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MODIFIED EXPLICIT FINITE VOLUME SCHEME FOR
PERONA-MALIK EQUATION ∗

ZUZANA KRIVÁ † AND ANGELA HANDLOVIČOVÁ ‡

Abstract. We propose modified explicit finite volume computational method for the numerical
solution of the modified (in the sense of Catté, Lions, Morel and Coll) Perona–Malik nonlinear image
selective smoothing equation (called anisotropic diffusion) in the image processing. This access
reduces the computational effort considerably, because we compute difusion coefficients not in every
scale step. Convergence of the method and numerical examples are presented.
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1. Mathematical model and computational method.

1.1. Mathematical model of the problem. We are dealing with Perona-
Malik type problem suggested by [1] in the following form

∂tu−∇.(g(|∇Gσ ∗ u|)∇u) = 0 in QT ≡ I × Ω,(1.1)

∂νu = 0 on I × ∂Ω,(1.2)

u(0, ·) = u0 in Ω,(1.3)

where Ω ⊂ IRd is a rectangular domain, I = [0, T ] is a scaling interval, and

g(s) is a Lipschitz continuous decreasing function,

g(0) = 1, 0 < g(s) → 0 for s→ ∞,(1.4)

Gσ ∈ C∞(IRd) is a smoothing kernel with

∫

IRd

Gσ(x)dx = 1(1.5)

and Gσ(x) → δx for σ → 0, δx - Dirac function at point x,

u0 ∈ L2(Ω).(1.6)

1.2. Formulation of explicit finite volume scheme. Let τh be a uniform
mesh of Ω with cells p of measure m(p) (we assume rectangular cells here). For every
cell p we consider set of neighbours N(p) consisting of all cells q ∈ τh for which
common interface of p and q, denoted by epq, is of non-zero measure m(epq). It is
assumed that for every p, there exists representative point xp ∈ p, such that for every

pair p, q, q ∈ N(p), the vector
xq−xp

|xq−xp|
is equal to unit vector npq which is normal to

epq and oriented from p to q. In simple case of uniform grid we can take xp just as
center of the pixel. Then, let xpq be the point of epq intersecting the segment xpxq .
We define
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Tpq :=
m(epq)

|xq − xp|
(1.7)

Our modification of the usual explicit scheme is in computing diffusion coefficients
not in every scale step. To do this we first define:
R < ∞ - fixed real number (usually 4 or 5) i.e. the number of scale steps at which
diffusion coefficients are constants.

The modified finite volume explicit scheme on uniform grid is then written as
follows:

Let 0 = t0 ≤ t1 ≤ ... ≤ tnR+i.... ≤ tNmaxR, Nmax · R = T denote the scale discretiza-
tion steps with tl = tl−1 + k, where k is the discrete scale step, l = 1, 2, ...NmaxR.
For n = 0, ..., Nmax− 1 and i = 0, ..., R− 1 we look for unR+i+1

p , p ∈ τh, satisfying the
identities

(

unR+i+1
p − unR+i

p

)

m (p) = k
∑

q∈N(p)

gσ,nR
pq Tpq

(

unR+i
q − unR+i

p

)

(1.8)

gσ,nR
pq := g (|∇Gσ ∗ ũ (xpq)|)(1.9)

where ũ is a periodic extension of discrete image computed in nR-th scale step.

2. Numerical aspects and convergence results.

2.1. Computing diffusion coefficients. For computing the term (1.9), i.e.
the vector

∇Gσ ∗ ũ (xpq) =

(

∂(Gσ ∗ ũ)

∂x
(xpq) ,

∂(Gσ ∗ ũ)

∂y
(xpq)

)

,

which is an input of the Perona-Malik function g. For that goal, we use the following
property of convolution

∂(Gσ ∗ ũ)

∂x
(xpq) = (

∂Gσ

∂x
∗ ũ) (xpq) .

Then one gets

(
∂Gσ

∂x
∗ ũ)(xpq) =

∫

IRd

∂Gσ

∂x
(xpq − s)ũ (s) ds =

∑

r

un
r

∫

r

∂Gσ

∂x
(xpq − s)ds(2.1)

and thus

∇Gσ ∗ ũ (xpq) =
∑

r

un
r

∫

r

∇Gσ (xpq − s) ds(2.2)

where the sum is restricted to control volumes r inside Bσ (xpq), the ball centered at
xpq with radius σ. The ball Bσ is given either by a support of compactly supported
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smoothing kernel or it can represent a ”numerical support” of the Gauss function (a
domain in which values of Gauss function are above some treshold given e.g. by a
computer precision). In any case just a finite sum in (2.2) is evaluated and coefficients
of this sum, namely

∫

r
∇Gσ (xpq − s) ds can be precomputed in advance using a com-

puter algebra system, e.g. Mathematica. It is worth noting that such approach for
evaluation of diffusion coefficient gσ,n

pq (uh,k) avoids explicit computation of gradients.

2.2. Weak formulation of the problem. Discrete approximation of a solu-
tion of partial differential equation are considered to be piecewise constant in control
volumes, which in image processing corresponds to pixel structure of a discrete image.

We define a weak solution to the problem (1.1)-(1.3) equation (1.1) is multiplied
by a test function ϕ ∈ Ψ, where Ψ is the space of smooth test functions

Ψ = {ϕ ∈ C2,1(Ω × [0, T ]),∇ϕ.~n = 0 on ∂Ω × (0, T ), ϕ(., T ) = 0}.

After integrating over [0, T ] and Ω and applying per partes and properties of a test
function, we come to a definition of a weak solution.

Definition 2.1. A weak solution of the regularized Perona-Malik problem (1.1)-
(1.3) is a function u ∈ L2(I,H

1(Ω)) satisfying the identity

T
∫

0

∫

Ω

u
∂ϕ

∂t
(x, t) dx dt+

∫

Ω

u0(x)ϕ(x, 0) dx −

T
∫

0

∫

Ω

(g(|∇Gσ ∗ u|)∇u∇ϕ dx dt = 0(2.3)

for all ϕ ∈ Ψ.

We can write the modified discrete scheme in its discrete weak form analogous to
the identity (2.3), i.e.

Nmax−1
∑

n=0

R
∑

i=1

k
∑

p∈τh

unR+i
p

ϕ (xp, tnR+i) − ϕ (xp, tnR+i−1)

k
m (p) +

+
∑

p∈τh

u0
pϕ (xp, 0)m (p) −(2.4)

−
1

2

Nmax−1
∑

n=0

R−1
∑

i=0

k
∑

(p,q)∈E

gσ,nR
pq Tpq

(

unR+i
q − unR+i

p

)

(ϕ (xq , tnR+i) − ϕ (xp, tnR+i)) = 0.

2.3. Convergence results. To prove convergence of disrete scheme to the con-
tinuous one we need the following stability estimates:

Lemma 2.2 (A priori estimates in L2(QT )). We make following stability con-
dition assumption:

k ≤ (1 − ξ)
m(p)

∑

q∈N(p)

g
σ,nR
pq Tpq

for all p ∈ τ and ε ∈ (0, 1)(2.5)
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Under this assumption it holds, that there exist positive constants C1, C2 such that

(i) max
0≤l≤NmaxR

∑

p∈τh

(

ul
p

)2
m(p) ≤ C1

(ii)

NmaxR
∑

l=0

k
∑

(p,q)∈E

(

ul
p − ul

q

)2

dpq

m (epq) ≤ C2

and the constants C1, C2 do not depend on the h, k.
Proof. Proof is the same as in [3].

For some fixed space and scale mesh h and k let us denote finite volume numerical
solution uh,k. This solution is piecewise constant on each finite volume and each time
step as is ussual for finite volume numerical schemes of parabolic type. Then we have:

Lemma 2.3. (Convergence of uh,k)
There exists u ∈ L2 (QT ) a weak solution of (2.3) such that

uh,k → u in L2 (QT )

as h, k → 0. Furthermore, the convergence is pointwise.

Proof. Convergence to some u ∈ L2 (QT ) is proved in ([3]). To show that this
solution is really a weak sloution of a (2.3) we must prove the convergence of each
term of (2.4) to its continuous analogy in (2.3) for all test functions ϕ ∈ Ψ and is
similar as in ([3]). The only exception is in one term ( we use the same notation as
in ([3]), which is proved in the following lemma and this complete the whole proof.

Lemma 2.4. We denote

R3 = I3 − I4(2.6)

where

I3 =
1

2

Nmax−1
∑

n=0

R−1
∑

i=0

∑

(p,q)∈E

gσ,nR
pq

(

unR+i
q − unR+i

p

)

tnR+i+1
∫

tnR+i

∫

epq

∇ϕ(x, t)~npq dx dt,

I4 =
1

2

Nmax−1
∑

n=0

R−1
∑

i=0

∑

(p,q)∈E

tnR+i+1
∫

tnR+i

∫

epq

g(|∇Gσ ∗ ũh,k(x, t)|)
(

unR+i
q − unR+i

p

)

∇ϕ(x, t)~npq dx dt,

then R3 → 0.
Proof. Now, we denote

GnR
pq = g(|∇Gσ ∗ ũh,k (xpq , tnR) |) − g(|∇Gσ ∗ ũh,k (x, t) |)(2.7)

and then we have

R3 =
1

2

Nmax−1
∑

n=0

R−1
∑

i=0

∑

(p,q)∈E

(

unR+i
q − unR+i

p

)

tnR+i+1
∫

tnR+i

∫

epq

GnR
pq ∇ϕ~npq dν dt.(2.8)
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To prove the convergence of R3 to 0, first we bound GnR
pq . For that purpose, we

use the fact that g is Lipschitz continuous. Let Lg be the Lipschitz constant of g, i.e.,
for any positive real numbers ζ1 and ζ2 holds

|g (ζ1) − g (ζ2) | ≤ Lg |ζ1 − ζ2| .(2.9)

Then we have after using triangular inequality for the Euclidean norm

∣

∣GnR
pq

∣

∣ ≤ Lg |∇Gσ ∗ ũh,k (xpq , tnR) −∇Gσ ∗ ũh,k (x, t)| .

Using the form of the convolution as given in (2.2) and as t ∈ (tnR+i, tnR+i+1) ,
we can show that for any x ∈ epq holds

∣

∣GnR
pq

∣

∣ ≤ Lg

R−1
∑

i=0

∑

r

∣

∣unR+i
r

∣

∣

∫

r

|∇Gσ (xpq − s) −∇Gσ (x− s)| ds ≤

≤ LgC

R−1
∑

i=0

∑

r

∣

∣unR+i
r

∣

∣hm(r) ≤ LgCRh.(2.10)

The sum is evaluated only on control volumes r ∈ τh (as well as in reflexion of τh
through boundary of Ω) intersecting Bσ (xpq)∪Bσ (x), the balls centered at xpq resp.

x with radius σ. Thanks to the hypotheses on Gσ , which is in C∞(IRd), the Cauchy-
Schwarz inequality and the apriori estimate (i) for discrete scheme we obtain

∣

∣Gn
pq

∣

∣ ≤ hC

with a positive constant C. Since ∇ϕ is a continuous function, S = sup
QT

|∇ϕ| < ∞,

we have that

|R3| ≤ h
CS

2

Nmax−1
∑

n=0

R−1
∑

i=0

k
∑

(p,q)∈E

∣

∣unR+i
q − unR+i

p

∣

∣m (epq)

which together with Cauchy-Schwarz inequality and stability estimate (ii) leads to
the desired result

|R3| → 0 as h, k → 0.(2.11)

3. Numerical experiments. In this section we present experiments with some
real as well as artificial images perturbed by various type of noise. In simulations, we
use the function

g(s) =
1

1 +Ks2

and the convolution is realized with the kernel

Gσ(x) =
1

Z
e

|x|2

|x|2−σ2 ,
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where the constant Z is chosen so that Gσ has unit mass.
Example 1.To every position of the initial image we apply a noise function f defined
as follows: if ψ(x) is a random function generating values in [0, 2C], then for every
position x

f(u0(x)) = MIN(255,MAX(0, u0(x) − C + ψ).

C = 50 and the difference in intensity between the two values of the initial im-
age is 150. We compare the work using semi-implicit method without SOR, with
SOR, explicit method and our modified explicit method. For this example we have
h = 1, T = 10. For semi-implicit schemes we choose k = 1, i.e. 10 scale steps, for
explicit schemes we must choose scale step k = 1

4 i.e. 40 scale steps.

Fig. 3.1. The column a) shows the work of semi-implicit scheme(3rd
, 6th and 10th scale steps),

b) shows the work of explicit scheme and the column c) the work of modified explicit scheme for
Example 1
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method CPU time number of iterations
semi-implicit without SOR 4.74 s 12− 15
semi-implicit with SOR (ω = 1.25) 4.00 s 9 − 13
explicit 3.63 s
modified explicit 2.18 s

Example 2. This example compares the work of explicit and modified explicit
schemes applied to medical data, which has to be prepared for segmentation algo-
rithms. The significant improvement of CPU time is caused by the fact, that we
used slowing down of diffusion in some regions of the image and computing the diffu-
sion coefficients takes more time. Visual effect of both algorithms is similar. In this
experiment T = 5 and k = 1

4 .

method CPU time
explicit 17.05 s
modified explicit 4.69 s

Fig. 3.2. The initial noisy image and the result of smoothing for Example 2

Example 3. The artificial data for this example are given by a double-valued
function û(x) with intensity difference set to 50. In order to obtain u0(x), the initial
data is perturbed by the additive noise with C = 38. We compare the work of the
semi-implicit, explicit and modified explicit schemes for 3D data and show the visual
results of algorithms which are different in this case. T = 11 with k = 1 for the
semi-implicit scheme and k = 1

4 for the explicit schemes.

method CPU time
semi-implicit with SOR (ω = 1.20) 159.16 s
explicit 92.46 s
modified explicit 66.70 s
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Fig. 3.3. The picture shows the initial noisy image and results of smoothing by semi-implicit
scheme at the top and results of smoothing by explicit and modified explicit schemes at the bottom
for Example 3
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