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MATHEMATICAL MODELLING OF STEAM AND FLUE GAS FLOW
IN A HEAT EXCHANGER OF A STEAM BOILER

JINDŘICH MAKOVIČKA∗, VLADIMÍR HAVLENA† , AND MICHAL BENEŠ∗

Abstract. We describe a transformation of the Euler equations from the conservative form to
the variables of pressure, temperature and mass flow, which are preferred in the applications of the
system control. This model is used to describe steam and flue gas flow in two pipes coupled by a wall
with finite thickness. Then, we deal with the numerical solution of the system and suggest a variant
of a finite-volume scheme which is cell-centered in pressure and temperature and vertex-centered in
mass flow rate. A note on a model of the wall and an injection cooler is also included. Finally, we
present a comparison with a theoretically computed temperature profile for a stationary state.
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1. Introduction. This article is a result of development of a boiler superheat-
ing subsystem using MATLAB/Simulink environment. Main goal of our research is
preparing of a modular block set which can be used for efficient modeling of a steam
boiler. A full system of Euler equations is used for simulation of complete dynamics
of the steam flow, not only the temperature profiles as in [4]. Another reason for
using the complete Euler equations is the behavior of numerical solvers integrated in
MATLAB, which exhibit tendency to fail when solving the equations of a more com-
plex model including direct feed-through (i.e. an input affects an output directly).
An example of a setup, where such problems have been observed are two chained heat
exchangers modelled using equations for pressure and temperature only, and using
explicitly computed mass flow [9].

The approach based on complete Euler equations does not exhibit such patholog-
ical behavior, but imposes additional demands on the used numerical method, where
number of the evolution equations is significantly higher.

2. Euler equations in conservative variables. Recall that the system of
Euler equations for one-dimensional flow through a pipe with constant cross-section
in conservative variables reads as
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with ρ being density of the media, p pressure, q mass flux E energy per unit volume.
This system has to be completed by the equation of state p = p(ρ, E, q). The ad-
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ditional right hand side term − 1
2ζ q2

ρ
describes a pressure drop due to the turbulent

friction (see, e.g. [1]). The term Q in the equation of energy is volumetric heat influx.
We convert the of Euler equation in conservative variables into real variables of

pressure, temperature and mass flux. Assuming that density is function of pressure
and temperature only (ρ = ρ(p, T )), we obtain the equation of continuity as follows

∂ρ

∂p

∂p

∂t
+
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∂T

∂T

∂t
= −

∂q

∂x
. (2.4)

Consider basic thermodynamical relations for enthalpy

H = U + pV, (2.5)

where U means specific internal energy and V volume, and for internal energy U

E = U +
1

2
ρV v2, (2.6)

where v is the velocity, and the fact that V = 1, we get

E = H +
1

2
ρv2 − p. (2.7)

We substitute for E in the equation of energy:
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Then, we use the relations
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and the equation of continuity. By differentiation, we obtain
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In the equation of momentum conservation,

∂

∂t
(ρv) +

∂

∂x
(p + ρv2) = −

1

2
ζρ |v| v, (2.12)

we use the equation of continuity and multiply by v. Consequently

ρv
∂v

∂t
+ v

∂p

∂x
+ ρv2 ∂v

∂x
= −

1

2
ζρ |v|

3
. (2.13)

Subtracting (2.13) from (2.11), we get
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Then, it is possible to compute the derivatives of ∂p
∂t

a ∂T
∂t

from the equations (2.4)
and (2.14):
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These two equations together with equation of momentum (2.2) and state equations

[
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= f(p, T ), (2.19)

where Ĥ is the specific enthalpy, form the evolution equations in state variables
(p,T ,q). Values of ∂H

∂p
and ∂H

∂T
can be easily computed using the Leibniz rule
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To complete the system of equations, we have to provide the equations of state. In the
case of steam, the equations we are using are based on the Steam Properties Tables
[11]. We currently use a polynomial approximation of the table values, which also
allows computation of partial derivatives.

Regarding the choice of the boundary conditions, as we consider the sub-sonic
flow, it is reasonable to impose two Dirichlet-type boundary conditions at the inlet
and one at the outlet. We decided to prescribe the steam pressure and temperature
at the inlet, and mass flux at the outlet.

For flue gas we use a state equation of an ideal nitrogen, because it constitutes
the largest portion of it, determining the behavior of the mixture. Thus, for enthalpy
we consider the relation

Ĥ = cpT (2.22)

and for density it holds that

ρ =
pM

RT
, (2.23)

where

M = 0.02801 kgmol−1
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is the molar mass of nitrogen,

cp = 1037.0 J kg−1 K

specific thermal capacity for constant pressure and

R = 8.3144 J mol−1 K−1

molar gas constant.

3. Numerical solution of the steam/flue gas flow. We discretize (2.15) and
(2.16) by replacing spatial derivatives with differences, and we obtain the following set
of equations for i = {1, . . . , n}, where n is the number of cells. The values of pj , Tj , qj

for j = {0, n + 1} are either determined using corresponding boundary condition, or
obtained by linear extrapolation from the domain.
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∆x{·} =
{·}R − {·}L

∆x
(3.6)

and {·}L, {·}R denote values at the left and right volume interface.
Value of mass flow q in the cell is approximated by a simple average of the values

at the left and right interfaces. The values of H and p at the cell boundaries are
approximated by a piece-wise linear interpolation using the minmod slope limiter
and upwinding (see [3], [13]). Since in our case we suppose uni-directional flow, the
formulas thus can be reduced to backward differencing.

A deeper theoretical analysis of the numerical approximation is beyond the scope
of this article. However, after performing several numerical experiments involving
both studying reactions on the jumps in the input quantities and fitting the model to
reflect the behavior of a real world setup, this particular choice of numerical method
seems to behave well. For our purpose, it is important that it gives reasonable results
for very sparse meshes (about 10 points for a 60 meters long exchanger pipe). This
allows for a real-time simulation of the system, which is crucial for the system control
applications.

For the choice of a suitable ODE solver, it is important to take into account, that
the boiler itself has properties of a stiff system, because the processes related to the
steam flow are faster than the processes related to the heat transfer in several orders
of magnitude (see [14]).
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4. Pipe wall model and the thermal transfer. Temperature of the ex-
changer pipe wall is given by the heat equation

S3

(

ρ3c3
∂T (3)

∂t
−

∂

∂x

(

λ
∂T (3)

∂x

))

= −Q, (4.1)

with S3 being the wall cross-section, c3 specific heat capacity, T (3) wall temperature,
λ thermal conductivity and Q linear heat transfer density out of the wall.

For linear heat transfer density, we consider following relations:

Q(1) = o1α1(T
(3) − T (1)), (4.2)

Q(2) = o2α2(T
(3) − T (2)), (4.3)

Q = Q(1) + Q(2), (4.4)

where o1,2 is an effective pipe perimeter and T (1), T (2) and T (3) are temperatures of
the steam, flue gas and pipe wall, respectively.

Formulas for the transmission coefficient α are presented in [5] and [6]. An em-
pirical relation for an aligned tube bundle is

α =
Nuλf

Df

, Nu = 0.202K1Re0.64Pr0.4, Re =
ufDf

ν
, P r =

λ

ρcν
(4.5)

where ν is the kinematic viscosity, Df outer tube diameter, uf fluid velocity and K1

fitting constant. Re, Pr and Nu are Reynolds number, Prandtl number and Nusselt
number, respectively.

The heat equation describing the wall can be easily solved using method of
lines. This method has also an advantage that it can be incorporated into MAT-
LAB/Simulink framework [14]. The heat transfer equation is discretized in space,
yielding the following set of ordinary differential equations.

dT
(3)
i

dt
=

1

ρc

(

λ
T

(3)
i−1 − 2T

(3)
i + T

(3)
i+1

∆x2
−

Qi

S

)

. (4.6)

The wall model can be further simplified, because the thermal transfer coefficient
λ and the wall cross-section are fairly small and thermal transfer along the wall can
be neglected. In that case, the (discretized) wall model reduces to

dTi

dt
= −

1

ρc

Qi

S
. (4.7)

5. Model of an injection cooler. The temperatures in the steam pipes are
regulated using the injection coolers. These devices are basically small chambers
with a jet where the cooling water is injected to lower the overall steam temperature.
The injection-cooler model we propose follows the idea of [5]. We neglect the pressure
drop in the cooler element so that model reflects only dynamics of output-temperature
change. Mass balance in the cooler implies (in the following, all the mass fluxes are
specified in kg s−1, rather than kg s−1 m−2). V is an internal volume of the cooler, qin

qout, and qw are the input, output and cooling water fluxes. Quantities Ĥin, Ĥw and
Ĥ are enthalpy of the steam at the inlet, enthalpy of the cooling water and enthalpy
of the steam in the cooler.

V
dρ

dt
= qin + qw − qout (5.1)
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and from the energy balance, we have

V
d

dt
(ρĤ) = qinĤin + qwĤw − qoutĤ. (5.2)

Multiplying (5.1) by Ĥ and subtracting it from (5.2), we obtain

V ρ
dĤ

dt
= qinĤin + qwĤw − (qin + qw) Ĥ. (5.3)

For the steady state, enthalpy of the mixture is

Ĥ =
qinĤin + qwĤw

qin + qw
. (5.4)

Using the state equations ρ = ρ(p, T ) and Ĥ = Ĥ(p, T ), we can rewrite (5.1) and
(5.3) to the following form:
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∂p

ρ∂Ĥ
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]

. (5.5)

As the hydraulic resistance of the cooler can be omitted we may assume that p = pin.
When we also neglect the terms containing dp

dt
, the system (5.5) can be rewritten to

the form
[

V ∂ρ
∂T

−1

V ρ∂Ĥ
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Ĥ − Ĥin

]

[

dT
dt

qin

]

=

[
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qw(Ĥw − Ĥ)

]

. (5.6)

From the first row we get

qin = qout − qw + V
∂ρ

∂T

dT

dt
. (5.7)

Substitution of (5.7) into the second equation of (5.6) gives

V

(

(Ĥ − Ĥin)
∂ρ

∂T
+ ρ

∂Ĥ

∂T

)

dT

dt
= (Ĥw − Ĥin)qw − (Ĥ − Ĥin)qout. (5.8)

In many cases we can neglect the cooler dynamics at all and use a static model.
Linearized expression for the specific enthalpy is

Ĥ − Ĥin = Ĥ(pin, T )− Ĥ(pin, Tin) =
∂Ĥ

∂T
(T − Tin). (5.9)

With dT
dt

= 0, (5.8) then simplifies to

T = Tin −
Ĥin − Ĥw

∂Ĥ
∂T

qw

qout
(5.10)

and the mass outflow is

qout = qin + qw. (5.11)



MATHEMATICAL MODELLING OF STEAM AND GAS FLOW 177

0 10 20 30 40 50 60
300

350

400

450

500

550

600

650

700

Fig. 6.1. Stationary temperature profiles. x-axis: x-coordinate in meters, y-axis: temperature

in ◦C.

6. Stationary flow in heat exchangers. When we impose additional simpli-
fying assumptions, it is possible to treat the problem of finding the stationary state
by solving a system of ordinary differential equations. Using [4], we are able to find
temperature profiles in parallel heat exchangers, and compare the theoretical profiles
with the results obtained by our numerical simulation.

Let us denote mass fluxes in the pipes a and b by qa and qb. We assume that the
velocity and all thermodynamical quantities except temperature T are constant. We
look for a stationary solution to the transport equations

Saρaca

(

∂Ta

∂t
+ va

∂Ta

∂x

)

= Qa, (6.1)

Sbρbcb

(

∂Tb

∂t
+ vb

∂Tb

∂x

)

= Qb, (6.2)

where we do not consider any heat capacity of the wall. Consequently a direct Newton-
type heat exchange occurs between the two media:

Qa = k(Tb − Ta), Qb = k(Ta − Tb). (6.3)

The constant k denotes the linear heat transfer coefficient, e.g k = α ·o, where α is the
heat transfer coefficient and o denotes effective perimeter of the pipe. The equations
(6.1), (6.2) can be solved analytically. The solution is

Ta(x) =
Ta1 − Ta2

1− e−CL

(

e−Cx − 1
)

+ Ta1
, (6.4)

Tb(x) =
Tb1 − Tb2

1 − e−CL

(

e−Cx − 1
)

+ Tb1 (6.5)
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with

C = k

(

1

caqa

+
1

cbqb

)

, (6.6)

for x ∈ [0, L] and Ta1
and Tb1 are the temperatures of the media at the inlets.

In the Figure 6.1 we present the typical temperature profiles for a model of a
convection superheater, which was however slightly modified to allow comparison
with the simplified equations above. The heat transfer coefficient is constant and is
the same for both steam and flue gas and the lengths of the steam and gas pipes
are identical. The crosses represent the discrete values of temperature obtained by a
numerical simulation and the full lines represent the temperatures of the steam and
flue gas obtained by the theoretical solution. To make the exponentials (6.4) fit in this
case, the constant k has to be chosen about two times lower than the heat transfer
coefficient in the numerical simulation would suggest. This can be attributed to the
effect of the wall, which retains the temperature approximately in the middle.

7. Conclusion. The current version of the heat exchanger model has been tested
and the full system of equations without a direct link between inputs and outputs be-
haves well even in the setup with more heat exchangers with injection coolers between
them. For the future, we plan connecting this model with a model of phase changes
in the evaporator and eventually with a combustion simulation.
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