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MICRO AND MACRO LEVEL STOCHASTIC SIMULATION OF
REACTION-DIFFUSION SYSTEMS *

ISTVAN LAGZIt AND FERENC IZSAK#

Abstract. We provide numerical simulations for nonlinear reaction-diffusion systems, which
arise from a micro and macro level model of pattern formation (Liesegang phenomenon). In both
cases we apply a stochastic approach: a discrete stochastic model and concentration perturbation in
a deterministic model.
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1. Introduction.

1.1. Liesegang phenomenon. In reaction-diffusion systems pattern formation
generally occurs due to the interaction of diffusion process with nonlinear chemical
reaction. Liesegang presented the first experimental evidence of such patterns [1]. In
this case the pattern is the distribution of the product (precipitate) in a chemical
reaction. In the experimental setup we take two initially separated electrolytes (ionic
species), one of them (inner electrolyte) is uniformly distributed in a gel (diffusion
column) and the other one (outer electrolyte) diffuses from outside into the diffusion
column. A well-detectable pattern structure evolves in several days. In a 1D or quasi-
1D case (planar reaction front) one can observe disjoint parallel zones of precipitate.
An electric field highly influences the evolution of the patterns due to the ionic mi-
gration.

The detailed investigations on Liesegang phenomenon have showed four empirical reg-
ularities, between the following (positive real) macroscopic quantities: the position X,,
of the nth precipitation zone measured from the junction point of electrolytes ,the
width w,, of the nth band, and the time 7,, elapsed until its formation.

The spacing law states that the positions of precipitate form an asymptotically geo-
metric series:

lim X,41/X, =1+0p,

where 1 4 p is the spacing coefficient. According to the time law for Liesegang pat-
terning, these two quantities always correspond to the following relation:

1/2
X, = alTn/ +

[10], with a1, ¢; € R™T are constants depending on experimental conditions. The width
law describes the dependence of the thickness of zones on their position [4]:

. «
wy, = c2X,),
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where c3 and « are constants. Real experiments and some theoretical studies suggest
that @ = 1. Finally, the Matalon—Packter law shows the influence of the initial
concentration ag and by of the electrolytes on spacing coefficient:

1
p = F(by) + —G(bo),
ao

with F' and G real functions [3], which can be specified in some situations.

Kai et al. [5] presented that low initial concentration difference (A = ag — bg)
(in the absence of an electric field) leads to considerable uncertainty (weak repro-
ducibility of the band locations and of the band formation), in terms of the location
of bands and of the appearance time. Experimental investigations have shown that
pattern formation exhibits increasingly stochastic behavior (in the above sense) as A
approaches zero.

Earlier, when the cited experiments were performed the detailed simulation of
stochastic pattern formation was not possible due to the limited computational re-
sources. In the present study we will confirm the experimental findings and predict the
behavior of the system in case of coupling the diffusion and ionic migration transport
(pattern formation in the presence of an electric field).

1.2. Chemical scheme. Our chemical mechanism describing the precipitate
formation contains one single step. The outer electrolyte (A™) and the inner elec-
trolyte (B™) form directly the precipitate (P) as: AT + B~ — P.

1.3. Governing equations in the deterministic case. Evolution of precipi-
tation patterns in 1D can be described by the following reaction-diffusion equations
— all quantities are dimensionless:

oa %a da

— =Dy—— — 26— —0(P, K, L
or 922 oz (P K, L),
0b 9%b 0b

(1.1) ar oz bz oP, K, L),
dp
2 _§(PK,L
67_ ( ) 9 )7

where a,band p : [0,7] x [0,]] — R yield the concentrations of the outer and the
inner electrolyte and the amount of the precipitate. D,, Dy € RT denote the diffusion
coeflicients, z,, 2p € Z are related to the charges of the electrolytes, while € is the yields
dimensionless electric field strength, which incorporates the mobility of the ions. The
initial and boundary conditions will be specified later. For a detailed discussion of the
model and deterministic simulation results we refer to [8] and for an alternative model
to [2]. Since the precipitate does not diffuse, the diffusion term for the precipitate has
been eliminated. Finally, the reaction term 6(P, K, L) : [0,T] x [0,]] — R is defined
as follows:

if p=0 (there is no precipitate), then

(1.2) §(P,K,L)=krSpO(P — K),
if p>0 (there is some precipitate), then
(1.3) 5(P,K,L) = kSpO(P — L),

where k € RT is the rate constant of the precipitation reaction, L € R™ is the
solubility product, K € R is the nucleation product and © : R — R. is the Heaviside



MICRO AND MACRO LEVEL STOCHASTIC SIMULATION 187

step function. Sp yields the amount of the precipitate which can form, defined as
follows (based on Ostwald’s supersaturation model proposed by Biiki et al. [8], [9]):

(1.4) Sp=3 [(a+b)—\/(a+b)274(PfL)}.
The basis of the model is that precipitation occurs only if the product of the concen-
trations reaches K. However, if previously formed precipitate is present, it promotes

the precipitation process and the product of the concentrations has to reach only a
lower threshold L.

2. Models.

2.1. Stochastic perturbation in the deterministic model - macro level
approach. We apply perturbation for the concentrations of the electrolytes in (1.1)
in order to take into account the inherent fluctuations of the system [7]. We suppose
that the concentration of both electrolytes consists of two parts:

(2.1) a=a+ad and b=0b+1¥,

where @, b : [0,T] x [0,1] — R are the average concentrations (expected values), while
a', v : [0, T]x[0,!] — R yield the concentration fluctuations. Variations of fluctuations
%"Tl and %—Z’T/ are usually considered to be zero when applying a time discretization in
the simulations since the average effect of these terms over any time interval is zero.

Inserting (2.1) into (1.1) gives

oa 0*(a+d) d(a+a) N L
EfDa Er R L —d(@a+a)b+?),K, L),
ob 0*(b+1) a(b+1) e,

(2.2) P Dy R e 0((a+a)b+0),K,L),
9p

5 = d((a+a)b+V),K,L).
During the computation process, first the concentration of the two electrolytes
were perturbed, then the diffusion and the reaction terms were consecutively calcu-
lated with the perturbed concentrations. This process has been repeated in every time
step. Perturbation a’ of @ (or perturbation b’ of b) can be described as the summed up
random effects acting on each particles (of type A or B). At the microscopic level the
only assumption was that the displacement of all particles are identically distributed.
The mean of this distribution is related to the electric field strength (), while its
variance is proportional to the fluctuations in the system.
Application of the central limit theorem gives that the change of concentration (which
can be described by the displacement of particles) is normally distributed: the mean is
determined again by ¢, while its standard deviation is proportional to the square root
of the number of ions, i.e. that of the concentration. Therefore, the perturbations of
the concentrations were calculated as follows:

a' = rand(z, 7)dVa,
b = rand(z, T)d\/z,

where d is related to the magnitude of the fluctuations and rand(z,7) is a normally
distributed random number. It has been generated for the different electrolytes in
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every position in each time step.

System (2.2) has been solved numerically using a ”method of lines” technique. We can
reduce (2.2) to a set of ordinary differential equations after spatial discretization (finite
difference) on an equidistant 1D spatial grid. The produced ordinary differential
equations have been integrated in time using a second order Runge-Kutta method
with the following boundary conditions:

ab

Ala=p = a0, Oz

_ 2
oz

b

= 5 =0,

=l

=0 =l

where [ is the length of the diffusion column. In all simulations we used the parameter
set Do =Dy, =04, K =013, L =01, Kk =250,2, = 1,2p = —1, ] =480 and d =
0.0003. The initial conditions were

a(0,z) = apO(—x), b(0,z) = beO(x) and p(0,z)=0.

The grid spacing was Az = 0.4 and we performed numerical simulations with the
time step A7 = 0.004.

2.2. Discrete stochastic model - micro level approach. A micro level (dis-
crete) stochastic model for chemical reactions [11] is more realistic in the sense that
the system is described using finite number of particles [6]. Accordingly we assume
three types of particles: A and B for the reactants and P for the precipitate. We also
apply a spatial discretization: the reaction space is splitted into I small “segments”
(the distance of their midpoint is 1) such that the whole system is described with the
number of each particles in the segments. Formally, we give it with a state vector at
(time) t: (Ma(t); Mp(t); Mp(t)) € (NI x NI x NT), where M4[i](t) gives the number
of the A type particles in the ith segment at time ¢. Our aim is to model the evolution
of the process during a (short) time interval (t,¢+ h), i.e. we try to find a time step
operator Fy, such that Fy(M4(t); Mp(t); Mp(t)) = (Ma(t+h); Mp(t+h); Mp(t+h)).
Henceforth we consider the state vector at a given time ¢ and investigate the time
step.

In the discrete model displacements of particles of length less than 0.5 correspond to
“step = 07, that is, in the model they will rest in their position. Similarly, particles
with displacements between -0.5 and -1.5 are mapped to the segment to the left from
the actual one (“ step = -1 "), while those between +0.5 and +1.5 will move to the
right of the actual position. In our model we have allowed five steps: -2, -1, 0, 1, 2.
Displacements of particles A and B in electric field free case and without reaction
terms could be modeled using a discretized version of Brownian motion. This means
that for the transition probabilities in this limited case we obtain

~1.5
p2 = P(step = 2) = p_o = P(step = —2) = / O (z) da =~ 0.0668,

— 00

-0.5
p1 =P(step=1)=p_1 = P(step=—1) = / O(z) da ~ 0.2417
~15

and

0.5
po = P(step =0) = / ®(x) da ~ 0.383,
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where ® denotes the density function of the standard normal distribution. In the
model one may suppose that the homogeneous electric field modifies only the transport
of the electrolyte coming from outside, i.e. we have to change only the transition
probabilities of particles A. If the electric field promotes the motion of the reaction
front (“ positive field ”) we push every particle A to the right with probability e, and
leave it in its original position with probability 1 — €4, where 0 < e; < 1 is related
to the electric field strength. Therefore, the transition probabilities P, (according to
the external electric field) of particles A are given as follows:

P, (step = 1) = P(step = 0)e; + P(step = 1)(1 — 1) = poes +p1(1 — 1),
P., (step=0) =p_1e; +po(l —€4), P (step=—1)=p_sey +p_1(1l—ey),

P.(step = —2) = p_s(1 —€4), Pey (step = 2) = prey + pa.

Similarly, if the electric field retards the diffusion of the outer electrolyte A (“ negative
field ), we modify the transition probabilities as follows:

P (step=1)=pac_ +p(l—c), Po (step=0)=p 1 +po(l—c ),
P._(step=—1)=poe— +p_1(1 —€_), P._(step=—2)=p_1e_ + p_a,

Pe_(step =2) = pa(1 — ),

where 0 < e_ < 1 again characterizes the electric field strength.

The precipitation reaction was modeled by Ostwald’s supersaturation theory [10] the
basic idea of which is that precipitation can take place only if the local concentration
product of the electrolytes reaches a certain threshold (nucleation product). At the
same time the reaction promotes the further process and the mentioned threshold
value falls back in this case.

During the calculation of the actual particle numbers we have to take into account
all the particles, that reside or go through a given segment (as a potential reagent).
These summed up particle numbers are denoted by SUM 4[i](¢) and SUMp[i](¢). This
generalization of the “ point concentrations ” makes possible to take into account
some stochastic effects. In the simulations we calculated the reaction term by the
following algorithm. If Mpli](t) = 0 (there is no precipitate at the ith segment), a
deterministic approach would result in the following amount of precipitated material,
similarly to (1.2):

Afi](t) = oli](1)©(SUMA[i] (1) SUM ai] () — K)

and for the case when Mp[i](t) # 0 we substitute K € N (corresponding to the
nucleation product) with L € N, which is related to the solubility product in (1.3).
Here o[i](t) is given as follows according to (1.4):

oli(¢) :% (SUM4[¢](t) + SUMp[i](t)

— V/(SUMLA[i](t) + SUM[i](t))? — 4(SUM.a[d](t)SUMB[i](t) — L)) :
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FiG. 2.1. Precipitation patterns in the absence of an electric field. Experimental (top): the
evolution time is 40.8 h, black strips represent the solid precipitate with length scale 1 c¢cm. Spa-
tial distribution of the precipitate in a single simulation of the discrete stochastic model (middle).
Variation of the average amount of the precipitate (Paug) in the diffusion column at T =5 - 106
(bottom) using the macro level stochastic model. The distribution of the precipitate corresponds to
the average of 100 independent simulations. The first three bands correspond to the deterministic
band positions. In the numerical simulations (middle, bottom) we applied a dimensionless length
scale.

Formation of precipitate stops wherever Mp[i] reaches a maximal value Mp max.
The reaction probability (the probability that a given particle A transforms into
precipitate) is given by qali](t) = Ali](t)/SUMa[¢](t) and similarly for particles B.
In this way 1 — ga[é](t) gives the probability that a particle A (in the time interval
(t,t+h) in the ith segment) does not form to precipitate, only these can be recognized
at time t 4+ h as existing particles A. If j < i < k then the probability that a given
particle A or B, which moves from the jth segment to kth one, does not transform
into precipitate is:

II 1-aalil®) and ] 1-asli®).

j<i<k j<i<k

Therefore obtain for the modified transition probabilities:

pelillk) = pelillk] ] 1 - aalil®),
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which yields the probability that a particle A moves from the jth to kth segment
and does not form to P in the meantime (similarly to particles B). In the simulation
procedure for particles A in the jth segment we created discrete intervals in [0, 1]
of length p¥[7][1], pX[4][2],- . -, pi[j][I] and for each of the particles a random number
RND in [0, 1]. If this fell into the interval corresponding to p¥[j][k] then we pushed
the particle into the kth segment. Anyway, if none of the intervals covered RND, it
was transformed to P. We proceed similarly for particles B. Indeed, we have the
transition probability matrices in a general sense [12] such that the sums of the rows
and columns is at most one. For accelerating the computations we rather proceed
with the above vector representation due to the sparse structure of the transition
probability matrix.

3. Results and discussion. In Fig.2.1 one can see the Liesegang zones in a real

experiment together with the results of the micro and the macro level simulations.
The real experiments were carried out in a U tube (of diameter 0.5 cm and length
25 cm). The gel contained the inner electrolyte (K2CraO7) with concentration 0.0036
M. The gel was contact with the solution of K3CraO7 (0.0036 M) and AgNO4 (outer
electrolyte, 5 m/m %), respectively. Evolution of the Liesegang patterns were moni-
tored by a computer controlled image system.
In case of the discrete stochastic simulation: I = 300, K = 1400, L = 300 and
M apmax = 1000. These parameter values were chosen in accordance with of a for-
merly proposed deterministic model. We applied no-flux boundary conditions. Simu-
lations were carried out till time step 60000. Initial values were Mpg[i](t = 0) = 100,
Magli](t =0) = 0 and Mali](t = 0) = 0, but M4[1](¢t) = 100 at all times. Qualita-
tively we obtained similar precipitate distribution: high amount of the precipitate at
the several regions and gaps without precipitate between them.

We also investigated the evolution of the pattern structure. Fig. 3.1 reflects the

experimental and the numerical findings that the electric field modifies the mass
transport characteristics of the electrolytes. Ionic migration flux of both electrolytes
changes the spatiotemporal evolution of Liesegang patterns in the same way both in
the real experiments and during the simulations.
In the absence of an electric field dependence of band position on the square root of
its formation time is linear. This is a direct consequence of the diffusion process in
our system. This dependence in the presence of an electric field can be given with
a second-order polynomial (Fig. 3.2). Decreasing electric field strength, the spatial
distribution of bands becomes more stochastic as shown in Fig. 3.2. We called a
precipitate band position stochastic if after the averaging process this band occupies
more than one spatial grid cell/segment. Otherwise it was considered determinis-
tic. The high values of standard deviation (band position and its formation time) in
the experiments can be recognized as a stochastic behavior of the reaction-diffusion
system. In both simulations standard deviations are monotone increasing with the
number of bands and the position.

Results of both models show that these approaches are successful for the description
of regular Liesegang patterning in the presence and the absence of an electric field.
We predicted that the stochastic precipitate pattern distribution depends on the elec-
tric field strength using a micro and a macro level approach. Liesegang patterns have
been found to be increasingly deterministic, in terms of reproducibility of the band
locations and of band formations as the electric field promotes the transport of the
outer electrolytes.
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Fi1c. 3.1. Precipitation patterns in the presence of an electric field. Experimental (top): the
evolution time is also 40.8 h, E = 12Vm™1 with length scale 1 cm. Spatial distribution of the
precipitate in a single simulation of the discrete stochastic model for e, = 0.01 (middle). Variation
of the average amount of the precipitate (Payg) in the diffusion column at T =5- 108 (bottom) using
the macro level stochastic model. The distribution of the precipitate corresponds to the average of
100 independent simulations for e = 0.0025. The first two bands correspond to the deterministic
band positions. In the numerical simulations (middle, bottom) we applied a dimensionless length
scale.
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