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NUMERICAL MODELING OF SHALLOW FLOWS INCLUDING
BOTTOM TOPOGRAPHY AND FRICTION EFFECTS

MÁRIA LUKÁČOVÁ-MEDVIĎOVÁ∗

Abstract. The aim of the paper is numerical modeling of the shallow water equation with source
terms by genuinely multdimensional finite volume evolution Galerkin schemes. The shallow water
system, or its one-dimensional analogy the Saint-Venant equation, is used extensively for numerical
simulation of natural rivers. Mathematically the shallow water system belongs to the class of balance
laws. A special treatment of the source terms describing the bottom topography as well as frictions
effects is necessary in order to reflect their balance with the gradients of fluxes. We present behaviour
of our new well-balance FVEG scheme for several benchmark test problems and compare our results
with those obtained by the finite element scheme of Teschke et al. used for practical river simulations
[13].
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1. Introduction. Description of natural river processes is very complex. The
main aim is to determine the water level at a specific place and time. Reliable math-
ematical models as well as robust, fast and accurate numerical simulations are very
important for prediction of floods and have large economical impact. One of the
main difficulty of the reliable calculation is the determination of the friction which
counteracts the river flows [13]. Numerical simulation of natural river flows is based
on the two-dimensional shallow water equations, in practice even its one-dimensional
analogy is often used. The shallow water system consists of the continuity equation
and the momentum equations

ut + f1(u)x + f2(u)y = b(u),(1.1)

where

u =




h
hu
hv


 , f 1(u) =




hu
hu2 + 1

2gh
2

huv


 ,

f2(u) =




hv
huv

hv2 + 1
2gh

2


 , b(u) =




0
−gh(bx + Sf (u))
−gh(by + Sf (v))


 .

Here h denotes the water depth, u, v are vertically averaged velocity components in
x− and y− direction, g stands for the gravitational constant, b = b(x, y) denotes the
bottom topography and Sf (u), Sf (v) are the friction terms in x− and y− directions.
The determination of the friction slope Sf is a very complex problem. The bottom
composition of a river varies very rapidly, especially when vegetation is taken into
account. In the literature several methods in order to determine the friction slope can
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be found, cf., e.g. [13]. Basis for our calculation is the friction law of Darcy-Weisbach.
Thus, the friction slope Sf is calculated by, see, e.g. [14],

Sf (u) =
λu
√
u2 + v2

8g rhy
, Sf (v) =

λv
√
u2 + v2

8g rhy
,(1.2)

where rhy denotes the hydrodynamical radius and λ stays for the so-called resistance
value, which is determined according to the simplified form of the Colebrook-White
relation

1√
λ

= −2.03log

(
ks/rhy
14.84

)
.

Here ks denotes the friction parameter, which depends on the composition of the river
bottom. Typically, ks can vary from 1 mm for beton until 300 mm for bottom with
dense vegetation.

2. Finite volume evolution Galerkin scheme. System of the shallow water
equations (1.1) belongs to the class of nonlinear hyperbolic balance laws. In our recent
works [7], [8], [9] we have proposed a new genuinely multidimensional finite volume
evolution Galerkin method (FVEG), which is used to solve numerically nonlinear hy-
perbolic conservation laws. The method is based on the theory of bicharacteristics,
which is combined with the finite volume framework. It can be also viewed as a
predictor-corrector scheme; in the predictor step data are evolved along the bichrac-
teristics, or along the bicharacteristic cone, in order to determine approximate solution
on cell interfaces. In the corrector step the finite volume update is done. Thus, in our
finite volume method we do not use any one-dimensional approximate Riemann solver,
instead the intermediate solution on cell-interfaces is computed by means of an ap-
proximate evolution operator. The reader is referred to [2], [5], [11] and the references
therein for other recent genuinely multidimensional methods. Numerical comparisons
with other well-known schemes illustrate high global accuracy of the FVEG schemes.
For example the second order FVEG scheme is six times more accurate that the Lax-
Wendroff scheme as well as the LeVeque wave propagation algorithm [5], whereas the
computational costs are comparable with the LeVeque scheme, which belongs also to
the class of genuinely multidimensional methods.

One possible and simple way to solve a system of balance laws is to apply the
operator splitting approach and solve separately the resulting homogenous system
of hyperbolic conservation laws, e.g. by using the finite volume evolution Galerkin
scheme, and the system of ordinary differetial equations, which includes the right-
hand-side source terms. However, this can lead to the structural deficiencies and
strong oscillations in the solutions, especially when stationary solutions or their small
perturbations are to be computed numerically. In fact, most of the geophysical flows,
including river flows, are nearly stationary flows. We say that a flow is stationary if

du

dt
≡ ∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= 0,

dv

dt
= 0.

In this case the gradient of fluxes is balanced with the right-hand side source term,
i.e. we have the following balance condition in the x-direction ∂x(gh2/2) = −gh(bx +
Sf (u)). Assume that R(u) is a primitive to Sf (u). Then the balance condition can
be rewritten as gh(h + b + R(u))x = 0. An analogous condition holds in the y−
direction. These equilibrium conditons yield the well-balanced approximation of the
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source term. The resulting schemes are called the well-balanced schemes, cf., e.g. [1],
[3], [4], [6] and the references therein for other well-balanced schemes in literaure.

Our aim is to generalize the finite volume evolution Galerkin scheme to the balance
laws and derive the well-balance FVEG scheme. We follow our recent work presented
in [10] and include moreover a suitable approximation of the friction terms, which are
particularly important for reliable river flow simulations.

Our computational domain Ω wil be divided into a finite number of regular finite
volumes Ωij = [xi− 1

2
, xi+ 1

2
]× [yj− 1

2
, yj+ 1

2
] = [xi− ~/2, xi+ ~/2]× [yj− ~/2, yj + ~/2],

i, j ∈ Z, ~ is a mesh step. Further, we denote by Un
ij the piecewise constant approx-

imate solution on a mesh cell Ωij at time tn and start with initial approximations
obtained by the integral averages U 0

ij =
∫

Ωij
U (·, 0). The finite volume evolution

Galerkin scheme can be formulated as follows

Un+1 = Un − ∆t

~

2∑

k=1

δxk f̄
n+1/2
k +Bn+1/2,(2.1)

where ∆t is a time step, δxk stays for the central difference operator in the xk-direction,

k = 1, 2, and f̄
n+1/2
k represents an approximation to the edge flux at the intermediate

time level tn + ∆t/2. Further Bn+1/2 stands for the approximation of the source

term b. The cell interface fluxes f̄
n+1/2
k are evolved using an approximate evolution

operator denoted by E∆t/2 to tn + ∆t/2 and averaged along the cell interface edge
denoted by E , i.e.

f̄
n+1/2
k :=

1

~

∫

E
fk(E∆t/2U

n)dS.(2.2)

The well-balanced approximate evolution operator E∆t/2 for system (1.1) will be
given in the Section 3.

2.1. A well-balanced approximation of the source terms. As already men-
tioned above we want to approximate source terms in the finite volume update in such
a way that the balance bewteen the source terms and the gradient of fluxes will be
exactly preserved. This can be done by approximating the source term by using its
values on interfaces, cf. [12].

Let us consider a stationary flow, i.e.

du

dt
= 0,

dv

dt
= 0,(2.3)

gh(h+ b+R(u))x = 0, gh(h+ b+R(v))y = 0.

Note that a stationary steady state, the so-called lake at rest, i.e. u = 0 = v, and
h+ b = const., is a special equilibrium state, that is included here.

Assume that (2.3) holds. In order to derive a well-balanced approximation of the
source term we should first realize, that the flux difference in the FV update formula,
cf. second equation of (2.1), can be equivalently rewritten in the following way

g

2~2

∫ yi+1/2

yi−1/2

(
(h
n+1/2
i+1/2 )2 − (h

n+1/2
i−1/2 )2

)
dSy

=
g

2~2

∫ yi+1/2

yi−1/2

(
h
n+1/2
i+1/2 + h

n+1/2
i−1/2

)(
h
n+1/2
i+1/2 − h

n+1/2
i−1/2

)
dSy.(2.4)
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In order to preserve the equilibrium condition gh(h+ b+R(u))x = 0 we need to
approximate h by an average of cell interface values and (h+ b+R(u))x by a central
difference. Therefore, we define the well-balanced approximation of the source term
in the following way

1

~2

∫

Ωij

B2(Un+1/2) =
1

~2

∫ xi+1/2

xi−1/2

∫ yi+1/2

yi−1/2

−ghn+1/2(bn+1/2
x +Rn+1/2

x )

≈ −g
~

∫ yi+1/2

yi−1/2

h
n+1/2
i+1/2 + h

n+1/2
i−1/2

2

(bi+1/2 +R
n+1/2
i+1/2 )− (bi−1/2 +R

n+1/2
i−1/2 )

~
dSy.

Integrals along vertical cell interfaces are approximated by the Simpson rule sim-
ilarly to the cell interface integration used in (2.4). An analogous approximation of
the source term is used also in the third equation for the y− direction.

3. Well-balanced approximate evolution operator. In order to derive the
exact integral equations, which describe time evolution of the solution, it is suitble to
work with the system (1.1) written in primitive variables w = (h, u, v)T , i.e.

wt +A1(w)wx +A2(w)wy = t(w),(3.1)

A1 =




u h 0
g u 0
0 0 u


 , A2 =




v 0 h
0 v 0
g 0 v


 , t =




0
−g(bx + Sf (u))
−g(by + Sf (v))


 .

This is a simple form appropriate for working with characteristics away from
shocks. Note that the approximate evolution operator based on (3.1) is only used in
the predictor step. In the corrector step the finite volume update using the conserva-
tive variables is done. Therefore shocks will be resolved correctly.

Now we explore the hyperbolic structure of the homogenous part of (3.1) and use
theory of bicharacteritics. In an analogous way as in [8], for the Euler equations, and
in [7], for the homogeneous shallow water equations, we obtain the following exact
integral equations

h (P ) =
1

2π

∫ 2π

0

h (Q)− c̃

g
u (Q) cos θ − c̃

g
v (Q) sin θdθ

− 1

2π

∫ tn+1

tn

1

tn+1 − t̃

∫ 2π

0

c̃

g

(
u(Q̃) cos θ + v(Q̃) sin θ

)
dθdt̃(3.2)

+
1

2π
c̃

∫ tn+1

tn

∫ 2π

0

(
bx(Q̃) cos θ + by(Q̃) sin θ

)
dθdt̃

+
1

2π
c̃

∫ tn+1

tn

∫ 2π

0

(
Sf (u(Q̃)) cos θ + Sf (v(Q̃)) sin θ

)
dθdt̃

u (P ) =
1

2π

∫ 2π

0

−g
c̃
h (Q) cos θ + u (Q) cos2 θ + v (Q) sin θ cos θ dθ

+
1

2
u (Q0)− 1

2
g

∫ tn+1

tn

(
hx(Q̃0) + bx(Q̃0) + Sf (u(Q̃0))

)
dt̃(3.3)
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− 1

2π
g

∫ tn+1

tn

∫ 2π

0

(
bx(Q̃) cos2 θ + by(Q̃) cos θ sin θ

)
dθdt̃

− 1

2π
g

∫ tn+1

tn

∫ 2π

0

(
Sf (u(Q̃)) cos2 θ + Sf (v(Q̃)) cos θ sin θ

)
dθdt̃

+
1

2π

∫ tn+1

tn

1

tn+1 − t̃

∫ 2π

0

(
u(Q̃) cos 2θ + v(Q̃) sin 2θ

)
dθdt̃

v (P ) =
1

2π

∫ 2π

0

−g
c̃
h (Q) sin θ + u (Q) sin θ cos θ + v (Q) sin2 θ dθ

+
1

2
v (Q0)− 1

2
g

∫ tn+1

tn

(
hy(Q̃0) + by(Q̃0) + Sf (v(Q̃0))

)
dt̃(3.4)

− 1

2π
g

∫ tn+1

tn

∫ 2π

0

(
bx(Q̃) sin θ cos θ + by(Q̃) sin2 θ

)
dθdt̃

− 1

2π
g

∫ tn+1

tn

∫ 2π

0

(
Sf (u(Q̃)) sin θ cos θ + Sf (v(Q̃)) sin2 θ

)
dθdt̃

+
1

2π

∫ tn+1

tn

1

tn+1 − t̃

∫ 2π

0

(
u(Q̃) sin 2θ + v(Q̃) cos 2θ

)
dθdt̃.

Here P = (x, y, tn+1) is the pick of the bicharacteristic cone, cf. Fig. 3.1, Q0 =
(x − ũ∆t, y − ṽ∆t, tn) denotes the center of the sonic circle, Q̃0 = (x − ũ(tn + ∆t −
t̃), y− ṽ(tn+∆t− t̃), t̃), Q̃ = (x−ũ(tn+∆t− t̃)+c(tn+∆t− t̃) cos θ, y− ṽ(tn+∆t− t̃)+

c(tn+∆t−t̃) sin θ, t̃) stays for arbitrary point on the mantle andQ = Q(t̃)
∣∣∣
t̃=tn

denotes

a point at the perimeter of the sonic circle at time tn. The local velocities, which are

obtained by averaging over the neighbouring values, are denoted by ũ, ṽ, c̃ =

√
gh̃.

PSfrag replacements

P = (x, y, t+ ∆t)

Q0

Q(θ)

x
y

t

Fig. 3.1. Bicharacteristic cone created by bicharacteristics through P and Q = Q(θ).

3.1. Well-balanced approximation of exact integral equations. In order
to use the exact integral equations in the numerical scheme we need to derive such
an approximation, which preserves the equilibrium states exactly. In this paper we
consider only the steady stationary states, i.e. u = 0 = v, h+b = const. More complex
equilibrium states satysfying general equilibrium conditions (2.3) is a subject of our
future study.
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Lemma 3.1. The well-balanced approximation of the integral equations (3.2)-(3.4)
reads

h (P ) = −b(P ) +
1

2π

∫ 2π

0

(h (Q) + b(Q))− c̃

g
u (Q) cos θ − c̃

g
v (Q) sin θdθ(3.5)

− 1

2π

∫ tn+1

tn

1

tn+1 − t̃

∫ 2π

0

c̃

g

(
u(Q̃) cos θ + v(Q̃) sin θ

)
dθdt̃

+
c̃∆t

2π

∫ 2π

0

(Sf (u(Q)) cos θ + Sf (v(Q)) sin θ) dθ +O
(
∆t2

)
,

u (P ) =
1

2π

∫ 2π

0

−g
c̃

(h (Q) + b (Q)) cos θ + u (Q) cos2 θ + v (Q) sin θ cos θ dθ

+
1

2
u (Q0)− 1

2π

g

c̃

∫ tn+1

tn

1

tn+1 − t̃

∫ 2π

0

(
h(Q̃) + b(Q̃)

)
cos θ dθdt̃(3.6)

+
1

2π

∫ tn+1

tn

1

tn+1 − t̃

∫ 2π

0

(
u(Q̃) cos 2θ + v(Q̃) sin 2θ

)
dθdt̃

−g∆tSf (u(Q0)) +O
(
∆t2

)
.

The equation for the velocity v is analogous to that for u.
Proof.

First we deal with the consistency of the approximate equations (3.5)-(3.6). We only
consider here the friction terms, the bottom elevation terms follows analogously as in
[10]. The approximation of the friction terms in (3.2) is obtained using the rectangle
rule in time, see (3.5). In (3.3) we apply for the friction terms integrated along the
mantle the rectangle rule in time and the Taylor expansion on the sonic circle. This
yields

− g

2π

2π∫

0

tn+1∫

tn

(
Sf (u(Q̃)) cos θ + Sf (v(Q̃)) sin θ

)
cos θ dt̃dθ =

=
−g∆t

2
Sf (u(Q0)) +O(∆t2).

For the integral of the friction term along the middle bicharacteristic the rectangle
rule in time is applied, which leads to

−g
2

∫ tn+1

tn

Sf (u(Q̃0)) dt̃ = −g∆t

2
Sf (u(Q0)) +O(∆t2).

After substituting these approximations into (3.3) we obtain (3.6).
Now, let us show a well-balanced property of the approximate equations (3.5)-

(3.6), i.e. we want to show that the steady stationary state u = 0 = v, h+ b = const.
is preserved. Actually, it is easy to see from (3.5), and (1.2) that if u(·, t) = 0 = v(·, t)
and h(·, t)+b(·) = const. for any t ∈ [tn, tn+1], then h(P )+b(P ) ≡ hn+1+bn+1 = const.
Further, it follows from (3.6) that under the above assumptions, u(·, t) = 0 = v(·, t)
and h(·, t) + b(·) = const. for any t ∈ [tn, tn+1] , we have u(P ) = un+1 = 0, and
analogously v(P ) = vn+1 = 0. Thus, the lake at rest is preserved, which concludes
the proof.
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The next step is to approximate time integrals from tn to tn+1 in order to obtain
an explicit approximate evolution in time. This is done by means of the numerical
quadratures which were proposed in [9]. These new quadrature rules are derived in
such a way that any planar one-dimensional wave is calculated exactly. They are now
used for approximation of all time integrals along mantle of the bicharacteristic cone.

Applying quadrature rules from [9] we obtain the following well-balanced ap-
proximate evolution operator Econst∆ for piecewise constant functions

h (P ) =
1

2π

2π∫

0

(h (Q) + b(Q))− c̃

g
u (Q) sgn(cos θ)− c̃

g
v (Q) sgn(sin θ)dθ

−b(P ) +
c̃∆t

2π

∫ 2π

0

(Sf (u(Q)) cos θ + Sf (v(Q)) sin θ) dθ +O
(
∆t2

)
,

u (P ) =
1

2π

2π∫

0

−g
c̃

(h (Q) + b (Q)) sgn(cos θ) + u (Q)

(
cos2 θ +

1

2

)

+v (Q) sin θ cos θdθ − g∆tSf (u(Q0)) +O
(
∆t2

)
.(3.7)

If the continuous piecewise bilinear functions are used the well-balanced ap-
proximate evolution operator, which is denoted by Ebilin∆ , reads

h (P ) = −b(P ) + (h(Q0)− b(Q0)) +
1

4

2π∫

0

((h(Q)− h(Q0)) + (b(Q)− b(Q0))) dθ

− 1

π

2π∫

0

(
c̃

g
u(Q) cos θ +

c̃

g
v(Q) sin θ

)
dθ

+
c̃∆t

2π

∫ 2π

0

(Sf (u(Q)) cos θ + Sf (v(Q)) sin θ) dθ +O
(
∆t2

)
,

u (P ) = u(Q0)− 1

π

2π∫

0

g

c̃
(h(Q) + b(Q)) cos θdθ

+
1

4

2π∫

0

(
3u(Q) cos2 θ + 3v(Q) sin θ cos θ − u(Q)− 1

2
u(Q0)

)
dθ(3.8)

−g∆tSf (u(Q0)) +O
(
∆t2

)
.

Equations for the velocity v are analogous to those for u. The approximate
evolution operators (3.7) and (3.8) are used in (2.2) in order to evolve fluxes along cell
interfaces. Thus, the first order method is obtained using the approximate evolution
operator Econst∆

f̄
n+1/2
k =

1

~

∫

E
fk(Econst∆t/2 U

n)dS, k = 1, 2,

whereas in the second order FVEG scheme a suitable combination of the approximate
evolution operator Ebilin∆ and Econst∆ is used. We apply Ebilin∆ to evolve slopes and
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Econst∆ to evolve the corresponding constant part in order to preserve conservativity

f̄
n+1/2
k =

1

~

∫

E
fk

(
Ebilin∆t/2RhU

n +Econst∆t/2 (1− µ2
xµ

2
y)Un

)
dS.

Here RhU denotes a continuous bilinear recovery and µ2
xUij = 1/4(Ui+1,j + 2Uij +

Ui−1,j); an analogous notation is used for the y−direction.

4. Numerical experiments. In this chapter we demonstrate throughout the
numerical experiments behaviour of our new well-balanced FVEG scheme.

Example 1: a balance test
In this example we illustrate the well-balanced property of the first as well as second
order FVEG scheme. As a simple balance test we consider the shallow water system
(1.1) with the bottom topography consisting of a hump

b(x, y) =

{
0.25(cos(10π(x− 0.5)) + 1) if |x− 0.5| < 0.1, y ∈ [0, 1],
0 otherwise.

We consider the flow without friction and set the friction parameter ks = 0. The
initial data are chosen as follows

h(x, y, 0) = 1− b(x, y), u(x, y, 0) = 0, v(x, y, 0) = 0.

The computational domain is [0, 1]× [0, 1] and the extrapolation boundary con-
ditions are used. This initial value problem has the trivial stationary steady state
solution h(x, y, t) = 1− b(x, y), u(x, y, t) = 0, v(x, y, t) = 0 for all t. In Table 4.1 the
L1-errors for different times computed with the first order FVEG method, cf. (3.7),
and with the second order FVEG method, cf. (3.8), are given. Although we have used
a rather coarse mesh consisting of 20× 20 mesh cells, it can be seen clearly that the
FVEG scheme balances up to machine accuracy.

Table 4.1
The L1-error of the well-balance FVEG scheme using 20 × 20 mesh cells. (Data computed by

Marcus Kraft, TU Hamburg-Harburg)

Method t = 0.2 t = 1 t = 10
first order FVEG 1.110223 × 10−17 7.216450 × 10−17 1.332268 × 10−16

second order FVEG 2.775558 × 10−17 5.551115 × 10−17 4.440892 × 10−17

Example 2: propagating waves with a bottom topography
In this example a trully two-dimensional problem of a small perturbances of a steady
stationary state is simulated. The bottom topography is given by the function

b(x, y) = 0.8 exp
(
−5 (x− 0.9)2 − 50 (y − 1)2

)
(4.1)

and the initial data are

h(x, y, 0) =

{
1− b(x, y) + ε if 0.05 < x < 0.15,
1− b(x, y) otherwise,

u(x, y, 0) = v(x, y, 0) = 0.(4.2)
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The parameter of small perturbation ε is set to 0.01. We consider here again flow
without friction, i.e. ks = 0. The computational domain is [0, 2] × [0.5, 1.5] and the
absorbing extrapolation boundary conditions are used. In Figure 4.1 we present the
solution computed on a 600 × 300 grid by the second order FVEG scheme with the
minmod limiter. The values of the water depth h varies between 1 and 1.01. It should
be pointed out that no oscillations appear in the solution as the wave propagate over
the bottom hump. This will not be the case if the source term on the right-hand-
side of (1.1) is not approximated in a well-balanced way. Our results are in a good
agreement with other results presented in literature, cf., e.g., [4], [6].
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Fig. 4.1. Propagation of small perturbances over an eliptic hump at various times; t = 0.6 (left
above), t = 0.9 (right above), t = 1.5 (left below) and t = 1.8 (right below).

Example 3: a channel flow with friction
In this example we simulate a flow in a regular rectangular channel of ` = 1 km length
and w = 6 m width. The bottom profile is given by

b(x, y) =

{
−0.001(x− 500) + 0.5 if 0 < x < 500, y ∈ [0, 6],
0.5 if 500 < x < 1000, y ∈ [0, 6].

The friction parameter of the bottom is set to ks = 0.1. We take a steady state
as the initial data, i.e. h(x, y, 0) + b(x, y) = 2, u(x, y, 0) = 0 = v(x, y, 0).

At the inflow, i.e. x = 0m, the volume rate flow is taken to be Q ≡ whu =
3m3s−1. The inflow velocity in the y− direction is 0ms−1. At the outflow, i.e. x =
1000m, absorbing boundary conditions are imposed by extrapolating the data in the
outer normal direction. In order to evaluate frictions slopes the hydraulic radius rhy
is to be computed. For a regular rectangular channel it is computed by the formula
rhy = wh/(2h+b). The solution is evolved in time by the FVEG scheme until a steady
state is obtained. The resulting numerical solution is compared with the results of
Teschke computed by the finite element method applied to the one-dimensional steady
shallow water equations (i.e. the Saint-Venant equation), cf. also [13], [14]. Our steady
state is in a very good agreement with the results obtained by the finite element code,
which is used for practical river flow simulations, see Figure 4.2. Moreover, our method
is in general approximately four times faster than the above finite element scheme.
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Fig. 4.2. Comparison of the two-dimensional solution obtained by the FVEG scheme (solid
line) and the one-dimensional steady solution obtained by the FEM scheme (boxes).
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