OSCILLATION CRITERIA FOR HALF-LINEAR PARTIAL DIFFERENTIAL EQUATIONS VIA PICONE'S IDENTITY*

NORIO YOSHIDA ${ }^{\dagger}$

Abstract

A Picone's identity is established for a class of half-linear partial differential equations, and oscillation criteria are obtained by using the Picone's identity. By reducing the oscillation problem for half-linear partial differential equations to a one-dimensional oscillation problem for half-linear ordinary differential equations, we derive various oscillation results.

Key words. Picone's inequality, oscillation criteria, half-linear, partial differential equation
AMS subject classifications. 35B05

1. Introduction. Recently there has been much interest in studying the oscillatory behavior of solutions of half-linear differential equations. There are many papers (or books) dealing with oscillations of half-linear partial differential equations, see, e.g. Bognár and Došlý [2], Došlý [3, 4], Došlý and Mařík [5], Došlý and Řehák [6] Dunninger [7], Kusano, Jaroš and Yoshida [10], Mařík [13, 14] and Yoshida [15]. Picone identity plays an important role in Sturmian comparison theory and oscillation theory of differential equations. We mention the papers $[1,2,3,5,7,10,15]$ which deal with Picone identity for half-linear partial differential equations. In particular, the paper [15] treats the half-linear partial differential equation with first order term

$$
\begin{equation*}
\nabla \cdot\left(A(x)|\nabla v|^{\alpha-1} \nabla v\right)+(\alpha+1)|\nabla v|^{\alpha-1} B(x) \cdot \nabla v+C(x)|v|^{\alpha-1} v=0 . \tag{*}
\end{equation*}
$$

The purpose of this paper is to establish a Picone identity for the half-linear partial differential equation

$$
\begin{align*}
P_{\alpha}[v] \equiv \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(\left(A_{i}(x)\right)^{2}\left|\nabla_{A} v\right|^{\alpha-1} \frac{\partial v}{\partial x_{i}}\right) & +(\alpha+1)\left|\nabla_{A} v\right|^{\alpha-1} B(x) \cdot \nabla_{A} v \tag{1.1}\\
& +C(x)|v|^{\alpha-1} v=0
\end{align*}
$$

and to derive oscillation results for (1.1) using the Picone identity, where $\alpha>0$ is a constant and

$$
\nabla_{A} v=\left(A_{1}(x) \frac{\partial v}{\partial x_{1}}, \ldots, A_{n}(x) \frac{\partial v}{\partial x_{n}}\right)
$$

We note that the half-linear partial differential equation (1.1) is a generalization of (*). In fact, if

$$
A_{1}(x)=A_{2}(x)=\cdots=A_{n}(x)=A(x)^{\frac{1}{\alpha+1}}(A(x)>0)
$$

[^0]we see that (1.1) reduces to
\[

$$
\begin{aligned}
& \nabla \cdot\left(A(x)|\nabla v|^{\alpha-1} \nabla v\right)+(\alpha+1) A(x)^{\frac{\alpha}{\alpha+1}}|\nabla v|^{\alpha-1} B(x) \cdot \nabla v \\
&+C(x)|v|^{\alpha-1} v=0
\end{aligned}
$$
\]

2. Picone identity. In this section we establish a Picone identity for (1.1), and obtain a sufficient condition for every solution v of (1.1) to have a zero on \bar{G}, where G is a bounded domain in \mathbb{R}^{n} with piecewise smooth boundary ∂G.

It is assumed that $A_{i}(x) \in C(\bar{G} ;(0, \infty))(i=1,2, \ldots, n), B(x) \in C\left(\bar{G} ; \mathbb{R}^{n}\right)$ and $C(x) \in C(\bar{G} ; \mathbb{R})$.

The domain $\mathcal{D}_{P_{\alpha}}(G)$ of P_{α} is defined to be the set of all functions v of class $C^{1}(\bar{G} ; \mathbb{R})$ with the property that $\left(A_{i}(x)\right)^{2}\left|\nabla_{A} v\right|^{\alpha-1} \frac{\partial v}{\partial x_{i}} \in C^{1}(G ; \mathbb{R}) \cap C(\bar{G} ; \mathbb{R})(i=1,2, \ldots, n)$.
Theorem 2.1 (Picone identity). If $v \in \mathcal{D}_{P_{\alpha}}(G), v \neq 0$ in G, then the following Picone identity holds for any $u \in C^{1}(G ; \mathbb{R})$:

$$
\begin{align*}
& -\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(u \varphi(u) \frac{\left(A_{i}(x)\right)^{2}\left|\nabla_{A} v\right|^{\alpha-1} \frac{\partial v}{\partial x_{i}}}{\varphi(v)}\right) \\
= & -\left|\nabla_{A} u-u B(x)\right|^{\alpha+1}+C(x)|u|^{\alpha+1} \\
& +\left|\nabla_{A} u-u B(x)\right|^{\alpha+1}+\alpha\left|\frac{u}{v} \nabla_{A} v\right|^{\alpha+1} \tag{2.1}\\
& -(\alpha+1)\left(\nabla_{A} u-u B(x)\right) \cdot \Phi\left(\frac{u}{v} \nabla_{A} v\right) \\
& -\frac{u \varphi(u)}{\varphi(v)} P_{\alpha}[v]
\end{align*}
$$

where $\varphi(s)=|s|^{\alpha-1} s(s \in \mathbb{R})$ and $\Phi(\xi)=|\xi|^{\alpha-1} \xi\left(\xi \in \mathbb{R}^{n}\right)$.
Proof. A direct calculation yields

$$
\begin{align*}
& -\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(u \varphi(u) \frac{\left(A_{i}(x)\right)^{2}\left|\nabla_{A} v\right|^{\alpha-1} \frac{\partial v}{\partial x_{i}}}{\varphi(v)}\right) \\
= & -\sum_{i=1}^{n} \frac{\partial u}{\partial x_{i}} \varphi(u) \frac{\left(A_{i}(x)\right)^{2}\left|\nabla_{A} v\right|^{\alpha-1} \frac{\partial v}{\partial x_{i}}}{\varphi(v)} \\
& -\sum_{i=1}^{n} u \varphi^{\prime}(u) \frac{\partial u}{\partial x_{i}} \frac{\left(A_{i}(x)\right)^{2}\left|\nabla_{A} v\right|^{\alpha-1} \frac{\partial v}{\partial x_{i}}}{\varphi(v)} \tag{2.2}\\
& -\sum_{i=1}^{n} u \varphi(u)\left(-\frac{\varphi^{\prime}(v)}{\varphi(v)^{2}} \frac{\partial v}{\partial x_{i}}\right)\left(A_{i}(x)\right)^{2}\left|\nabla_{A} v\right|^{\alpha-1} \frac{\partial v}{\partial x_{i}} \\
& -\sum_{i=1}^{n} u \varphi(u) \frac{\frac{\partial}{\partial x_{i}}\left(\left(A_{i}(x)\right)^{2}\left|\nabla_{A} v\right|^{\alpha-1} \frac{\partial v}{\partial x_{i}}\right)}{\varphi(v)} .
\end{align*}
$$

It is easy to see that

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{\partial u}{\partial x_{i}} \varphi(u) \frac{\left(A_{i}(x)\right)^{2}\left|\nabla_{A} v\right|^{\alpha-1} \frac{\partial v}{\partial x_{i}}}{\varphi(v)}=\varphi\left(\frac{u}{v}\right) \sum_{i=1}^{n}\left(A_{i}(x)\right)^{2}\left|\nabla_{A} v\right|^{\alpha-1} \frac{\partial v}{\partial x_{i}} \frac{\partial u}{\partial x_{i}} \tag{2.3}
\end{equation*}
$$

in view of the fact that $\varphi(u) / \varphi(v)=\varphi(u / v)$. Since $u \varphi^{\prime}(u)=\alpha \varphi(u)$, it can be shown that

$$
\begin{align*}
& \sum_{i=1}^{n} u \varphi^{\prime}(u) \frac{\partial u}{\partial x_{i}} \frac{\left(A_{i}(x)\right)^{2}\left|\nabla_{A} v\right|^{\alpha-1} \frac{\partial v}{\partial x_{i}}}{\varphi(v)} \tag{2.4}\\
= & \alpha \varphi\left(\frac{u}{v}\right) \sum_{i=1}^{n}\left(A_{i}(x)\right)^{2}\left|\nabla_{A} v\right|^{\alpha-1} \frac{\partial v}{\partial x_{i}} \frac{\partial u}{\partial x_{i}} .
\end{align*}
$$

Using the identity $\varphi^{\prime}(v)=\alpha(\varphi(v) / v)$, we obtain

$$
\begin{align*}
& \sum_{i=1}^{n} u \varphi(u)\left(-\frac{\varphi^{\prime}(v)}{\varphi(v)^{2}} \frac{\partial v}{\partial x_{i}}\right)\left(A_{i}(x)\right)^{2}\left|\nabla_{A} v\right|^{\alpha-1} \frac{\partial v}{\partial x_{i}} \tag{2.5}\\
= & -\alpha \frac{u}{v} \varphi\left(\frac{u}{v}\right) \sum_{i=1}^{n}\left(A_{i}(x)\right)^{2}\left|\nabla_{A} v\right|^{\alpha-1}\left(\frac{\partial v}{\partial x_{i}}\right)^{2} .
\end{align*}
$$

Combining (2.2)-(2.5), we observe that

$$
\begin{align*}
& -\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(u \varphi(u) \frac{\left(A_{i}(x)\right)^{2}\left|\nabla_{A} v\right|^{\alpha-1} \frac{\partial v}{\partial x_{i}}}{\varphi(v)}\right) \\
= & \alpha \frac{u}{v} \varphi\left(\frac{u}{v}\right) \sum_{i=1}^{n}\left(A_{i}(x)\right)^{2}\left|\nabla_{A} v\right|^{\alpha-1}\left(\frac{\partial v}{\partial x_{i}}\right)^{2} \tag{2.6}\\
& -(\alpha+1) \varphi\left(\frac{u}{v}\right) \sum_{i=1}^{n}\left(A_{i}(x)\right)^{2}\left|\nabla_{A} v\right|^{\alpha-1} \frac{\partial v}{\partial x_{i}} \frac{\partial u}{\partial x_{i}} \\
& -\frac{u \varphi(u)}{\varphi(v)} \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(\left(A_{i}(x)\right)^{2}\left|\nabla_{A} v\right|^{\alpha-1} \frac{\partial v}{\partial x_{i}}\right) .
\end{align*}
$$

It is easily verified that

$$
\begin{align*}
& \alpha \frac{u}{v} \varphi\left(\frac{u}{v}\right) \sum_{i=1}^{n}\left(A_{i}(x)\right)^{2}\left|\nabla_{A} v\right|^{\alpha-1}\left(\frac{\partial v}{\partial x_{i}}\right)^{2} \\
= & \alpha\left|\frac{u}{v}\right|^{\alpha+1}\left|\nabla_{A} v\right|^{\alpha-1} \sum_{i=1}^{n}\left(A_{i}(x)\right)^{2}\left(\frac{\partial v}{\partial x_{i}}\right)^{2} \tag{2.7}\\
= & \alpha\left|\frac{u}{v} \nabla_{A} v\right|^{\alpha+1} .
\end{align*}
$$

A simple computation shows that

$$
\begin{align*}
& -(\alpha+1) \varphi\left(\frac{u}{v}\right) \sum_{i=1}^{n}\left(A_{i}(x)\right)^{2}\left|\nabla_{A} v\right|^{\alpha-1} \frac{\partial v}{\partial x_{i}} \frac{\partial u}{\partial x_{i}} \\
= & -(\alpha+1)\left|\frac{u}{v} \nabla_{A} v\right|^{\alpha-1} \sum_{i=1}^{n}\left(A_{i}(x) \frac{\partial u}{\partial x_{i}}\right)\left(\frac{u}{v} A_{i}(x) \frac{\partial v}{\partial x_{i}}\right) \tag{2.8}\\
= & -(\alpha+1)\left|\frac{u}{v} \nabla_{A} v\right|^{\alpha-1}\left(\nabla_{A} u\right) \cdot\left(\frac{u}{v} \nabla_{A} v\right) .
\end{align*}
$$

Hence, combining (2.6)-(2.8) yields the following :

$$
\begin{align*}
& -\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(u \varphi(u) \frac{\left(A_{i}(x)\right)^{2}\left|\nabla_{A} v\right|^{\alpha-1} \frac{\partial v}{\partial x_{i}}}{\varphi(v)}\right) \\
= & \alpha\left|\frac{u}{v} \nabla_{A} v\right|^{\alpha+1}-(\alpha+1)\left|\frac{u}{v} \nabla_{A} v\right|^{\alpha-1}\left(\nabla_{A} u\right) \cdot\left(\frac{u}{v} \nabla_{A} v\right) \tag{2.9}\\
& -\frac{u \varphi(u)}{\varphi(v)} \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(\left(A_{i}(x)\right)^{2}\left|\nabla_{A} v\right|^{\alpha-1} \frac{\partial v}{\partial x_{i}}\right) .
\end{align*}
$$

We easily obtain

$$
\begin{align*}
& \frac{u \varphi(u)}{\varphi(v)}\left[(\alpha+1)\left|\nabla_{A} v\right|^{\alpha-1} B(x) \cdot \nabla_{A} v\right] \tag{2.10}\\
= & (\alpha+1)\left|\frac{u}{v} \nabla_{A} v\right|^{\alpha-1} u B(x) \cdot\left(\frac{u}{v} \nabla_{A} v\right) .
\end{align*}
$$

Combining (2.9) and (2.10), we find that

$$
\begin{align*}
&-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(u \varphi(u) \frac{\left(A_{i}(x)\right)^{2}\left|\nabla_{A} v\right|^{\alpha-1} \frac{\partial v}{\partial x_{i}}}{\varphi(v)}\right) \\
&=\alpha\left|\frac{u}{v} \nabla_{A} v\right|^{\alpha+1}-(\alpha+1)\left|\frac{u}{v} \nabla_{A} v\right|^{\alpha-1}\left(\nabla_{A} u-u B(x)\right) \cdot\left(\frac{u}{v} \nabla_{A} v\right) \\
&- \frac{u \varphi(u)}{\varphi(v)}\left[\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(\left(A_{i}(x)\right)^{2}\left|\nabla_{A} v\right|^{\alpha-1} \frac{\partial v}{\partial x_{i}}\right)\right. \tag{2.11}\\
&\left.+(\alpha+1)\left|\nabla_{A} v\right|^{\alpha-1} B(x) \cdot \nabla_{A} v\right]
\end{align*}
$$

Since

$$
\frac{u \varphi(u)}{\varphi(v)} C(x)|v|^{\alpha-1} v=C(x)|u|^{\alpha+1}
$$

we conclude that (2.11) is equivalent to the desired Picone identity (2.1).
Theorem 2.2. Assume that there exists a nontrivial function $u \in C^{1}(\bar{G} ; \mathbb{R})$ such that $u=0$ on ∂G and

$$
M_{G}[u] \equiv \int_{G}\left[\left|\nabla_{A} u-u B(x)\right|^{\alpha+1}-C(x)|u|^{\alpha+1}\right] \mathrm{d} x \leq 0
$$

Then every solution $v \in \mathcal{D}_{P_{\alpha}}(G)$ of (1.1) must vanish at some point of \bar{G}.
Proof. Suppose to the contrary that there exists a solution $v \in \mathcal{D}_{P}(G)$ of (1.1) satisfying $v \neq 0$ on \bar{G}. Theorem 2.1 implies that the Picone-type inequality (2.1) holds for the nontrivial function u. Integrating (2.1) over G, we obtain

$$
\begin{align*}
& 0=-M_{G}[u]+\int_{G} {\left[\left|\nabla_{A} u-u B(x)\right|^{\alpha+1}+\alpha\left|\frac{u}{v} \nabla_{A} v\right|^{\alpha+1}\right.} \\
&\left.\quad-(\alpha+1)\left(\nabla_{A} u-u B(x)\right) \cdot \Phi\left(\frac{u}{v} \nabla_{A} v\right)\right] \mathrm{d} x \tag{2.12}\\
& \geq \int_{G}\left[\left|\nabla_{A} u-u B(x)\right|^{\alpha+1}+\alpha\left|\frac{u}{v} \nabla_{A} v\right|^{\alpha+1}\right. \\
&\left.\quad-(\alpha+1)\left(\nabla_{A} u-u B(x)\right) \cdot \Phi\left(\frac{u}{v} \nabla_{A} v\right)\right] \mathrm{d} x
\end{align*}
$$

It is easily seen that

$$
\nabla_{A} u-u B(x)-\frac{u}{v} \nabla_{A} v=v \nabla_{A}\left(\frac{u}{v}\right)-u B(x)=v\left[\nabla_{A}\left(\frac{u}{v}\right)-\frac{u}{v} B(x)\right]
$$

If

$$
\nabla_{A}\left(\frac{u}{v}\right)-\frac{u}{v} B(x) \equiv 0 \quad \text { in } \quad G
$$

then we obtain the following

$$
\nabla\left(\frac{u}{v}\right)-\frac{u}{v} B_{A}(x) \equiv 0 \quad \text { in } G
$$

where

$$
B_{A}(x)=\left(\frac{B_{1}(x)}{A_{1}(x)}, \ldots, \frac{B_{n}(x)}{A_{n}(x)}\right)
$$

It follows from a result of Jaroš, Kusano and Yoshida [9, Lemma] that

$$
\frac{u}{v}=C_{0} \exp h(x) \quad \text { on } \bar{G}
$$

for some constant C_{0} and some continuous function $h(x)$. Since $u=0$ on ∂G, we obtain $C_{0}=0$, and hence $u \equiv 0$. This contradicts the fact that u is nontrivial, and therefore we find

$$
\nabla_{A} u-u B(x) \not \equiv \frac{u}{v} \nabla_{A} v \quad \text { in } G
$$

Hence, it follows from a result of Kusano, Jaroš and Yoshida [10, Lemma 2.1] that

$$
\begin{aligned}
& \int_{G}\left[\left|\nabla_{A} u-u B(x)\right|^{\alpha+1}+\alpha\left|\frac{u}{v} \nabla_{A} v\right|^{\alpha+1}\right. \\
&\left.-(\alpha+1)\left(\nabla_{A} u-u B(x)\right) \cdot \Phi\left(\frac{u}{v} \nabla_{A} v\right)\right] \mathrm{d} x>0
\end{aligned}
$$

which, combined with (2.12), yields a contradiction. The proof is complete.
3. Oscillation results. We consider the half-linear partial differential equation

$$
\begin{align*}
P_{\alpha}[v] \equiv \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(\left(A_{i}(x)\right)^{2}\left|\nabla_{A} v\right|^{\alpha-1} \frac{\partial v}{\partial x_{i}}\right) & +(\alpha+1)\left|\nabla_{A} v\right|^{\alpha-1} B(x) \cdot \nabla_{A} v \tag{3.1}\\
& +C(x)|v|^{\alpha-1} v=0
\end{align*}
$$

in an unbounded domain $\Omega \subset \mathbb{R}^{n}$, where $\alpha>0$ is a constant, $A_{i}(x) \in C(\Omega ;(0, \infty))$ $(i=1,2, \ldots, n), B(x) \in C(\Omega ; \mathbb{R})$ and $C(x) \in C(\Omega ; \mathbb{R})$.

The domain $\mathcal{D}_{P_{\alpha}}(\Omega)$ of P_{α} is defined to be the set of all functions v of class $C^{1}(\Omega ; \mathbb{R})$ with the property that $\left(A_{i}(x)\right)^{2}\left|\nabla_{A} v\right|^{\alpha-1} \frac{\partial v}{\partial x_{i}} \in C^{1}(\Omega ; \mathbb{R})(i=1,2, \ldots, n)$.

A solution $v \in \mathcal{D}_{P_{\alpha}}(\Omega)$ of (3.1) is said to be oscillatory in Ω if it has a zero in Ω_{r} for any $r>0$, where

$$
\Omega_{r}=\Omega \cap\left\{x \in \mathbb{R}^{n} ;|x|>r\right\} .
$$

Theorem 3.1. Assume that for any $r>0$ there exists a bounded and piecewise smooth domain G with $\bar{G} \subset \Omega_{r}$. If there is a nontrivial function $u \in C^{1}(\bar{G} ; \mathbb{R})$ such that $u=0$ on
∂G and $M_{G}[u] \leq 0$, where M_{G} is defined in Theorem 2.2 , then every solution $v \in \mathcal{D}_{P_{\alpha}}(\Omega)$ of (3.1) is oscillatory in Ω.

Proof. Let $r>0$ be an arbitrary number. THEOREM 2.2 implies that every solution $v \in \mathcal{D}_{P_{\alpha}}(\Omega)$ of (3.1) has a zero on $\bar{G} \subset \Omega_{r}$, that is, every solution v of (3.1) is oscillatory in Ω.

Lemma 3.2. Let $0<\alpha<1$. Then we obtain the inequality

$$
\begin{equation*}
|\nabla u-u W(x)|^{\alpha+1} \leq \frac{|\nabla u|^{\alpha+1}}{1-\alpha}+\frac{|W(x)|^{\alpha+1}}{1-\alpha}|u|^{\alpha+1} \tag{3.2}
\end{equation*}
$$

for any function $u \in C^{1}(G ; \mathbb{R})$ and any n-vector function $W(x) \in C(G ; \mathbb{R})$.
Proof. The following inequality holds:

$$
\begin{aligned}
(\nabla u) \cdot \Phi(\nabla u)+\alpha(\nabla u & -u W(x)) \cdot \Phi(\nabla u-u W(x)) \\
& -(\alpha+1)(\nabla u) \cdot \Phi(\nabla u-u W(x)) \geq 0
\end{aligned}
$$

(see, e.g., Kusano, Jaroš and Yoshida [10, Lemma 2.1]). Hence, we have

$$
\begin{aligned}
& (\nabla u) \cdot \Phi(\nabla u)+\alpha(\nabla u-u W(x)) \cdot \Phi(\nabla u-u W(x)) \\
& \quad-(\alpha+1)(\nabla u-u W(x)+u W(x)) \cdot \Phi(\nabla u-u W(x)) \geq 0
\end{aligned}
$$

and therefore

$$
\begin{aligned}
& |\nabla u|^{\alpha+1}+\alpha|\nabla u-u W(x)|^{\alpha+1} \\
& \quad-(\alpha+1)\left[|\nabla u-u W(x)|^{\alpha+1}+u W(x) \cdot \Phi(\nabla u-u W(x))\right] \geq 0
\end{aligned}
$$

or

$$
\begin{equation*}
|\nabla u|^{\alpha+1}-(\alpha+1) u W(x) \cdot \Phi(\nabla u-u W(x)) \geq|\nabla u-u W(x)|^{\alpha+1} \tag{3.3}
\end{equation*}
$$

Using Schwarz's inequality and Young's inequality, we find that

$$
\begin{align*}
& |(\alpha+1) u W(x) \cdot \Phi(\nabla u-u W(x))| \\
\leq & (\alpha+1)|u W(x)||\nabla u-u W(x)|^{\alpha} \\
\leq & (\alpha+1)\left[\frac{|u W(x)|^{\alpha+1}}{\alpha+1}+\frac{|\nabla u-u W(x)|^{\alpha+1}}{\frac{\alpha+1}{\alpha}}\right] \tag{3.4}\\
= & |u W(x)|^{\alpha+1}+\alpha|\nabla u-u W(x)|^{\alpha+1} .
\end{align*}
$$

Combining (3.3) with (3.4) yields the following

$$
\begin{aligned}
|\nabla u-u W(x)|^{\alpha+1} & \leq|\nabla u|^{\alpha+1}+|(\alpha+1) u W(x) \cdot \Phi(\nabla u-u W(x))| \\
& \leq|\nabla u|^{\alpha+1}+|u W(x)|^{\alpha+1}+\alpha|\nabla u-u W(x)|^{\alpha+1}
\end{aligned}
$$

and hence

$$
(1-\alpha)|\nabla u-u W(x)|^{\alpha+1} \leq|\nabla u|^{\alpha+1}+|W(x)|^{\alpha+1}|u|^{\alpha+1}
$$

which is equivalent to (3.2). The proof is complete.

Theorem 3.3. Let $0<\alpha<1$. Assume that for any $r>0$ there exist a bounded and piecewise smooth domain G with $\bar{G} \subset \Omega_{r}$ and a nontrivial function $u \in C^{1}(\bar{G} ; \mathbb{R})$ such that $u=0$ on ∂G and

$$
\int_{G}\left[\frac{K(x)}{1-\alpha}|\nabla u|^{\alpha+1}-\left\{C(x)-\frac{K(x)\left|B_{A}(x)\right|^{\alpha+1}}{1-\alpha}\right\}|u|^{\alpha+1}\right] \mathrm{d} x \leq 0
$$

where $K(x)=\left(\max _{1 \leq i \leq n} A_{i}(x)\right)^{\alpha+1}$ and

$$
B_{A}(x)=\left(\frac{B_{1}(x)}{A_{1}(x)}, \ldots, \frac{B_{n}(x)}{A_{n}(x)}\right)
$$

Then every solution $v \in \mathcal{D}_{P_{\alpha}}(\Omega)$ of (3.1) is oscillatory in Ω.
Proof. It is easy to see that

$$
\left|\nabla_{A} u-u B(x)\right| \leq \sqrt{\max _{1 \leq i \leq n}\left(A_{i}(x)\right)^{2}}\left|\nabla u-u B_{A}(x)\right| \leq\left(\max _{1 \leq i \leq n} A_{i}(x)\right)\left|\nabla u-u B_{A}(x)\right|
$$

and hence

$$
\begin{equation*}
\left|\nabla_{A} u-u B(x)\right|^{\alpha+1} \leq K(x)\left|\nabla u-u B_{A}(x)\right|^{\alpha+1} \tag{3.5}
\end{equation*}
$$

Combining (3.2) with (3.5), we obtain

$$
\left|\nabla_{A} u-u B_{A}(x)\right|^{\alpha+1} \leq \frac{K(x)}{1-\alpha}|\nabla u|^{\alpha+1}+\frac{K(x)\left|B_{A}(x)\right|^{\alpha+1}}{1-\alpha}|u|^{\alpha+1}
$$

Therefore, we observe that

$$
\begin{aligned}
& \int_{G}\left[\left|\nabla_{A} u-u B(x)\right|^{\alpha+1}-C(x)|u|^{\alpha+1}\right] \mathrm{d} x \\
\leq & \int_{G}\left[\frac{K(x)}{1-\alpha}|\nabla u|^{\alpha+1}-\left\{C(x)-\frac{K(x)\left|B_{A}(x)\right|^{\alpha+1}}{1-\alpha}\right\}|u|^{\alpha+1}\right] \mathrm{d} x
\end{aligned}
$$

and consequently, the conclusion follows from ThEOREM 3.1.
Lemma 3.4. Let $E(x) \in C(G ;(0, \infty))$ satisfy $E(x)>\alpha$. Then the inequality

$$
\begin{equation*}
|\nabla u-u W(x)|^{\alpha+1} \leq \frac{E(x)}{E(x)-\alpha}|\nabla u|^{\alpha+1}+\frac{|E(x) W(x)|^{\alpha+1}}{E(x)-\alpha}|u|^{\alpha+1} \tag{3.6}
\end{equation*}
$$

holds for any function $u \in C^{1}(G ; \mathbb{R})$ and any n-vector function $W(x) \in C(G ; \mathbb{R})$.
Proof. Proceeding as in the proof of Lemma 3.2, we see that the inequality (3.3) holds. Applying Schwarz's inequality and Young's inequality, we have

$$
\begin{align*}
& |(\alpha+1) u W(x) \cdot \Phi(\nabla u-u W(x))| \\
= & \frac{1}{E(x)}(\alpha+1)|u E(x) W(x)||\nabla u-u W(x)|^{\alpha} \tag{3.7}\\
\leq & \frac{1}{E(x)}\left(|u E(x) W(x)|^{\alpha+1}+\alpha|\nabla u-u W(x)|^{\alpha+1}\right) .
\end{align*}
$$

Combining (3.3) with (3.7) yields the following

$$
|\nabla u-u W(x)|^{\alpha+1} \leq|\nabla u|^{\alpha+1}+\frac{|E(x) W(x)|^{\alpha+1}}{E(x)}|u|^{\alpha+1}+\frac{\alpha}{E(x)}|\nabla u-u W(x)|^{\alpha+1}
$$

and therefore

$$
\left(1-\frac{\alpha}{E(x)}\right)|\nabla u-u W(x)|^{\alpha+1} \leq|\nabla u|^{\alpha+1}+\frac{|E(x) W(x)|^{\alpha+1}}{E(x)}|u|^{\alpha+1}
$$

which is equivalent to (3.6). The proof is complete.
Theorem 3.5. Let $K(x)>\alpha$. Assume that for any $r>0$ there exist a bounded and piecewise smooth domain G with $\bar{G} \subset \Omega_{r}$ and a nontrivial function $u \in C^{1}(\bar{G} ; \mathbb{R})$ such that $u=0$ on ∂G and

$$
\int_{G}\left[\frac{(K(x))^{2}}{K(x)-\alpha}|\nabla u|^{\alpha+1}-\left\{C(x)-(K(x))^{\alpha+2} \frac{\left|B_{A}(x)\right|^{\alpha+1}}{K(x)-\alpha}\right\}|u|^{\alpha+1}\right] \mathrm{d} x \leq 0
$$

Then every solution $v \in \mathcal{D}_{P_{\alpha}}(\Omega)$ of (3.1) is oscillatory in Ω.
Proof. We see from (3.5) and (3.6) with $E(x)=K(x)$ that

$$
\begin{aligned}
& \int_{G}\left[\left|\nabla_{A} u-u B(x)\right|^{\alpha+1}-C(x)|u|^{\alpha+1}\right] \mathrm{d} x \\
\leq & \int_{G}\left[\frac{(K(x))^{2}}{K(x)-\alpha}|\nabla u|^{\alpha+1}\right. \\
& \left.\quad-\left\{C(x)-(K(x))^{\alpha+2} \frac{\left|B_{A}(x)\right|^{\alpha+1}}{K(x)-\alpha}\right\}|u|^{\alpha+1}\right] \mathrm{d} x
\end{aligned}
$$

Hence, the conclusion follows from Theorem 3.1. The proof is complete.
Let $\{Q(x)\}_{S}(r)$ denote the spherical mean of $Q(x)$ over the sphere $S_{r}=\left\{x \in \mathbb{R}^{n}\right.$: $|x|=r\}$, that is,

$$
\{Q(x)\}_{S}(r)=\frac{1}{\omega_{n} r^{n-1}} \int_{S_{r}} Q(x) \mathrm{d} S=\frac{1}{\omega_{n}} \int_{S_{1}} Q(r, \theta) d \omega
$$

where ω_{n} is the surface area of the unit sphere S_{1} and (r, θ) is the hyperspherical coordinates on \mathbb{R}^{n}.

THEOREM 3.6. Let $0<\alpha<1$. If the half-linear ordinary differential equation

$$
\begin{align*}
& \left(r^{n-1}\left\{\frac{K(x)}{1-\alpha}\right\}_{S}(r)\left|y^{\prime}\right|^{\alpha-1} y^{\prime}\right)^{\prime} \tag{3.8}\\
& \quad+r^{n-1}\left\{C(x)-\frac{K(x)\left|B_{A}(x)\right|^{\alpha+1}}{1-\alpha}\right\}_{S}(r)|y|^{\alpha-1} y=0
\end{align*}
$$

is oscillatory, then every solution $v \in \mathcal{D}_{P_{\alpha}}\left(\mathbb{R}^{n}\right)$ of (3.1) is oscillatory in \mathbb{R}^{n}.
Proof. Let $\left\{r_{k}\right\}$ be the zeros of a nontrivial solution $y(r)$ of (3.8) such that $r_{1}<r_{2}<$ $\cdots, \lim _{k \rightarrow \infty} r_{k}=\infty$. Letting

$$
G_{k}=\left\{x \in \mathbb{R}^{n} ; r_{k}<|x|<r_{k+1}\right\}(k=1,2, \ldots)
$$

and $u_{k}(x)=y(|x|)$, we find that

$$
\begin{aligned}
& M_{G_{k}}\left[u_{k}\right] \leq \int_{G_{k}} \\
&=\left.\frac{K(x)}{1-\alpha}\left|\nabla u_{k}\right|^{\alpha+1}-\left\{C(x)-\frac{K(x)\left|B_{A}(x)\right|^{\alpha+1}}{1-\alpha}\right\}\left|u_{k}\right|^{\alpha+1}\right] \mathrm{d} x \\
& r_{k}\left.\quad-\left\{C(x)-\frac{K(x)\left|B_{A}(x)\right|^{\alpha+1}}{1-\alpha}\right\}_{S}(r)|y(r)|^{\alpha+1}\right] r^{n-1} d r \\
& \quad(r)\left|y^{\prime}(r)\right|^{\alpha+1} \\
&=-\omega_{n} \int_{r_{k}}^{r_{k+1}}\left[\left(r^{n-1}\left\{\frac{K(x)}{1-\alpha}\right\}_{S}(r)\left|y^{\prime}(r)\right|^{\alpha-1} y^{\prime}(r)\right)^{\prime}\right. \\
&\left.\quad+r^{n-1}\left\{C(x)-\frac{K(x)\left|B_{A}(x)\right|^{\alpha+1}}{1-\alpha}\right\}_{S}(r)|y(r)|^{\alpha-1} y(r)\right] y(r) d r \\
&=0 .
\end{aligned}
$$

Hence, the conclusion follows from Theorem 3.3.
THEOREM 3.7. Let $K(x)>\alpha$ in \mathbb{R}^{n}. If the half-linear ordinary differential equation

$$
\begin{align*}
& \left(r^{n-1}\left\{\frac{(K(x))^{2}}{K(x)-\alpha}\right\}_{S}(r)\left|y^{\prime}\right|^{\alpha-1} y^{\prime}\right)^{\prime} \tag{3.9}\\
& \quad+r^{n-1}\left\{C(x)-(K(x))^{\alpha+2} \frac{\left|B_{A}(x)\right|^{\alpha+1}}{K(x)-\alpha}\right\}_{S}(r)|y|^{\alpha-1} y=0
\end{align*}
$$

is oscillatory, then every solution $v \in \mathcal{D}_{P_{\alpha}}\left(\mathbb{R}^{n}\right)$ of (3.1) is oscillatory in \mathbb{R}^{n}.
Proof. The proof is quite similar to that of Theorem 3.6, and hence will be omitted.
Oscillation results for the half-linear ordinary differential equation

$$
\left(p(r)\left|y^{\prime}\right|^{\alpha-1} y^{\prime}\right)^{\prime}+q(r)|y|^{\alpha-1} y=0
$$

have been derived by numerous authors (see, e.g., Kusano and Naito [11] and Kusano, Naito and Ogata [12]). Various oscillation results for (3.1) can be obtained by combining Theorems 3.6 and 3.7 with the results of [11, 12].

The following Theorems 3.8 and 3.9 follow by combining Theorems 3.3 and 3.5 with the fact that the half-linear ordinary differential equation

$$
\left(K_{0} r^{n-1}\left|y^{\prime}\right|^{\alpha-1} y^{\prime}\right)^{\prime}+C_{0} r^{n-1}|y|^{\alpha-1} y=0
$$

is oscillatory for any $n \in \mathbb{N}, \alpha>0, K_{0}>0$ and $C_{0}>0$ (see Kusano, Jaroš and Yoshida [10, Example]).
ThEOREM 3.8. Let $0<\alpha<1$. If there are positive constants K_{0} and C_{0} satisfying

$$
\frac{K(x)}{1-\alpha} \leq K_{0}, \quad C(x)-\frac{K(x)\left|B_{A}(x)\right|^{\alpha+1}}{1-\alpha} \geq C_{0}
$$

then every solution $v \in \mathcal{D}_{P_{\alpha}}\left(\mathbb{R}^{n}\right)$ of (3.1) is oscillatory in \mathbb{R}^{n}.
Theorem 3.9. Let $K(x)>\alpha$ in \mathbb{R}^{n}. If there are positive constants K_{0} and C_{0} satisfying

$$
\frac{(K(x))^{2}}{K(x)-\alpha} \leq K_{0}, \quad C(x)-(K(x))^{\alpha+2} \frac{\left|B_{A}(x)\right|^{\alpha+1}}{K(x)-\alpha} \geq C_{0}
$$

then every solution $v \in \mathcal{D}_{P_{\alpha}}\left(\mathbb{R}^{n}\right)$ of (3.1) is oscillatory in \mathbb{R}^{n}.
Example. We consider the half-linear partial differential equation

$$
\begin{align*}
& \frac{\partial}{\partial x_{1}}\left(\left|\nabla_{A} v\right| \frac{\partial v}{\partial x_{1}}\right)+\frac{\partial}{\partial x_{2}}\left(4\left|\nabla_{A} v\right| \frac{\partial v}{\partial x_{2}}\right) \\
& +3\left|\nabla_{A} v\right|\left(3 \frac{\partial v}{\partial x_{1}}+16 \frac{\partial v}{\partial x_{2}}\right)+\left(\frac{4}{3} \times 40^{3}+1\right)|v| v=0 \tag{3.10}
\end{align*}
$$

for $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$, where

$$
\nabla_{A} v=\left(\frac{\partial v}{\partial x_{1}}, 2 \frac{\partial v}{\partial x_{2}}\right)
$$

Here $n=\alpha=2, A_{1}(x)=1, A_{2}(x)=2, K(x)=8, B(x)=(3,8), B_{A}(x)=(3,4)$, $C(x)=(4 / 3) \times 40^{3}+1$. Since

$$
\frac{(K(x))^{2}}{K(x)-\alpha}=\frac{32}{3}, \quad C(x)-(K(x))^{\alpha+2} \frac{\left|B_{A}(x)\right|^{\alpha+1}}{K(x)-\alpha}=1
$$

we can take $K_{0}=32 / 3$ and $C_{0}=1$. It is easy to see that $K(x)>\alpha$, and hence Theorem 3.9 implies that every solution v of (3.10) is oscillatory in \mathbb{R}^{2}.

REFERENCES

[1] W. Allegretto and Y. X. Huang, A Picone's identity for the p-Laplacian and applications, Nonlinear Anal., 32 (1998), 819-830.
[2] G. Bognár and O. Došlý, The application of Picone-type identity for some nonlinear elliptic differential equations, Acta Math. Univ. Comenian., 72 (2003), 45-57.
[3] O. Došlý, The Picone identity for a class of partial differential equations, Math. Bohem., 127 (2002), 581-589.
[4] O. Došlý, Half-linear Differential Equations, Handbook of Differential Equations: Ordinary Differential Equations, Volume 1, Elsevier B. V., Amsterdam, 2004.
[5] O. Došlý and R. Mařík, Nonexistence of positive solutions for PDE's with p-Laplacian, Acta Math. Hungar., 90 (2001), 89-107.
[6] O. Došlý and P. Rehák, Half-linear Differential Equations, North-Holland Mathematics Studies, 202, Elsevier Science B.V., Amsterdam, 2005.
[7] D. R. Dunninger, A Sturm comparison theorem for some degenerate quasilinear elliptic operators, Boll. Un. Mat. Ital. A, 9(7) (1995), 117-121.
[8] J. Jaroš, T. Kusano and N. Yoshida, Picone-type inequalities for half-linear elliptic equations and their applications, Adv. Math. Sci. Appl., 12 (2002), 709-724.
[9] J. Jaroš, T. Kusano and N. Yoshida, Picone-type inequalities for elliptic equations with first order terms and their applications, J. Inequal. Appl., 2006 (2006), 1-17.
[10] T. Kusano, J. Jaroš and N. Yoshida, A Picone-type identity and Sturmian comparison and oscillation theorems for a class of half-linear partial differential equations of second order, Nonlinear Anal., 40 (2000), 381-395.
[11] T. Kusano and Y. Naito, Oscillation and nonoscillation criteria for second order quasilinear differential equations, Acta Math. Hungar., 76 (1997), 81-99.
[12] T. Kusano, Y. Naito and A. Ogata, Strong oscillation and nonoscillation of quasilinear differential equations of second order, Differential Equations Dynam. Systems, 2 (1994), 1-10.
[13] R. Mařík, Hartman-Wintner type theorem for PDE with p-Laplacian, EJQTDE, 18 (2000), Proc. 6th. Coll. QTDE, 1-7.
[14] R. Mařík, Oscillation criteria for PDE with p-Laplacian via the Riccati technique, J. Math. Anal. Appl., 248 (2000), 290-308.
[15] N. Yoshida, Oscillation of half-linear partial differential equations with first order terms, Stud. Univ. Žilina, 17 (2003), 177-184.

[^0]: *This research was partially supported by Grant-in-Aid for Scientific Research (C)(2) (No. 16540144), The Ministry of Education, Culture, Sports, Science and Technology, Japan.
 ${ }^{\dagger}$ Department of Mathematics, Faculty of Science, University of Toyama, Toyama, 930-8555, Japan (nori@sci.u-toyama.ac.jp).

