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ON A SEMIDISCRETIZATION METHOD FOR THE

PSEUDOPARABOLIC VON KÁRMÁN SYSTEM ∗
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Abstract.

We shall deal with a system of quasistationary von Kármán equations describing great deflections
of thin viscoelastic plates made of Zener type material. In the special case of the exponential relax-
ation function is the original integral stress-strain relation transformed to the first order differential
relation. The resulting system for the deflection and the Airy stress function can be considered as
the pseudoparabolic generalization of the elastic von Kármán system. The existence of a unique
weak solution as the limit of the sequence of segment line functions with respect to time is verified.
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1. Introduction. We have dealt in [3] with the integro-differential von Kármán
system for describing the geometrically nonlinear behaviour of the long memory
isotropic viscoelastic plate. The relaxation function was exponentially decreasing. In
the special case of the exponential relaxation function the originally integro-differential
stress-strain relation can be transformed to the first order differential initial value
problem with a nonzero initial elastic relation. The deflection of the middle surface
of the plate and the Airy stress function are to be determined as solution of the gen-
eralized von Kármán system which is pseudoparabolic with respect to the deflection.
The general n-th order case was investigated in [4], where the stability problem for
the linearized case was considered. The dynamic von Kármán system with a vis-
coelastic damping term in the equation for the deflection has been considered by [11].
The authors in [16] considered the linear memory term with respect to the deflec-
tion. Thermo-viscoelastodynamic von Kármán system was investigated in [1], where
a lot of references can be found. The fluid-structure interaction problem involving von
Kármán system is considered in [9]. The latest paper of Ciarlet and Gratie [6], Ciarlet,
Gratie and Sabu CGS present the new results on the justification of the geometrically
nonlinear plate theory.

We have considered the anisotropic Voigt-Kelvin material with the zero initial
condition in [2]. In the presented case the nonlinear pseudoparabolic term appears
also in the right-hand side of the equation for the Airy stress function and the nonzero
initial values fulfil the classical elastic von Kármán system. A weak formulation of the
problem is equivalent with a nonlinear pseudoparabolic initial value problem with the
time derivative appearing also in the nonlinear term. We solve the problem by Rothe’s
method. A finite sequence of stationary von Kármán-like equations is to be solved.
The corresponding sequence of segment-like functions is convergent to a solution of
the original pseudoparabolic problem in the case of sufficiently small right-hand side.
This condition assures also the uniqueness of a solution.
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2. Formulation of the problem. We assume a thin isotropic plate occupying
the domain

Q = {(x, z) ∈ R3; x = (x1, x2) ∈ Ω, −h/2 < z < h/2},

where Ω is a bounded simply connected domain in R2 with a Lipschitz boundary Γ.
We assume the plate subjected both to a perpendicular load f . Its boundary is

divided in a form Γ = Γ1 ∪ Γ2 ∪ Γ3, where each Γi is either empty or mes(Γi) > 0.
Further we assume that Γ1 6= ∅ or Γ2 6= ∅ and Γ2 is not a segment of a straight
line. The part Γ3 contains only smooth parts. The plate is clamped on Γ1, simply
supported on Γ2 and free on the part Γ3.

Considering the great deflections we have the nonlinear strain-displacement rela-
tions

εij =
1

2
(∂iuj + ∂jui + ∂iw∂jw) − z∂ijw, i, j = 1, 2; ε13 = ε23 = 0

with plane displacements u1, u2 and a deflection w.
Let {σij} be the stress tensor fulfilling the condition σ33 = 0. The principle of

virtual displacements holds in the form

∫

Ω

(

∫ h/2

−h/2

σijδεijdz

)

dx =

∫

Ω

f(t, x)v(x)dx for all (ω1, ω2, v) ∈ U × U × V,

where v and ωi are virtual displacements in the directions z and xi (i = 1, 2) respec-
tively and U = H1

0 (Ω), V ⊂ H2(Ω) are the spaces of admissible displacements.
The virtual strains are of the form

δεij =
1

2
(∂iωj + ∂jωi + ∂iw∂jv) − z∂ijv, i, j = 1, 2.

The principle of virtual displacements implies that the stress resultants Nij =
∫ h/2

−h/2
σijdz fulfil the homogeneous equations ∂jNij = 0, i, j = 1, 2.

Then there exists the Airy stress function Φ : Ω → R defined by the equations

N11 = ∂22Φ, N22 = ∂11Φ, N12 = −∂12Φ.

The stress-strain relations for the isotropic viscoelastic long memory material of
the Boltzmann type are of the form

σij =
E(0)

1 − µ2
[(1 − µ)εij + µδijεkk ] +

E′

1 − µ2
∗ [(1 − µ)εij + µδijεkk ](t),(1)

i, j ∈ {1, 2}, εkk = ε11 + ε22, σ33 = 0

with a Poisson ratio µ ∈ (0, 1
2 ), a positive decreasing relaxation function

E ∈ C1(R+) and a convolution product f ∗ g(t) =
∫ t

0
f(t − s)g(s)ds.

Most of long memory viscoelastic material are modelled by the relaxation function
of the form ([5])

E(t) = E0 +

k
∑

i=1

Eie
−βit, E0 > 0, Ei > 0, βi > 0, i = 1, ..., k.
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It is possible in the case k = 1 to transform the integro-differential stress-strain
relations to the first order differential relations. Let

E(t) = E0 + E1e
−βt, E0 > 0, E1 > 0, β > 0.

After differentiating the relation (1) we obtain the following differential stres-strain
relation characterizing the Zener viscoelastic model

σ′

ij + βσij =
E0 + E1

1 − µ2
[(1 − µ)εij + µδijεkk]′ +

βE0

1 − µ2
[(1 − µ)εij + µδijεkk](2)

with the initial conditions

σij(0) =
E0 + E1

1 − µ2
[(1 − µ)εij + µδijεkk](0).(3)

Let us define the material constants Di = h3

12(1−µ2)Ei, i = 0, 1 and the expression

[v, w] = ∂11v∂22w + ∂22v∂11w − 2∂12v∂12w, v, w ∈ H2(Ω).(4)

Let us assume that the perpendicular load f is differentiable with respect to t.
Applying the similar approach as in the elastic case (see [8]) the following initial-
boundary value problem for a pseudoparabolic von Kármán system for the deflection
w and the Airy stress function Φ can be derived:

(D0 + D1)∆
2w′ + βD0∆

2w − [Φ, w] = f ′(t) + βf(t), x ∈ Ω,(5)

w =
∂w

∂ν
= 0 on Γ1, w = M(w) = 0 on Γ2, M(w) = S(w) = 0 on Γ3,(6)

∆2Φ = −h

2
((E0 + E1)[w, w]′ + βE0[w, w])) , x ∈ Ω(7)

Φ = φ0(t),
∂Φ

∂ν
= φ1(t) on Γ, t > 0,(8)

w(0,x) = w0(x), x ∈ Ω,(9)

where

M(w) = (D0 + D1)M(w′) + βD0M(w),

M(w) = µ∆w + (1 − µ)(w,11ν
2
1 + 2w,12ν1ν2 + w,22ν

2
2 ),

S(w) = w,1Φ,2σ − w,2Φ,1σ + (D0 + D1)S(w′) + βD0S(w),

S(w) = − ∂

∂ν
∆w + (1 − µ)

∂

∂σ
[w,11ν1ν2 − w,12(ν

2
1 − ν2

2 ) − w,22ν1ν2],

where w,i = ∂w
∂xi

, w,ij = ∂2w
∂xi∂xj

, Φ,iσ = ∂
∂σ

∂Φ
∂xi

and ν = (ν1, ν2), σ = (−ν2, ν1)

are the unit outward normal and the unit tangential vector with respect to Ω respec-
tively.

The initial deflection fulfils the stationary von Kármán system with the analogous
boundary conditions as above:

(D0 + D1)∆
2w0 − [Φ0, w0] = f(0),(10)

w0 =
∂w0

∂ν
= 0 on Γ1, w0 = M(w0) = 0 on Γ2, M(w0) = S(w0) = 0 on Γ3,(11)

∆2Φ0 = −h

2
(E0 + E1)[w0, w0],(12)

Φ0 = φ0(0),
∂Φ0

∂ν
= φ1(0) on Γ, t > 0(13)
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Let us introduce following Hilbert spaces:

H2
0 (Ω) = {v ∈ H2(Ω)| v =

∂v

∂ν
= 0 on Γ}.

H2
0 (Ω) is the Hilbert space with the inner product ((., .))0 and the norm ‖.‖0 defined

by

((u, v))0 =

∫

Ω

∆u∆vdx, ‖u‖0 = ((u, u))
1/2
0 , u, v ∈ H2

0 (Ω).

Further we introduce the Hilbert space

V = {v ∈ H2(Ω)| v =
∂v

∂ν
= 0 on Γ1, v = 0 on Γ2}

with the inner product ((., .)) and the norm ‖.‖ defined by

((u, v)) =
∫

Ω

[u,11v,11 + 2(1− µ)u,12v,12 + u,22v,22 + µ(u,11v,22 + u,22v,11]dx(14)

‖u‖ = ((u, u))1/2, u, v ∈ V.(15)

The norm defined in (15) is in the space V equivalent with the original norm

‖u‖H2(Ω) = [

∫

Ω

(u2 + u2
,11 + 2u2

,12 + u2
,22)dx]1/2

of the Sobolev space V (see [17], Lemma 11.3.2 for the details).
We denote by V ∗ the space of all linear bounded functionals over V with the norm

‖f‖∗ and the duality pairing 〈f, v〉 for f ∈ V ∗ and v ∈ V .
If X is a Banach space, then we denote by C(0, T ; X) the Banach space of con-

tinuous functions defined on the interval [0, T ] with values in X.
We suppose the functions φi : [0, T ] × Γ → R, i = 0, 1 to be sufficiently smooth

in order to enable the existence of a function F ∈ C([0, T ], H2(Ω)) such that

F = φ0,
∂F

∂ν
= φ1 on Γ, ((F (t), φ))0 = 0 for all φ ∈ H2

0 (Ω).(16)

The paper [10] contains the detailed assumptions imposed upon φ0, φ1 in order to
fulfil (12), (13).

Let us introduce the trilinear form

B(u, v; w) =

∫

Ω

[(u,12v,2 − u,22v,1)w,1 + (u,12v,1 − u,11v,2)w,2]dx,(17)

u, v, w ∈ H2(Ω).

The existence of the integral in (17) is assured due to the compact imbedding H2(Ω) ⊂
W 1,4(Ω). The form B fulfils the inequality

|B(u, v; w)| ≤
√

2|u|H2(Ω)|v|W 1,4(Ω)|w|W 1,4(Ω), u, v, w ∈ H2(Ω)(18)

with seminorms

|u|H2(Ω) = [

∫

Ω

(u2
,11 + 2u2

,12 + u2
,22)dx]1/2,

|v|W 1,4(Ω) = [

∫

Ω

(v4
,1 + v4

,2)dx]1/4.
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There holds a following crucial relation derived in [8]:

B(u, v; w) =

∫

Ω

[u, v]wdx =

∫

Ω

[u, w]vdx,(19)

if u, v, w ∈ H2(Ω) and at least one function u, v, w belongs to H2
0 (Ω).

Using the integration by parts after applying the boundary conditions we formu-
late a weak solution of the problem (5)-(13) in a similar way as in [10] for the elastic
case.

Definition 2.1. The pair {w, Φ} ∈ W 1,∞(0, T ; V ) × L∞(0, T ; H2(Ω)) is a
weak solution of the problem (5)-(13), if Φ fulfils the boundary conditions (8) for a.e.
t ∈ [0, T ] there hold the identities

(( (D0 + D1)w
′ + βD0w , v )) − B(Φ, w; v) = 〈f ′(t) + βf(t), v〉(20)

for all v ∈ V,

((Φ(t), φ))0 = −h

2

∫

Ω

( (E0 + E1)[w, w]′(t) + βE0[w, w](t) )vdx(21)

for all v ∈ H2
0 (Ω)

and w fulfils the initial condition (9) with {w0, Φ0} ∈ V × H2
0 (Ω) defined by the

identities

(( (D0 + D1)w0 , v )) − B(Φ0, w0; v) = 〈f(0), v〉 for all v ∈ V,(22)

((Φ0, φ))0 = −h

2

∫

Ω

( (E0 + E1)[w, w] )vdx for all v ∈ H2
0 (Ω).(23)

We introduce the bilinear operators B : H2(Ω) ×H2(Ω) → V and B0 : V × V →
H2

0 (Ω) as solutions of equations

((B(u, w), v)) = B(u, w; v) for all v ∈ V,(24)

((B0(u, w), φ))0 =

∫

Ω

[u, w]φdx for all φ ∈ H2
0 (Ω).(25)

Both equations are solved uniquelly, because the right-hand sides of both relations
belong to the dual spaces V ∗ and (H2

0 (Ω))∗ respectively.
The operators B : H2(Ω) × H2(Ω) → V, B0 : V × V → H2

0 (Ω) are bounded (as
bilinear operators) and fulfil the properties

((B(u, v), w)) = ((B(v, u), w)) = ((u, B(v, w))) =

∫

Ω

[u, v]wdx(26)

for all u ∈ H2
0 (Ω), v, w ∈ V,

B0(u, v) = B0(v, u),(27)

((B(B0(u, v), w), φ)) = ((B0(u, v), B0(w, φ) ))0,(28)

for all u, v, w, φ ∈ V.

Using the definition of the operator B0 we arrive at the nonlinear pseudoparabolic
initial-boundary value problem for the deflection w :

(D0 + D1)∆
2w′(t) + βD0∆

2w(t) − [F (t), w(t)]

+
h

2
[(E0 + E1)B0(w, w)′ + βE0B0(w, w), w](29)

= f ′(t) + βf(t), x ∈ Ω,
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(D0 + D1)∆
2w(0) − [F (0), w(0)](30)

+
h

2
(E0 + E1)[B0(w(0), w(0)), w(0)] = f(0),

w =
∂w

∂ν
= 0 on Γ1, w = M(w) = 0 on Γ2, M(w) = S(w) = 0 on Γ3, ,(31)

w0 =
∂w0

∂ν
= 0 on Γ1, w0 = M(w0) = 0 on Γ2, M(w0) = S(w0) = 0 on Γ3,(32)

A weak formulation of the problem can be expressed as a nonlinear pseudoparabolic
initial value problem in the Hilbert space V :

w′(t) + aw(t) − dB(F (t), w(t)) + bB(B0(w, w)′ + aB0(w, w), w)(t)

= q′(t) + βq(t),(33)

w(0) − dB(F (0), w(0)) + bB(B0(w(0), w(0)), w(0)) = q(0).(34)

where

a =
βD0

D0 + D1
=

βE0

E0 + E1
, b =

h(E0 + E1)

2(D0 + D1)
=

6(1 − µ2)

h2
, d =

1

D0 + D1

and the function q : [0,∞) → V is uniquely defined as a solution of the identity

((q(t), v)) =
1

D0 + D1
〈f(t), v〉 for all v ∈ V.

3. Approximation by Rothe’s Method. We shall verify the existence of a
solution of the initial value problem (33),(34) using its discretization with respect to
the time variable t by Rothe’s method (see [12]).

Before formulating the discrete scheme we set some additional asssumptions on
the functions q and F . We assume q ∈ C1([0,∞), V ) and F ∈ C1([0,∞), H2(Ω)).

Further we assume that

((B(F (t), v), v)) ≤ 0 for all v ∈ V, t ≥ 0.(35)

and

e−2αt‖q(0)‖2 +
1

a

∫ t

0

e−2α(t−s)‖q′(s) + βq(s)‖2ds <
1

b‖B0‖2
0

, t ∈ [0, T ].(36)

for a sufficiently small α > 0, which will be precised later.
For a fixed T > 0 and the integer N we set

τ =
T

N
, ti = iτ, wi = w(ti), i = 0, 1, ..., N ;

δwj =
1

τ
(wj − wj−1), j = 1, ..., N.

Applying the discrete values wi and the finite differences δwi in (33), (34) we
obtain the nonlinear equations in the space V :

w0 − dB(F0, w0) + bB(B(w0, w0), w0) = q0,(37)

δwi + awi − dB(Fi, wi) + bB(δB(wi, wi) + aB(wi, wi), wi)(38)

= δqi + βqi, i = 1, ...n.
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Both equations above have solutions w0 and wi, i = 1, ..., n respectively. They are
minimizers of the problems

Ji(wi) = min
v∈V

Ji(v), i = 0, 1, ..., n,(39)

where

J0(v) =
1

2
[‖v‖2 − d((B(F0, w0), w0))] +

b

4
‖B(v, v)‖2 − ((q0, v)),(40)

Ji(v) =
1

2
(1 + τa)[‖v‖2 +

b

2
‖B(v, v)‖2] − d((B(Fi, wi), wi))

+
b

2
((B(wi−1, wi−1), B(v, v) )) − ((wi−1 + τ(δqi + βqi), v)), i = 1, ...n.(41)

In order to obtain a priori estimates not depending on the length T of the time
interval we express the values wi in a form

wi = e−ατiui, α > 0, i = 0, 1, ..., n.(42)

We have the following expression of the difference δwi :

δwi = (δe−ατi)ui + e−ατ(i−1)δui, i = 1, ..., n.(43)

After setting i = j in (38) and multiplying with eατjuj in the Hilbert space V we
obtain the identity

eατ ((δuj , uj)) +

(

a − eατ − 1

τ

)

‖uj‖2 + be−2ατ(j−1)((δB0(uj , uj), B0(uj , uj)))0

+ be−2ατj

(

a − e2ατ − 1

τ

)

‖B(uj , uj)‖2
0 − d((B(Fi, ui), ui)) = eατj((δqj + βqj , uj)),

Summing up and using the relations

2τ

i
∑

j=1

((δuj , uj)) = ‖ui‖2 − ‖u0‖2 +

i
∑

j=1

τ2‖δuj‖2,

i
∑

j=1

eατe−2ατj(( δB0(uj , uj), B0(uj , uj) ))0 =

i
∑

j=1

((δ(e−ατjB0(uj , uj) ), e−ατjB0(uj , uj) )) +
eατ − 1

τ

i
∑

j=1

e−2ατj‖B0(uj , uj)‖2
0

we arrive at the inequality

eατ (‖ui‖2 + be−2iατ‖B0(ui, ui)‖2
0) +

2(a − αeατ )
i
∑

j=1

τ‖uj‖2 + 2b(a − 2αe2ατ )
i
∑

j=1

τe−2ατj‖B0(uj , uj)‖2
0

≤ eατ (‖u0‖2 + b‖B0(u0, u0)‖2
0) + 2

i
∑

j=1

τeατj((δqj + βqj , uj)).
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We obtain directly from the equation (37) the estimate

‖w0‖2 + b‖B0(w0, w0)‖2
0 ≤ ‖q0‖2.(44)

Setting α > 0, τ0 > 0 such that

αeατ ≤ a

2
for all τ ∈ (0, τ0)(45)

we achieve considering w0 = u0 the estimate

‖ui‖2 ≤ ‖q0‖2 +
1

a

i
∑

j=1

τeατ(2j−1)‖δqj + βqj‖2.

Implying the expression (42) we obtain the estimate

‖wi‖2 ≤ e−2ατi‖q0‖2 +
1

a

i
∑

j=1

τe−ατ(1+2i−2j)‖δqj + βqj‖2,(46)

i = 1, ..., N, 0 < τ ≤ τ0.

We continue with uniform estimates of the differences. After multiplying the
equation (38) with δwj in V we obtain

‖δwi‖2 − d((B(Fi, wi), δwi)) + a((wi, δwi)) +
1

2
b‖δB0(wi, wi)‖2

0 +

1

2
bτ((δB0(wi, wi), B0(δwi, δwi))0 + ab(( B0(wi, wi), B0(wi, δwi) ))0

= ((δqi + βqi), δwi)),(47)

where we have used the relation

2B0(wi, δwi) = δB0(wi, wi) + τB0(δwi, δwi).

The a priori estimate (46) and the identity (47) further imply the inequality

‖δwi‖2 ≤ C1 +
1

4
b‖B0(wi − wi−1, δwi)‖2

0,(48)

where the constant C1 depends only on the constants a, b and the function q and its
derivative. Let us assume that

‖wi‖ <
1

b‖B0‖2
0

, i = 1, ..., n.(49)

Comparing with the a priori estimate (46) we can see that the condition (36) is
sufficient for fulfilling the estimate (49) for τ ∈ (0, τ0) with sufficiently small τ0.

Comparing with (48), (49) we obtain the a priori estimate

‖δwj‖ ≤ C2, i = 1, ..., N.(50)

Let us further define the following functions determined by values wi, δwi

wn : [0, T ] → V, wn(t) = wi−1 + (t − ti−1)δwi, ti−1 ≤ t ≤ ti,

w̄n : [0, T ] → V, w̄n(0) = w0, w̄n(t) = wi, ti−1 < t ≤ ti, i = 1, ..., n.
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The sequence of functions {wn} is due to previous a priori estimates bounded in the
Sobolev space W 1,∞(0, T ; V ) :

‖wn‖W 1,∞(0,T ;V ) ≤ C3, n = 1, 2, ...(51)

Then there exists its subsequence (again denoted by {wn}) and a function w ∈
W∞,1(0, T ; V ) such that

wn ⇀∗ w in W 1,∞(0, T ; V ),(52)

wn(t) ⇀ w(t), w̄n(t) ⇀ w(t) in V for every t ∈ [0, T ],(53)

wn ⇀∗ w, w̄n ⇀∗ w, w′

n ⇀∗ w′ in L∞(0, T ; V ),(54)

wn → w, w̄n → w in Lp(0, T ; W 1,r(Ω)), p > 1, r > 1.(55)

Setting B0(wi, wi) = Ui, i = 0, 1, ..., N we obtain also the existence of U ∈
W 1,∞(0, T ; V ) fulfilling

Un ⇀∗ U in W 1,∞(0, T ; V ),(56)

Un(t) ⇀ U(t), Ūn(t) ⇀ U(t) in V for every t ∈ [0, T ],(57)

Un ⇀∗ U, Ūn ⇀∗ U, U ′

n ⇀∗ U ′ in L∞(0, T ; V ).(58)

Using the properties of the bilinear operator B0 : V × V → H2
0 (Ω) we obtain that

U(t) = B0(w(t), w(t)).(59)

We express the discrete equations (37), (38) in a differential form

w′

n(t) + aw̄n(t) − dB(F̄n(t), w̄n(t)) + bB(U ′

n(t) + aŪn(t), w̄n(t))

= q′n(t) + βq̄n(t) for a.e. t ∈ (0, T ]

wn(0) − dB(F (0), wn(0)) + bB(B0(wn(0), wn(0)), wn(0)) = qn(0).

We shall verify that the limiting function w ∈ W 1,∞(0, T ; V ) is a solution of the
initial value problem (33), (34). We have directly from the definition of w0 ∈ V in
(37) that

wn(0) = w0 = w(0) for n = 1, 2, ...,(60)

and the initial condition (34) is fulfilled.
Let v ∈ L2(0, T ; V ) be an arbitrary test function. The regularity of the functions

q, F and the convergence (52), (54) imply

∫ T

0

(( q′n(t) + βq̄n(t), v(t) ))dt →
∫ T

0

(( q′(t) + βq(t), v(t) ))dt,(61)

∫ T

0

(( w′

n(t) + aw̄n(t), v(t) ))dt →
∫ T

0

(( w′(t) + aw(t), v(t) ))dt.(62)

∫ T

0

(( B(F̄n(t), w̄n(t)), v(t) ))dt →
∫ T

0

(( B(F (t), w(t)), v(t) ))dt.(63)

The properties (18), (19) and the convergence (55), (58) imply the convergence

∫ T

0

∫

Ω

[U ′

n(t) + aŪn(t), v(t)]w̄n(t)dxdt →
∫ T

0

∫

Ω

[U ′(t) + aU(t), v(t)]w(t)dxdt.(64)
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and it follows the identity
∫ T

0

(( w′(t) + aw(t) − dB(F (t), w(t)), v(t) ))dt +

∫ T

0

(( bB(B0(w(t), w(t))′ + aB0(w(t), w(t)), w(t)), v(t) ))dt =

∫ T

0

(( q′(t) + βq(t), v(t) ))dt for all v ∈ L2(0, T ; V ),

which implies together with (60) that w is a solution of the initial value problem (33),
(34).

We formulate the existence and uniqueness theorem.

Theorem 3.1. Let q ∈ C1([0, T ]; V ) fulfil the condition (36) with α < a
2 . Then

there exists a unique solution w ∈ W 1,∞(0, T ; V ) of the initial value problem (33),
(34).

There exists a subsequence of a sequence {wn} of segment line functions defined
by discrete values wi fulfilling the equations (37), (38) such that the convergence (52)-
(55) holds.

Proof. We have verified the existence and the convergence above. It remains us
to verify the uniqueness.

We derive it even in the case that the bounds (36) is fulfilled only for the initial
point t = 0:

‖q(0)‖ <
1√

b‖B0‖
.(65)

Let wi ∈ W 1,∞(0, T ; V ), i = 1, 2 be solutions of the initial value problem (33), (34).
The condition (65) enables the uniqueness of a solution of the stationary equation
(33) determining the initial condition. Really, setting w0 = w1(0) − w2(0) and using
the assumption (35) we have the inequality

‖w0‖2 ≤ b((B(B0(w2(0), w2(0)), w2(0)) − B(B0(w1(0), w1(0)), w1(0)), w0)).(66)

Let us set w0ξ = w2(0) + ξw0, ξ ∈ R. There holds the relation

((B(B0(w2(0), w2(0)), w2(0)) − (B(B0(w1(0), w1(0)), w1(0)), w0)) =

−
∫ 1

0

[(( B0(w0ξ , w0ξ), B0(w, w) ))0 + 2‖B0(w0ξ , w)‖2
0]dξ.(67)

The assumption (65) implies the estimates

‖wi(0)‖ ≤ 1√
b‖B0‖

, i = 1, 2.

The inequality (66) together with (67) implies ‖w0‖2 ≤ 0 and the uniqueness of the
initial condition follows.

The difference w = w1 − w2 of two solutions of the equation (33) then fulfils the
homogeneous initial value problem

w′(t) + aw(t) − dB(F (t), w(t)) + bB(B0(w1, w1)
′ + aB0(w1, w1), w1)(t)(68)

−bB(B0(w2, w2)
′ + aB0(w2, w2), w2)(t) = 0,

w(0) = 0.(69)
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After multiplying with w in the space V and integrating we obtain the inequality

‖w(t)‖2 + a

∫ t

0

‖w(s)‖2ds ≤(70)

b

∫ t

0

((B(B0(w2, w2)
′, w2) − (B(B0(w1, w1)

′, w1), w))ds +

ba

∫ t

0

((B(B0(w2, w2), w2) − (B(B0(w1, w1), w1), w))ds.

wξ = w2 + ξw, ξ ∈ R . We can then express the functions in the integrals on the
right-hand side of (70) in a following way

((B(B0(w2, w2)
′, w2) − (B(B0(w1, w1)

′, w1), w)) =

−
∫ 1

0

[(( B0(wξ , wξ)
′, B0(w, w) ))0 + (( B0(w, wξ)

′, B0(wξ , w) ))0]dξ,

((B(B0(w2, w2), w2) − (B(B0(w1, w1), w1), w)) =

−
∫ 1

0

[(( B0(wξ , wξ), B0(w, w) )) + 2‖B0(wξ , w)‖2
0]dξ.

Using the fact that functions wi, i = 1, 2 belong to the space W 1,∞(0, T ; V ) and the
same holds for wξ we obtain from (70) the estimate

‖w(t)‖2 ≤ C4

∫ t

0

‖w(s)‖2ds

with the constant C4 depending only on a, b, ‖B‖ and the right-hand side q′ + βq.
The Gronwall lemma implies w(t) = 0, t ∈ [0, T ] and the uniqueness of a solution
follows. 2

After coming back to the original problem for a couple {w, Φ} of the deflection
and the Airy stress function we obtain directly

Theorem 3.2. Let f ∈ C1([0, T ]; V ∗) fulfil the bound

e−2αt‖f(0)‖2
∗

+
1

a

∫ t

0

e−2α(t−s)‖f ′(s) + βf(s)‖2
∗
ds <

D2
0

b‖B0‖2
, t ∈ [0, T ](71)

with an arbitrary α ∈ (0, a
2 ).

Then there exists a unique weak solution

{w, Φ} ∈ W 1,∞(0, T ; V ) × L∞(0, T ; H2(Ω))

of the initial boundary value problem (3)-(13).

Remark 3.3. The exponential character of the conditions (36) and (71) implies
that the bounds for the right hand sides q, q′ or f, f ′ do not depend on the length T of
the time interval.

Remark 3.4. Applying the Rothe method to the weak formulation of the problem
(3)-(13) means that we obtain the stationary von Kármán like system at each time
level. A solution is a unique minimizer of the functional defined in (41). We can use
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some of the gradient algorithms ([14]) combined with cubic finite elements in order to
solve the corresponding minimum problem.

Another possibility is to use the mixed formulation of the stationary problem due
to Miyoshi [15] or [13], [18]. A weak formulation of the problem is converted into the
problem involving 8 unknown functions with at most 2-nd order derivatives and using
linear finite elements.
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(2001), pp.263–279.
[7] P. G. Ciarlet, L. Gratie and N. Sabu, Un théréme d’existence pour les équations de von
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