neighboring solution is difficult to show, because two lines almost coincide.
Nevertheless, the difference between neighboring solution and this solution is depicted
in Figure 3.4 and it has one simple zero and one double zero in the open interval
(0, 1). Then another neighboring solution x(t; α, β) exists such that the difference
x(t; α, β) − ξ(t) has only one zero in (0, 1) and this zero is a double zero. The ini-
tial data of the 2-type solution are large comparing with those for previous solutions,
x′′(0) = 4099959.008, x′′′(0) = −31634999.21.
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