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PENALIZED LEAST-SQUARES IMAGE RECONSTRUCTION FOR
BOREHOLE TOMOGRAPHY

CONSTANTIN POPA∗ AND RAFAL ZDUNEK†

Abstract. The Algebraic Reconstruction Technique (ART), which is based on the Kaczmarz’s
method, is very popular in many tomographic applications of image reconstruction. However, this
algorithm gives satisfactory approximations to the exact solution only for consistent data. For
inconsistent problems (which is a real case in practice), the reconstruction is speckled with noise,
and the convergence is not asymptotical. In a previous paper we made a systematic analysis, both
theoretical and experimental, for this case by using an extension of the classical Kaczmarz’s algorithm.
But, although the results were much better and very promising comparing them with some classical
and widely used projection algorithms, another difficulty still could not be eliminate, namely the
exact solution of the discrete problem is not always enough accurate. This aspect is of course
related to the mathematical modeling of the real problem (image), which gives us only a classical
least-squares formulation. In this paper, we considered a penalized least-squares objective. The
penalty term is defined with the Gibbs prior that incorporates nearest neighbor interactions among
adjacent pixels to enforce an overall smoothness in the image. Then, we derived a version of the
above mentioned extended Kaczmarz algorithm for this new penalized least-squares problem. Our
synthetic experiments showed that this algorithm has not only a good noisy performance, but it also
moderates parasite effects of the limited angular ray-coverage in borehole tomography. The effects
are visible in the form of vertical smearings from inhomogeneous features in the image.

Key words. linear least-squares problems, extended Kaczmarz algorithm, regularized image
reconstruction, borehole tomography
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1. The extended Kaczmarz algorithm. Many problems in the field of to-
mographic image reconstruction are modeled by the (classical) linear least-squares
problem: find x∗ ∈ IRn such that

‖ Ax∗ − b ‖= min!, (1.1)

where A is an m × n real matrix and b ∈ IRm a given vector (by ‖ · ‖ and 〈·, ·〉
we shall denote the Euclidean norm and scalar product on some space IRq). Let
LSS(A, b) be the set of all least-squares solutions of (1.1) and xLS its minimal norm
one. Also Bt, R(B), N(B) will denote the transpose, range and null space of a matrix
B, respectively, and PS the orthogonal projection onto a closed convex set S ⊂ IRq .
By ai ∈ IRn, αj ∈ IRm, we shall denote the i-th row and j-th column of A, respectively
and we shall suppose that

ai 6= 0, ∀i = 1, . . . ,m, αj 6= 0, j = 1, . . . ,m. (1.2)

Moreover, all the vectors that will appear will be considered as column vectors. We
have the equality (see e.g. [3])

LSS(A; b) = xLS +N(A). (1.3)
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Moreover, with respect to the decomposition of b as

b = bA + b∗A, bA = PR(A)(b), b
∗
A = PN(At)(b) (1.4)

we have the equivalent formulations of (1.1)

x∗ ∈ LSS(A; b)⇔ Ax∗ = bA,⇔ AtAx∗ = Atb. (1.5)

Problems of the form (1.1), coming from the field of tomographic image reconstruction
are in general sparse, without full rank (rank-defficient) and inconsistent (because
of measurements related to the right-hand side b). Concerning the first property -
sparsity - the fill-in process will make direct methods (as e.g. QR decomposition)
prohibitively costly in terms of storage and operations (see e.g. the comments and
examples in [3], pag. 270). On the other hand, the rank-defficiency will not allow us
to use well known efficient iterative solvers as LSQR (see e.g. the above cited paper,
pag. 307). And, with respect to the last above mentioned ”bad” property, beside
their computational appeal (simplicity, row-action nature, etc) and their efficacious
performance in some specific situations (see e.g. [4]), some algorithms from the ART
class methods have been successfuly extended for the inconsistent case of (1.1). In
this respect we shall consider in our paper the Kaczmarz extended algorithm with
relaxation parameters, firstly proposed in [15] and successfuly used for image recon-
struction in borehole tomography in [16] and [17]. It will be briefly described in what
follows. For this let i = 1, . . . ,m and the applications

fi(b;x) = x− 〈x, ai〉 − bi‖ ai ‖2
ai, F (b;x) = (f1 ◦ · · · ◦ fm)(b;x), (1.6)

and the classical Kaczmarz algorithm (for short K), widely used in ART.
Algorithm (K): Let x0 ∈ IRn; for k = 0, 1, 2, . . . do

xk+1 = F (b;xk). (1.7)

The following convergence result was proved in [14] (see also [15]).
Theorem 1.1. (i) The sequence (xk)k≥0 from (1.7) always converges and

lim
k→∞

xk = PN(A)(x
0) +Gb, (1.8)

where the n× n matrix G is a generalized inverse of A.
(ii) If the problem (1.1) is consistent, i.e.

b ∈ R(A)⇔ b = bA, (1.9)

then the limit in (1.8) is a solution of (1.1). Moreover, we have

xLS = Gb. (1.10)

The first problem that appears in real world applications is that due to modeling
and measurement errors the formulation (1.1) is usually inconsistent, i.e.

b /∈ R(A)⇔ b∗A 6= 0, (1.11)

In this case, the limit in (1.8) given by the classical Kaczmarz algorithm (1.6) is no
more one of its least-squares solutions. More clear, if we denote by x∗(x0) the limit
in (1.8), in [16], we proved the following result:
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Theorem 1.2. For any limit point x∗(x0) in (1.8) we have the equality

d
(
x∗(x0), LSS(A; b)

)
≥‖ Gb∗A ‖, (1.12)

where d denotes the Euclidean distance.
One possibility for overcoming this first problem is to use an extension of the

classical Kaczmarz algorithm, proposed by one of the authors in [15]. We shall briefly
describe it in what follows in a generalized version which uses relaxation parameters.
For this, let α 6= 0, ω 6= 0 be two real numbers the applications (see for details [15])

fi(ω; b;x) = (1− ω)x+ ωfi(b;x), F (ω; b;x) = (f1 ◦ · · · ◦ fm)(ω; b;x), (1.13)

with fi(b;x) from (1.6) and

ϕj(y) = y − 〈y, αj〉‖ αj ‖2
αj , Φ(y) = (ϕ1 ◦ · · · ◦ ϕn)(y), (1.14)

ϕj(α; y) = (1− α)y + αϕj(y), Φ(α; y) = (ϕ1 ◦ · · · ◦ ϕn)(α; y). (1.15)

With all these elements we can define the Kaczmarz Extended with Relaxation
Parameters algorithm as follows.
Algorithm KERP. Let x0 ∈ IRn, y0 = b; for k = 0, 1 . . . do

yk+1 = Φ(α; yk), (1.16)

bk+1 = b− yk+1, (1.17)

xk+1 = F (ω; bk+1;xk). (1.18)

The following convergence result was proved in [15].
Theorem 1.3. For any x0 ∈ IRn, any ω, α ∈ (0, 2) and any right hand side

b in (1.1), the sequence (xk)k≥0 generated by the above algorithm KERP converges
always to one of the least-squares solutions of (1.1).

Unfortunately, there is still an unpleasant problem concerned with the numerical
solution of (1.1). It is independent on its consistency/inconsistency and is related
to the fact that the minimal norm solution xLS (which is usually calculated) is not
always an enough good approximation of the exact solution (image). In this sense we
can refer at the situation presented in Fig. 4.2 (see [16] for details). The theoretical
explanation for this starts from the characterization (1.3). According to this, let
x∗ ∈ LSS(A; b) be the exact image (see Fig. 4.1). From (1.3) and the fact that xLS
is orthogonal to N(A) (see e.g. [16]) we get

x∗ − xLS = PN(A)(x
∗). (1.19)

Thus, if the component on N(A) of the exact image x∗ is ”enough big”, we can expect
that xLS is not an accurate approximation of it. On the other hand, the matrix A
depends only on the pixels and rays that are generated during the mathematical mod-
eling of the real problem (see for details [16]), thus there can exist images with such a
big N(A) component (and this is exactly the situation in Fig. 4.2). Then one of the
ways to overcome this second difficulty is to reformulate the mathematical modeling
of our problem. In this sense we proposed the penalized least-squares formulation
which is described in details in the next section.
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2. The regularized Kaczmarz algorithm. Since in our application the prob-
lem (1.1) is very ill-posed, we can consider a more general problem which is the
regularized weighted least-squares problem: find x∗ ∈ Rn

||Ax∗ − b||2W−1 + βR(x∗) = min! (2.1)

where W is a matrix which attributes weights to data, β is a regularization parameter,
and R(x) is a measure of roughness in the image. Usually, R(x) is defined by a square
of discrete smoothing norm R(x) = ||Lx||2, where L is typically either an identity or
diagonal matrix [8] (p12). In our consideration, we wish that R(x) would provide not
only the information about total roughness in the image but also the prior information
about the missing image components. Both kinds of the information can be easily
incorporated to the image under a form of the following Gibbs prior that is commonly
used in statistical image reconstruction [5]:

π(x) =
exp{−βU(x)}∫
exp{−βU(x)}dx . (2.2)

Total energy function U(x) in (2.2) is usually defined as

U(x) =

N∑

j=1

∑

n∈Sj
wj,nV (xj − xn, δ) (2.3)

where Sj is a set of indices of the nearest neighborhood of pixel j, wj,n is weighting
factor defined by the Markov Random Field (MRF), and V (xj − xn, δ) is a potential
function.

In statistical image reconstruction the maximization problem is a subject to be
solved

max
x

p(x|b) (2.4)

where p(x|b) is a posterior given by the Bayes’ theorem

p(x|b) =
p(b|x)π(x)∫
p(b|x)π(x)dx

.

The solution to (2.4) can be also found solving the minimization problem

min
x

Ψ(x), where Ψ(x) = −2 lnp(x|b) (2.5)

Assuming perturbation of data have the nature of an additive zero-mean Gaussian
noise, the relation between data and an expectation of data can be modelled by a
Gaussian statistics, i.e.

p(b|x) = (2π)
−m/2 |W |−1/2 exp{−1

2
(b−Ax)tW−1(b−Ax)},

hence

Ψ(x) = ||Ax− b||2W−1 + 2βU(x) + const (2.6)

Thus, the discrete smoothing norm in (2.1) can be defined as R(x) = 2U(x).
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To solve problem (2.5) a simultaneous iterative scheme can be applied, which can
be done with a generalized Landweber scheme, or a preconditioned gradient based
scheme [10]. Convergence properties of the latter were also discussed in [13]. Thus

x(k+1) = x(k) − λkM−1∇Ψ(x(k)) (2.7)

where λk is a relaxation factor, and M is a preconditioner. In our case

∇Ψ(x) = AtW−1(Ax − b) + 2β∇U(x).

We can also apply a sequential block-iterative scheme, which leads to the following
algorithm

x(k+1) = x(k) + λkM
−1
[
At[k]W

−1
[k]

(
b[k] −A[k]x

(k)
)
− 2β∇U(x(k))

]
. (2.8)

where [k] = k( mod K) + 1, and K is a total number of blocks into which A was
divided. Assuming K = m, A[k] is the [k]-th row of A where [k] = k( mod m) + 1.

The same rule concerns W−1
[k] and b[k]. Moreover, assuming M = I and

W−1 = diag
(
||ai||2

)
, i = 1, . . . ,M

where ai is the i-th row of A, algorithm (2.8) boils down to the regularized Kacz-
marz’s algorithm with relaxation parameter. Thus, the regularized KERP (RKERP)
algorithm can be written as

Algorithm RKERP: Let x(0) ∈ IRN , y(0) = b, for k = 0, 1, . . ., do

y(k+1) = Φ(α; y(k)), (2.9)

b(k+1) = b− y(k+1), (2.10)

x(k+1) = F (ω; b(k+1);x(k))− 2β∇U(x(k)), (2.11)

where F (ω; b(k+1);x(k)) and Φ(α; y(k)) are given by (1.13) and (1.15), respectively.
We assume λk = 1 in (2.8) but the relaxation is now introduced through ω in (2.11).

The potential functions in (2.3) attributes, so called, ”clique energy” to a pair of
adjacent pixels. Table 2.1 lists the potential functions that are the most popular in the
literature on image processing. Since the Green’s function satisfies all the properties
mentioned in [12], i.e. it is nonnegative, even, 0 at r = 0, strictly increasing for
r > 0, unbounded, convex, and has bounded first-derivative, we decided to select this
function to our tests. Thus ∇U(x(k)) in (2.11) takes the form

∂

∂xj
U(x)

∣∣
x=x(k) =

∑

n∈Sj
wj,n tanh

(
xj − xn

δ

)
, j = 1, . . . , N (2.12)

3. Numerical experiments. The tests were carried on for the data (image
A and B) used in [16], and additionally, for the data generated for a new original
image – image C illustrated in Fig. 4.1 (right). Each reconstruction is performed
from noisy data for which SNR = 25dB, and ||δbA|| = ||δb∗A||. Hence, we set the
following levels of perturbation ||δbA|| = ||δb∗A|| = 1.76, ||δbA|| = ||δb∗A|| = 11.3076
and ||δbA|| = ||δb∗A|| = 7.5513 for images A, B and C, respectively. The setting of
parameters α, β, δ and ω for each case are given in Table 3.1. Parameter wj,n in
(2.3) should be set according to the MRF, i.e. wj,n = 1 for horizontal and vertical
interaction lines, and wj,n = 1√

2
for diagonal interaction lines. Additionally, image

B was also reconstructed for the modified MRF for which wj,n = 1
3 , 3,

1√
(1/3)2+32

for

horizontal, vertical, and diagonal interaction lines, respectively.
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Table 2.1
Potential functions

.

Author(s) (Name) Reference Functions: V (r, δ)

(Gaussian)
(
r
δ

)2

Besag (Laplacian) [2]
∣∣r
δ

∣∣

Hebert and Leahy [9] δ log
[
1 + ( rδ )2

]

Geman and McClure [6] 16
3
√

3

(r/δ)2

(1+(r/δ)2)

Geman and Reynolds [7] |r/δ|
1+|r/δ|

Stevenson and Delp (Hubert) [18] min{| rδ |2, 2| rδ | − 1}
Green [5] δ log[cosh(r/δ)]

Table 3.1
Parameters of reconstruction

.
α β δ ω

Image A 0.15 5× 10−4 2× 10−3 1.4
Image B 6.5× 10−2 5× 10−4 2× 10−3 0.6
Image C 6.5× 10−2 2.5× 10−3 2× 10−3 0.6

4. Conclusions and future work. Comparing the results obtained with the
KERP and RKERP, we can conclude that this kind of regularization is very efficient
if the image to be reconstructed contains small (with reference to the resolution),
possibly sharp inhomogeneities. This takes place in image A and C. Moreover, Fig.
4.4 shows that the RKERP algorithm makes possible to reconstruct the so-called
”ghosts” (vertical smearings from inhomogeneities) [11], which means that it recovers
some missing image components from N(A). Unfortunately, if the inhomogeneities
are much bigger than the nearest neighborhood of a pixel (a square of 9 pixels),
which happens in image B, the ”correction” information in total energy function (2.3)
is too poor to reduce the parasite smearings. Probably, this would work better if we
consider a bigger neighborhood (the third and fourth lines of interaction). Note that
modification of the MRF noticeably improved the reconstruction (Figs. 4.8 and 4.9).

The reconstruction of image C was performed for the same values of parameters
α and ω as for image B. Hence, we can expect that the results in Figs. 4.10 and 4.11
could be better.

The drawback of the RKERP algorithm is a necessity of estimating four param-
eters α, β, δ and ω before reconstruction. Hopefully, the underlying problem of the
reconstruction is based on the Bayesian rule, and therefore, we could estimate these
parameters through maximization of the Type II likelihood. The problems related
with estimation of the parameters, and a selection of a more general prior, such as
the inhomogeneous Gaussian random field [1], will be a subject of our future work.
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Fig. 4.1. Original images A, B and C, respectively
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Fig. 4.3. Image reconstruction with KERP for k = 50, 150, 250, 500; Image A; ||δbA|| =
||δb∗A|| = 1.76
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Fig. 4.4. Image reconstruction with RKERP for k = 50, 150, 250, 500; Image A; ||δbA|| =
||δb∗A|| = 1.76
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Fig. 4.6. Image reconstruction with KERP for k = 50, 150, 250, 500; Image B; ||δbA|| =
||δb∗A|| = 11.3076
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Fig. 4.7. Image reconstruction with RKERP for k = 50, 150, 250, 500; Image B; ||δbA|| =
||δb∗A|| = 11.3076; Normal MRF
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Fig. 4.8. Image reconstruction with RKERP for k = 50, 150, 250, 500; Image B; ||δbA|| =
||δb∗A|| = 11.3076; Modified MRF
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Fig. 4.9. Distance (left) and relative errors (right) between x(k) and original image xexact for
image B
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Fig. 4.10. Image reconstruction with KERP for k = 50, 150, 250, 500; Image C; ||δbA|| =
||δb∗A|| = 7.5513
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Fig. 4.11. Image reconstruction with RKERP for k = 50, 150, 250, 500; Image C; ||δbA|| =
||δb∗A|| = 7.5513
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Fig. 4.12. Distance (left) and relative errors (right) between x(k) and original image xexact for
image C


