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MODEL OF GROUNDWATER FLOW IN FRACTURED

ENVIRONMENT∗

JIŘÍ MARYŠKA, OTTO SEVERÝN † AND MARTIN VOHRALÍK ‡

Abstract. A stochastic discrete fracture network model of Darcy’s underground water flow in
disrupted rock massifs is introduced. Mixed finite element method and hybridization of appropriate
lowest order Raviart–Thomas approximation is used for the special conditions of the flow through
connected system of 2-D polygons placed in 3-D. Then, testing of the accuracy of the model is
described. Example of real-world hydrogeologic problem solved by the model is shown in the last
part of the paper.
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1. Introduction. We consider a steady saturated Darcy’s law governed flow of
an incompressible fluid through a system of 2-D polygons placed in the 3-D space and
connected under certain conditions into one network. This may simulate underground
water flow through natural geological disruptions of a rock massif, fractures, e.g. for
the purposes of finding of suitable nuclear waste repositories. Note that intersection
of three or more triangles through one edge in the discretization is possible owing
to the special geometrical situation. We study the existence and uniqueness of weak
and discrete mixed solutions, and finally use the hybridization of the lowest order
Raviart-Thomas mixed approximation, see [3], [4] respectively. For technical details
of the following, see [5].

2. Mathematical-physical Formulation. We suppose that we have

S =
{

⋃

`∈L

α` \ ∂S
}

,(1)

where α` is an opened 2-D polygon placed in a 3-D Euclidean space; we call α` as
a fracture. We denote as L the index set of fractures, |L| is the number (finite) of
considered fractures. We suppose that all closures of these polygons are connected
into one “fracture network”, the connection is possible only through an edge, not a
point. Moreover, we require that if αi

⋂

αj 6= ∅ then αi

⋂

αj ⊂ ∂αi

⋂

∂αj , i.e. the
connection is possible only through fracture boundaries (we state this requirement in
order to be able to define correct function spaces).

Let us have a 2-D orthogonal coordinate system in each polygon α`. We are
looking for the fracture flow velocity u (2-D vector in each α`), which is the solution
of the following problem

u = −K
(

∇p + ∇z
)

in S ,(2)
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∇ · u = q in S ,(3)

p = pD in ΛD, u · n = uN in ΛN ,(4)

where all variables are expressed in appropriate local coordinates of α` and also the
differentiation is always expressed towards these local coordinates. The equation
(2) is Darcy’s law, (3) is the mass balance equation and (4) is the expression of
appropriate boundary conditions. The variable p denotes the modified fluid pressure p
(p = p

%g
), g is the gravitational acceleration constant, % is the fluid density, q represents

stationary sources/sinks density and z is the elevation, positive upward taken vertical
3-D coordinate expressed in appropriate local coordinates. We require the second
rank tensor K to be symmetric and uniformly positive definite on each α`.

3. Function Spaces. We start from space L2(α`), ‖u‖0,α`
= (

∫

α`
u2dS)

1
2 and

space L2(α`) = L2(α`) × L2(α`) in order to introduce

L2(S) ≡
∏

`∈L

L2(α`) , L2(S) ≡ L2(S) × L2(S) .(5)

We begin with classical Sobolev space H1(α`) of scalar functions with square
integrable weak derivatives, H1(α`) = {ϕ ∈ L2(α`); ∇ϕ ∈ L2(α`)}, ‖ϕ‖1,α`

=

(
∫

α`
[ϕ2 + ∇ϕ · ∇ϕ] dS)

1
2 , so as to introduce

H1(S) ≡ {v ∈ L2(S) ; v|α`
∈ H1(α`) ∀` ∈ L ,(6)

(v|αi
)|f = (v|αj

)|f ∀ f = αi

⋂

αj , i, j ∈ L } .

We note that this is possible even for the investigated geometrical situation. We then
have the spaces H

1
2 (∂S) and H− 1

2 (∂S) and the surjective continuous trace operator

γ : H1(S) → H
1
2 (∂S) as in the standard planar case.

We denote as H(div, α`) the Hilbert space of vector functions with square inte-
grable weak divergences, H(div, α`) = {v ∈ L2(α`) ; ∇ · v ∈ L2(α`)}, ‖u‖H(div,α`) =

(‖u‖2
0,α`

+ ‖∇ · u‖2
0,α`

)
1
2 . We can define now

H(div,S) ≡ {v ∈ L2(S) ; v|α`
∈ H(div, α`) ∀` ∈ L ,

∑

i∈If

〈v|αi
· ni, ϕi〉 = 0(7)

∀f such that |If | ≥ 2 , If = {i ∈ L ; f ⊂ ∂αi} , ∀ϕi ∈ H1
∂αi\f .

Again, such “local” definition is necessary, since we do not deal with a standard
planar case. It naturally expresses the continuity of the normal trace of functions from
H(div,S) even for the given geometrical situation. We have the surjective continuous

normal trace operator ζ : u ∈ H(div,S) → u·n ∈ H− 1
2 (∂S) as in the standard planar

case. We further define the space H0,N(div,S) = {u ∈ H(div,S) ; 〈u · n, ϕ〉∂S =
0 ∀ϕ ∈ H1

D(S)}. Naturally, the norms on the spaces defined by 5, 6, 7 are given as

‖ ‖2
·,S =

|L|
∑

`=1

‖ ‖2
·,α`

.(8)

Remark 3.1. Note that definitions 5, 6, 7 are essential. The system S, however
consisting of plane polygons, is not planar by oneself. Moreover, one edge can be
common to three or more polygons α` creating the system S.
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4. Weak Mixed Solution. Let us denote A = K−1 on each α`, characterizing
the medium resistance. Let us now consider such ũ that ũ · n = uN on ΛN in
appropriate sense.

Definition 4.1. As a weak mixed solution of the steady saturated fracture flow
problem described by 2 – 4, we understand a function u = u0 + ũ, u0 ∈ H0,N (div,S),
and p ∈ L2(S) satisfying

(Au0,v)0,S − (∇ · v, p)0,S = −〈v · n, pD〉ΛD
+ (∇ · v, z)0,S −(9)

− 〈v · n, z〉∂S − (Aũ,v)0,S ∀v ∈ H0,N(div,S) ,

−(∇ · u0, φ)0,S = −(q, φ)0,S + (∇ · ũ, φ)0,S ∀φ ∈ L2(S) .(10)

Our requirements are Aij ∈ L∞(S), q ∈ L2(S), pD ∈ H
1
2 (ΛD) and uN ∈ H− 1

2 (ΛN).
Theorem 4.2. The problem (9), (10) has a unique solution. Proofs of this and

all following theorems and lemmas can be found in [5].

5. Mixed Finite Element Approximation. Let us suppose a triangulation T〈

of the system S from now on. We define an index set Jh to number the elements of the
triangulation, |Jh| denotes the number of elements. We define a 3-dimensional space
RT0(e) of vector functions linear on a given element e with the basis ve

i , i ∈ {1, 2, 3},
where

ve
1 = ke

1

[

x − αe
11

y − αe
12

]

, ve
2 = ke

2

[

x − αe
21

y − αe
22

]

, ve
3 = ke

3

[

x − αe
31

y − αe
32

]

.

Concerning its dual basis, we state classically N e
j , j = 1, 2, 3, N e

j (uh) =
∫

fe
j

uh ·ne
j dl,

with each functional N e
j expressing the flux through one edge for uh ∈ RT0(e); we

have Ne
j (ve

i ) = δij after appropriate choice of αe
11−αe

32, ke
1−ke

3. The local interpolation
operator is then given by

πe(u) =

3
∑

i=1

Ne
i (u)ve

i ∀ u ∈ (H1(e))2 .(11)

We start from the Raviart–Thomas space RT0
−1(T〈) of on each element linear

vector functions without any continuity requirements,

RT0
−1(T〈) ≡ {v ∈ L2(S) ; v|e ∈ RT0(e) ∀e ∈ T〈} ,

to define the “continuity assuring” space RT0
0(T〈) by

RT0
0(T〈) ≡ {v ∈ RT0

−1(T〈) ;
∑

i∈If

v|ei
· nf,∂ei

= 0 ∀f such that

|If | ≥ 2 , If = {i ∈ Jh ; f ⊂ ∂ei} = RT0
−1(T〈) ∩ H(div,S) .

We set furthermore

RT0
0,N (T〈) ≡ {v ∈ RT0

0(T〈) ; v · n = 0 in ΛN} = RT0
−1(T〈) ∩H0,N (div,S)

and

M0
−1(T〈) ≡ {φ ∈ L2(S) ; φ|e ∈ M0(e) ∀e ∈ T〈} ,
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where M0(e) is the space of scalar functions constant on a given element e. Looking
for the basis, appropriate dual basis, and global interpolation operator for RT0

0(T〈),
we have the following definitions and lemmas:

We set Nh = {N1, N2, . . . , NINh
} as the dual basis of RT0

0(T〈), where for each

border edge f , we have one functional Nf defined by Nf (uh) =
∫

f
uh|e · n∂e dl, and

for each inner edge f common to elements e1, e2, . . . , eIf
, we have If − 1 functionals

given by

Nf,j(uh) =
1

If

∫

f

uh|e1
· n∂e1

dl −
1

If

∫

f

uh|ej+1
· n∂ej+1

dl , j = 1, . . . , If − 1 .

Lemma 5.1. For all uh ∈ RT0
0(T〈), from Nj(uh) = 0 ∀ j = 1, . . . , INh

follows
that uh = 0.

We set Vh = {v1,v2, . . . ,vINh
}, where for each border edge f , we have one base

function vf defined by vf = ve
f with ve

f being the local base function appropriate
to the element e and its edge f , and for each inner edge f common to elements
e1, e2, . . . , eIf

, we have If − 1 base functions given by

vf,i =

If
∑

k=1, k 6=i+1

vek

f − (If − 1)v
ei+1

f , i = 1, . . . , If − 1 .

Lemma 5.2. For the bases Nh and Vh, Nj(vi) = δij , i, j = 1, . . . , INh
holds.

We introduce first a space smoother than H(div,S), corresponding to the classical
(H1(S))2,

H(grad,S) = {v ∈ L2(S) ; v|α`
∈ (H1(α`))

2 ∀` ∈ L ,
∑

i∈If

v|αi
· nf,∂αi

= 0

∀f such that |If | ≥ 2 , If = {i ∈ L ; f ⊂ ∂αi} ,

in order to set the global interpolation operator

πh(u) =

INh
∑

i=1

Ni(u)vi ∀ u ∈ H(grad,S) .(12)

Lemma 5.3. Concerning the local and global interpolation operators given by (11),
(12) respectively, we have their equality on each element, i.e.

πh(u)|e = πe(u|e) ∀ e ∈ T〈, ∀ u ∈ H(grad,S) .

Lemma 5.4. Even for the considered special function spaces and their finite
dimensional subspaces, we have

H(grad,S)
div
−→ L2(S)





y
πh





y
Ph

RT0
0(T〈)

div
−→ M0

−1(T〈)

,(13)

i.e. the commutativity diagram property, where πh is the global interpolation operator
defined in (12), and Ph is the L2(S)-orthogonal projection onto M 0

−1(T〈).
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Definition 5.5. As the lowest order Raviart–Thomas mixed approximation of the
the problem (9), (10), we understand functions u0,h ∈ RT0

0,N (T〈) and ph ∈ M0
−1(T〈)

satisfying

(Au0,h,vh)0,S − (∇ · vh, ph)0,S = −〈vh · n, pD〉ΛD
+ (∇ · vh, z)0,S −(14)

− 〈vh · n, z〉∂S − (Aũ,vh)0,S ∀vh ∈ RT0
0,N (T〈) ,

−(∇ · u0,h, φh)0,S = −(q, φh)0,S + (∇ · ũ, φh)0,S ∀φh ∈ M0
−1(T〈) .(15)

Theorem 5.6. The problem (14), (15) has a unique solution.

6. Error Estimates and Hybridization of the Mixed Method. If the so-
lution (u0, p) of (9), (10) is such that (u0, p) ∈ H(grad,S) × H1(S) and ∇ · u0 ∈
H1(S) and if (u0,h, ph) is the solution of (14), (15), then

‖u0 − u0,h‖H(div,S) + ‖p− ph‖0,S ≤ Ch(|p|1,S + |u0|1,S + |∇ · u0|1,S) ,

where the constant C does not depend on h and

|ϕ|1,S = ‖∇ϕ‖0,S ,

|u|21,S =
2

∑

i=1

|ui|
2
1,S

(see [4], Theorem 13.2).
Intending to hybridize the mixed approximation, we define two sets of edges,

Λh = ∪e∈T〈
∂e , Λh,D = ∪e∈T〈

∂e − ΛD .

If f ∈ Λh, we define first the space M0(f) of functions constant on this edge and
finally

M0
−1(Λh,D) ≡ {µh : Λh → R ; µh|f ∈ M0(f) ∀f ∈ Λh ,

µh|f = 0 ∀f ∈ ΛD} .

It now follows immediately that if vh ∈ RT0
−1(T〈), then vh ∈ RT0

0,N (T〈) if and only
if

∑

e∈T〈

〈vh · n, λh〉∂e∩Λh,D
= 0 ∀λh ∈ M0

−1(Λh,D) ,

which allows us to state the hybrid version of the lowest order Raviart–Thomas mixed
method:

Definition 6.1. As the lowest order Raviart–Thomas mixed-hybrid approxi-
mation of the the problem (9), (10), we understand functions u0,h ∈ RT0

−1(T〈),
ph ∈ M0

−1(T〈) and λh ∈ M0
−1(Λh,D) satisfying

∑

e∈T〈

{(Au0,h,vh)0,e − (∇ · vh, ph)0,e + 〈vh · n, λh〉∂e∩Λh,D
} =

=
∑

e∈T〈

{−〈vh · n, pD〉∂e∩ΛD
+ (∇ · vh, z)0,e − 〈vh · n, z〉∂e − (Aũ,vh)0,e}

∀vh ∈ RT0
−1(T〈) ,(16)
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−
∑

e∈T〈

(∇ · u0,h, φh)0,e = −
∑

e∈T〈

{(q, φh)0,e − (∇ · ũ, φh)0,e}

∀φh ∈ M0
−1(T〈) ,(17)

∑

e∈T〈

〈u0,h · n, µh〉∂e∩Λh,D
=

∑

e∈T〈

{〈uN , µh〉∂e∩ΛN
− 〈ũ · n, µh〉∂e∩Λh,D

}

∀µh ∈ M0
−1(Λh,D) .(18)

Due to the previously mentioned, the triple u0,h, ph, λh surely exist and is unique,
u0,h and ph are moreover at the same time the unique solutions of (14), (15); more-
over, the multiplier λh is an approximation of the trace of p on all edges from Λh,D.
Consequently, all error estimates are valid also for the mixed-hybrid solution triple
u0,h, ph, λh. Thus, we have the following theorem:

Theorem 6.2. The problem (16) – (18) has a unique solution.

7. Model Problem. We consider a simple model problem with the system S
viewed in Figure 7,

S = α1

⋃

α2

⋃

α3

⋃

α4 \ ∂S ,

u = −
(

∇p + ∇z
)

in S ,

∇ · u = 0 in S ,

p = 0 in Λ1 , p = 0 in Λ2

u · n = 0 in Λ3 , u · n = 0 in Λ4(19)

p = sin
(πx1

2X

)

sinh
(π(A + B)

2X

)

+ S · A in Λ5 , p = S · y1 in Λ6

p = 0 in Λ7 , p = 0 in Λ8

u · n = 0 in Λ9 , u · n = 0 in Λ10

p = sin
(πx4

2X

)

sinh
(π(B + B)

2X

)

in Λ11 , p = 0 in Λ12 .

The exact solutions in α1 can be easily found as

pα1
= sin

(πx1

2X

)

sinh
(π(y1 + B)

2X

)

+ S · y1 ,

uα1
=

(

−
π

2X
cos

(πx1

2X

)

sinh
(π(y1 + B)

2X

)

,

−
π

2X
sin

(πx1

2X

)

cosh
(π(y1 + B)

2X

)

− S −∇zy
α1

)

,

where ∇zα1
= (0,∇zy

α1
), S + ∇zy

α1
= ∇zy

α2
.

The following table gives pressure, velocity, and pressure trace approximation er-
rors in the first fracture α1. There is the expected O(h) convergence in pressure and

velocity, but only O(h
1
2 ) in pressure trace in ‖ · ‖0,Λh,D

norm. All the computations
were done in double precision on a personal computer, the resulting symmetric in-
definite systems of linear equations were solved by the solver GI8 of the Institute of
Computer Science, Academy of Sciences of the Czech Republic, see [2]. This is based
on the sequential elimination onto a system with Schur’s complement and subsequent
solution of this system by the specially preconditioned conjugate gradients method.
The solver accuracy was set to 10−8.
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Fig. 1. Considered Domain for the Model Problem

N triangles ‖p − ph‖0,S ‖u− uh‖H(div,T〈) ‖λ − λh‖0,Λh,D

2 8×4 0.4445 1.2247 1.4973
4 32×4 0.2212 0.6263 1.0562
8 128×4 0.1102 0.3150 0.7509

16 512×4 0.0550 0.1577 0.5332
32 2048×4 0.0275 0.0789 0.3779
64 8192×4 0.0138 0.0394 0.2676

128 32768×4 0.0069 0.0197 0.1893
256 131072×4 0.0034 0.0099 0.1339

Table 1

Pressure, Velocity, and Pressure Trace Errors in α1 for the Model Problem

8. Example of real-world problem. Results of model problem presented in
previous section prooved correctness of mathematical model as well as correctness of
its numerical implementation. Therefore we have tried to use the model for solving a
real-world problem.

The problem was based on measurements in the boreholes PTP–3 and PTP–4
situated in Krušné Hory mountains, Czech Republic. Results of these measurements
have given us data for creating computer approximation of fractured environment
in rock massif and, consequently, for its discretizing to FEM/FVM mesh. Then,
boundary contition was set and calculation has been started.

Example of results of such calculation is shown at Figure 8. Mesh presented of
this figure covers volume 5x10x10 meter. It consists of approx. 200 fractures and
3000 triangle elements.

9. Conclusion. Mathematical model of groundwater flow was described. This
model is based on assumption, that flow in particular fracture can be approximated
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Fig. 2. Example of real-world problem calculation

by Darcy’s law. Mixed-hybride approximation of solution of problem was introduced
and error estimation for such approximation was derived. Practical tests prooved
correctness of presented approach.
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