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COMPUTATIONAL COMPARISON BETWEEN THE
TAYLOR–HOOD AND THE CONFORMING CROUZEIX–RAVIART

ELEMENT
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Abstract. This paper is concerned with the computational performance of the P2P1 Taylor–
Hood element and the conforming P+

2 P−1 Crouzeix–Raviart element in the finite element discretiza-
tion of the incompressible Navier–Stokes equations. To this end various kinds of discretization errors
are computed as well as the behavior of two different preconditioners to solve the arising systems are
studied.
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1. Introduction. In [11] Taylor and Hood proposed the Q
(8)
2 Q1 element on

quadrilaterals for solving the Navier–Stokes equations numerically. This is a variant
of the biquadratic-bilinear Q2Q1 element, but with the central node in the velocity
space removed. Since then, it became common practice to refer to the Q2Q1 element
on quadrilaterals as well as to its triangular counterpart, the P2P1 element, both
in 2D and in 3D, as “Taylor–Hood element”. This combination of finite element
spaces has become one of the most well-known and popular elements for solving the
incompressible Navier–Stokes equations.

In [7] Crouzeix and Raviart analyzed a further class of finite element spaces on
triangular meshes for the Stokes equations, of which at least two became also rather
popular in CFD and are referred to as “Crouzeix–Raviart element” nowadays: the
non-conforming P1P0 element, where the velocity is continuous at the midpoints of
the element faces only, see e.g. [1, 12], and the conforming P+

2 P−1 element, see e.g.
[2, 8, 10].

Much effort has been spent to analyze various classes of elements. However,
there are significantly less computational investigations to compare different types of
element regarding their actual discretization errors and computational performance
in general. The aim of this article is to present some computational results in order
to provide some rationale for assessing the behavior and performance of the P2P1 and
the conforming P+

2 P−1 elements. This paper summarizes results from [13].

The rest of this paper is organized as follows: in Section 2 we present the numerical
problem we are concerned with, introduce some notations, and define the precondi-
tioners tested in this paper. In Section 3 we recall the definition of the Taylor–Hood
and the conforming Crouzeix–Raviart element. This is followed by Section 4, where
the performance of both elements is tested in various ways. Preconditioners for the
Quasi-Stokes problem are the objective of Section 5.
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2. Numerical methods. We are concerned with the numerical solution of the
instationary, incompressible Navier–Stokes equations in a bounded domain Ω ⊂ Rd,
d ∈ {2, 3} and some time interval T ⊂ R+: for a given right hand side f , Dirichlet
boundary data uD and initial function u0 find a pair (u, p) of a velocity and pressure
field fulfilling

∂tu + u·∇u− 1

Re
∆u +∇p = f in T× Ω,

∇·u = 0 in T× Ω,

u = uD on T× ∂Ω,

u = u0 in {0} × Ω

(2.1)

with Re the Reynolds number. In order to determine the pressure uniquely, as usual
we impose the condition

∫
Ω
p = 0.

The structure of the solver used in this paper for the computational solution of
(2.1) is described in [3]. It uses algorithms proposed in [5]. The following simplified
“Quasi-Stokes” problem appears as a core subproblem after the time discretization:
find (u, p) such that

µu− ν∆u +∇p = f in Ω,

∇·u = 0 in Ω,

u = uD on ∂Ω

(2.2)

for certain parameters µ, ν > 0. Since the Quasi-Stokes problem is linear, we fix µ = 1
hereafter.

Let us remark that in a more general situation the core problem to be solved in
each time step may be an Oseen equation and thus being nonlinear. In this case the
setting is computationally less convenient, since it prohibits the use of CG methods.
Other Krylov space methods might be used instead.

2.1. Schur complement formulation of the Quasi-Stokes problem. The
weak formulation of (2.2) is written in the usual form: find (u, p) ∈ uD +X ×Y such
that

a(u,ϕ) + b(ϕ, p) = 〈l,ϕ〉 ∀ϕ ∈ X,
b(u, ψ) = 0 ∀ψ ∈ Y (2.3)

where X and Y are appropriate function spaces for the velocity and the pressure and
a, b, and l are defined as

a : X ×X → R, a(u,v) = µ

∫

Ω

u·v + ν

∫

Ω

∇u :∇v,

b : X × Y → R, b(v, p) = −
∫

Ω

p∇·v,

l ∈ X ′, 〈l,v〉 =

∫

Ω

f ·v.

Using operators A : X → X ′, B : X → Y ′, and BT : Y → X ′ defined as

〈Au,v〉 = a(u,v), 〈Bu, q〉 = b(u, q), 〈BT p,v〉 = b(v, p)
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∀u,v ∈ X, ∀ p, q ∈ Y , problem (2.3) can be written as: find (u, p) ∈ X × Y such that

Au +BT p = l,

Bu = 0.
(2.4)

Note that in this paper for ease of presentation we shall use the notation A, B, BT

also for matrices representing discretized versions of these operators. The meaning
will be clear from the context.

Now this problem is equivalent to the Schur complement formulation: find p ∈ Y
such that

BA−1BT p = BA−1l and u = A−1(l −BT p). (2.5)

In this paper we consider solvers based on this Schur complement formulation. Pre-
conditioned CG methods are used to solve (2.5). Preconditioning of the Schur comple-
ment operator is crucial, since the Schur complement operator degenerates for µ

ν →∞.
The specific choices of preconditioners are addressed in the following section.

2.2. Preconditioners for the Quasi-Stokes problem. In this section we
introduce two different preconditioners for the Schur complement formulation (2.5).
The first one (called Laplace preconditioner hereafter) follows PDE ideas, while the
second one is based on the discretized equations (mass diagonal preconditioner).

2.2.1. Laplace preconditioner. In [5] Bristeau, Glowinski, and Periaux pro-
posed a preconditioner for the Quasi-Stokes problem (2.5) based on the solution of a
Laplace problem in the pressure space: for a given p ∈ Y let q be the solution of

−∆q = p in Ω,

∂nq = 0 on ∂Ω.
(2.6)

Now set

S−1
Lp p := µq + νp. (2.7)

We denote by CLp =
(∫

Ω∇ψi ·∇ψj
)

the stiffness matrix in the pressure space. Then

(2.6) can be written as q = C−1
Lp p. Ol’shanskii proved in [14] that in fact this precon-

ditioner is equal to the inverse of the Schur complement operator of the Quasi-Stokes
problem for a particular set of model boundary conditions. Note that SLp becomes
identity if µ = 0 and ν = 1.

The Laplace preconditioner has proven to perform very well with the Taylor–
Hood element in practice with more realistic boundary conditions as for instance
of Dirichlet type, which is also confirmed by our tests. However, for discontinuous
pressure functions, it is not straightforward how to formulate and implement this
preconditioner, since the Laplace operator requires H1-regularity of the underlying
space.

2.2.2. Mass diagonal preconditioner. As an alternative, we tested a precon-
ditioner based on ideas presented in [15]. To this end we observe that the Quasi-Stokes
problem does not need any preconditioning if µ

ν is small. Therefore it is sensible to
first consider the case ν

µ � 1. In this case we have

1

µ
A = M +

ν

µ
D ≈M (2.8)
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with M =
(∫

Ω
ϕi ·ϕj

)
the mass matrix and D =

(∫
Ω
∇ϕi :∇ϕj

)
the stiffness matrix in

the velocity space. Since M−1 is dense, we replace the mass matrix by its spectrally
equivalent diagonal part M̃ = (δijMij). The discrete Schur complement operator

BA−1BT is then approximated by BM̃−1BT .

To cover the full parameter range of µ and ν, we set

S−1
MD p := µ(BM̃−1BT )−1p+ νp. (2.9)

Note that the matrix CMD = BM̃−1BT is computable, however the stencil is larger
than for the usual Laplace’s operator. The incidence matrix involves also neighbors
of neighboring nodes of a vertex, see [4, 13] for details.

This mass diagonal preconditioner shows reasonable performance in practice, al-
though not as good as the Laplace preconditioner for the Taylor–Hood element, see
Section 5. Its main advantage is that it is based on the matrices of the saddle point
problem only and does not introduce additional requirements on the regularity of the
finite element spaces.

3. The Taylor–Hood and the Crouzeix–Raviart element. In this sec-
tion, we recall the definition of the P2P1 Taylor–Hood and the P+

2 P−1 conforming
Crouzeix–Raviart finite element spaces.

First we need to fix some notations: assume for simplicity Ω to be polygonally
shaped. Let Th be a triangulation of Ω consisting of simplices. We assume the usual
admissibility and shape regularity conditions on Th, see e.g. [6, Sec. 2.1–2.2].

For any k ∈ N and any simplex S ⊂ Rd we denote by

Pk(S) := {p : S → R | p is a polynomial of degree ≤ k}. (3.1)

The P2P1 Taylor–Hood element consists of globally continuous, piecewise qua-
dratic functions in the velocity space and of globally continuous, piecewise linear
functions in the pressure space:

XTH
h := {u ∈ (C0(Ω))d | ∀S ∈ Th : u|S ∈ (P2(S))d} ∩ (H1

0 (Ω))d,

Y THh := {p ∈ C0(Ω) | ∀S ∈ Th : p|S ∈ P1(S)} ∩ L2
0(Ω).

(3.2)

According to for instance [9] this combination of elements is LBB-stable, provided a
rather general assumption on the triangulation is fulfilled.

In the case of the P+
2 P−1 conforming Crouzeix–Raviart element, the pressure

space consists of piecewise linear, discontinuous functions. The additional degrees of
freedom must be balanced by enriching the velocity space by e.g. volume bubbles Φv

and face bubbles Φf for the LBB-condition to hold. More precisely, let

Φv(S) := span
{ d∏

i=0

λi

}
and Φf (S) := span

{ d∏

i=0
i6=k

λi | k ∈ {0, . . . , d}
}

(3.3)

where λi are the barycentric coordinate functions with respect to S. Define

P+
2 (S) := P2(S)⊕ Φv(S) in 2D,

P+
2 (S) := P2(S)⊕ Φv(S)⊕ Φf (S) in 3D.

(3.4)
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Level Elements DOF TH DOF CR
XTH
h Y THh XCR

h Y CRh

1 8 50 9 66 24
2 32 162 25 226 96
3 128 578 81 834 384
4 512 2178 289 3202 1536
5 2048 8450 1089 12546 6144
6 8192 33282 4225 49666 24576

Table 4.1
Uniform refinement of the unit square in 2D. Number of degrees of freedom (DOF) for the

Taylor–Hood and the conforming Crouzeix–Raviart element in the velocity and the pressure space.

Note that in 2D we have Φf (S) ⊂ P2(S). Now define the P+
2 P−1 element by

XCR
h := {u ∈ (C0(Ω))d | ∀S ∈ Th : u|S ∈ (P+

2 (S))d} ∩ (H1
0 (Ω))d,

Y CRh := {p ∈ L2(Ω) | ∀S ∈ Th : p|S ∈ P1(S)} ∩ L2
0(Ω).

(3.5)

Again, the proof of LBB-stability for this element can be found in in [9] (actually, there
the proof is given for a variant with a slightly smaller velocity space; the LBB-stability
for the P+

2 P−1 element as defined here, is a trivial corollary of this).
One main advantage of the discontinuous pressure functions of conforming Crou-

zeix–Raviart element is that the elementwise mean values of the divergence of discrete
solutions uh are zero and thus the discrete solutions fulfill a local mass balance. This
is stated in the following theorem, which is readily proved.

Theorem 3.1. Let (uh, ph) ∈ XCR
h × Y CRh be the solution of the discrete Quasi-

Stokes equations. Then we have for all S ∈ Th:

∫

S

∇·uh = 0. (3.6)

4. Comparison of discretization errors. In this section we compare the
Taylor–Hood and the conforming Crouzeix–Raviart element with respect to discretiza-
tion errors. We start by studying the Quasi-Stokes problem (2.2), for which an an-
alytic solution is available and thus the error can be computed exactly, see Section
4.1. Next we consider the full Navier–Stokes equations. There we first consider the
dynamic behavior of the discrete solution for an instationary convection, see Section
4.2. Finally, we compare the two elements regarding the error in ∇· uh, see Section
4.3. We have run numerical experiments in 2D and in 3D. Since the results in 3D
exhibit the same picture as the 2D examples, they are omitted here for sake of brevity.

Let us start by commenting on the triangulation. To keep things as concise as
possible, we consider a uniform subdivision of the square in 2D and the cube in
3D. As for any given triangulation the function spaces XCR

h and Y CRh are supersets
of XTH

h and Y THh respectively, it is clear that the number of degrees of freedom for
the conforming Crouzeix–Raviart element is higher than for the Taylor–Hood element.
This increase is much more pronounced in the pressure space due to the discontinuities
than in the velocity space. The number of degrees of freedom for a uniform refinement
of a square in 2D are shown in Table 4.1.

Another indicator for the computational effort is the number of non-zero entries
of the matrices involved. Table 4.2 shows the maximum number of non-zeros per
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Matrix 2D 3D
TH CR TH CR

A 25 33 125 293
B 50 14 375 45
BT 9 24 27 192
CMD 25 45 125 404
CLp 9 — 27 —

Table 4.2
Uniform refinement of the unit square in 2D and of the unit cube in 3D. Maximum number of

non-zero entries per line in the matrices A, B, BT , CMD, and CLp for the Taylor–Hood and the
conforming Crouzeix–Raviart element.

line for the matrices A, B, and BT from the Quasi-Stokes problem (2.4) and for the
matrices CLp and CMD needed in the preconditioners as defined in Section 2.2.

4.1. Quasi-Stokes problem with known solution. The functions

u(x, y) :=

(
cos
(
π
2 (x+ y)

)

− cos
(
π
2 (x+ y)

)
)
, p(x, y) := sin

(π
2

(x− y)
)

(4.1)

are solution of the Quasi-Stokes system (2.2) in 2D with a suitable right hand side.
When (2.2) is related to one time step of the time discretized Navier–Stokes equations
(2.1), the parameter ν is proportional to ∆t/Re, ∆t the time step size, since µ was
fixed to µ = 1. Thus in practice, ν would be rather small. Therefore, in this section
we study the discretization error u − uh and p − ph with respect to variations of ν
ranging from ν = 10−6 to ν = 10−2.

This error is shown with respect to the number of degrees of freedom (DOF) in
Figure 4.1. Clearly, for moderate values of ν the experimental order of convergence
(EOC) approaches the expected values of 2 for the velocity and pressure in the H1

and L2-norms, respectively, and 3 for the velocity in the L2-norm. Quantitatively, for
given DOF the error in the pressure behaves very similarly for the Crouzeix–Raviart
and the Taylor–Hood element. Concerning the velocity, the error is better by some
factor for the Crouzeix–Raviart element compared to the Taylor–Hood element.

Only for the smallest value of ν = 10−6 the error curves for the velocity are not
yet “saturated”. However, the pressure behaves well also in this case.

4.2. Instationary convection. In order to test both elements with respect
to the dynamic behavior of the instationary Navier–Stokes equations, we chose the
example of an oscillating Bénard convection, compare also [3]. To this end the Navier–
Stokes system (2.1) is augmented by a heat equation.

The examples has been solved in the unit square on very coarse grids in order
to test the minimum level of grid refinement required to reproduce the oscillation.
On a grid of refinement level 3 for the Taylor–Hood element and of level 2 for the
Crouzeix–Raviart element, the expected oscillating pattern was visible, but heavily
disturbed by other interrupting flow patterns. On even coarser grids the solver did
not converge at all. On finer grids the oscillation was qualitatively well reproduced.

In a frequency analysis the results for the Crouzeix–Raviart element on a given
level of grid refinement turn out to be similar to those from the Taylor–Hood element
on a grid that is one level finer.

4.3. Comparison of ∇·uh. As already mentioned, one virtue of the Crouzeix–
Raviart element is the local mass balance. Going a step further, in this section we
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Figure 4.1. Quasi-Stokes problem with µ = 1 and ν = 10−6 (top), ν = 10−4 (center), and
ν = 10−2 (bottom) for a known exact solution (u, p) ∈ X × Y . Discretization error ‖p− ph‖L2(Ω)

(left), ‖u− uh‖L2(Ω) (center), and ‖u− uh‖H1(Ω) (right) vs. number of degrees of freedom.

compare the two elements concerning the pointwise solenoidal condition. To this end,
we first study an example with a smooth solution, a stationary Bénard convection in
the unit square.

The results are shown in Figure 4.2. There, the error in ∇· uh is measured in
the L2 as well as in the L8-norm and plotted as a function of DOF. The reason for
choosing the L8-norm is that on one hand computationally an Lp-norm, 1 ≤ p <∞,
is much simpler to compute for higher order elements than the L∞-norm and on the
other hand for examples like this one the L8-norm is rather close to the L∞-norm.

As can be seen from the figures, the EOC takes on the expected value of 2 for
both norms. Somewhat surprisingly, the error vs. DOF ratio is quite close for the
Crouzeix–Raviart and the Taylor–Hood element.

The next example is the backward facing step. This example admits a singular
solution due to the reentrant step. Therefore one cannot expect the full order of
convergence. As shown in Figure 4.3 the EOC is of order 0.5 for ∇· uh in the L2-
norm for both elements. Moreover, also as expected, there is divergence of ∇· uh
in the L8-norm, somewhat stronger for the Taylor–Hood element. In this case of a



376 R. KRAHL, E. BÄNSCH
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Figure 4.2. Stationary Bénard convection. Behavior of ∇·uh vs. number of degrees of freedom
in the L2-norm (left) and in the L8-norm (right).
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Figure 4.3. Backward facing step in 2D. Behavior of ∇·uh vs. number of degrees of freedom
in the L2-norm (left) and in the L8-norm (right).

singular solution the performance of the Crouzeix–Raviart element with respect to
the solenoidal condition is much better than the Taylor–Hood element.

5. Comparison of preconditioners for the Quasi-Stokes problem. In or-
der to test the performance of different preconditioners, we compare the number of
iterations needed to solve the Quasi-Stokes problem. The following preconditioners
have been tested:
No precond.:

S−1p := p.

Laplace precond.: see Section 2.2.

S−1p := µC−1
Lp p+ νp.

This preconditioner was used for the Taylor–Hood element only.
Mass diagonal precond.: see Section 2.2.

S−1p := µ(BM̃−1BT )−1p+ νp.

Plain mass diagonal precond.: The matrix of the mass diagonal preconditioner
was used without adaptation to the parameters µ and ν of the problem.

S−1p := (BM̃−1BT )−1p

This preconditioner is only considered in order to demonstrate the difference
of using (BM̃−1BT )−1 compared to the linear combination µ(BM̃−1BT )−1+
νI . Otherwise this preconditioner is of no practical use.
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Figure 5.1. Quasi-Stokes problem in 2D; µ = 1. Number of iterations vs. ν using different
preconditioners for the Taylor–Hood (left) and the conforming Crouzeix–Raviart element (right).
Level of refinement 4 (top) to 6 (bottom).

Figure 5.1 shows the number of iterations needed to solve the Quasi-Stokes prob-
lem in the Schur complement formulation (2.5) with a Conjugate Gradient method for
a given tolerance. The parameter µ was fixed as µ = 1 and ν was varied in the range
10−6 ≤ ν ≤ 100. The Taylor–Hood and the conforming Crouzeix–Raviart element
was tested with different levels of refinement of the triangulation. Again we note that
the same behavior can be observed in 3D. The corresponding figures are omitted for
the sake of brevity.

As expected, our tests confirm the theoretical result that the Schur complement
does not need preconditioning for large values of ν. For ν = 1 both, the Laplace
and the mass diagonal preconditioner, do not show any visible effect compared to
no preconditioning. On the other hand, the Laplace preconditioner is also robust in
terms of number of iterations over the whole range of values of ν. It performs even
better for smaller values of ν. The mass diagonal preconditioner is able to keep the
number of iterations within an acceptable range in most situations, but it still got
problems with very small values of ν. It does not reach the performance of the Laplace
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preconditioner.

6. Conclusions. The goal of this paper was a comparison of the computational
performance of the Taylor–Hood and the conforming Crouzeix–Raviart element in the
finite element discretization of the Navier–Stokes equations.

As one should expect from the additional number of degrees of freedom, the
computational results for the Crouzeix–Raviart element are better in all tests than
those from the Taylor–Hood element on the same grid. But also the costs in terms
of computation time are higher. As a quite rough rule of thumb one can say, the
results from the Crouzeix–Raviart element are by one level of grid refinement better,
but they are also by one level of grid refinement more expensive than the results
from the Taylor–Hood element. There is one major exception to this rule: for non-
smooth solutions we observe that the the local mass balance, measured in terms of
the pointwise solenoidal function, is much better fulfilled for the Crouzeix–Raviart
than for the Taylor–Hood element.

Different preconditioners for the Quasi-Stokes problem have been compared. The
Laplace preconditioner turns out to perform best in the whole parameter range. The
fact that this preconditioner is not (directly) available for the Crouzeix–Raviart el-
ement is one important reason for the higher computational costs of this element
resulting from our computational approach. We note, however, that this picture may
change, if one would use static condensation to reduce the degrees of freedom for the
Crouzeix–Raviart element or certain multigrid methods, which may be computation-
ally cheaper for the Crouzeix–Raviart element than for the Taylor–Hood element.
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