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A REMARK ON THE LARGE TIME BEHAVIOR
OF SOLUTIONS OF VISCOUS HAMILTON-JACOBI
EQUATIONS

PH. SOUPLET

1. INTRODUCTION AND MAIN RESULT

Consider the viscous Hamilton-Jacobi equation
u, — Au = |Vul, t>0, zeRY
u(0, ) = uo(z), T € RNa

(1)

where ¢ > 0 and ug € Cp(RY). Tt is known [6] that (1) admits a unique classical
solution, global for ¢ > 0.

The large time behavior of solutions of problem (1) has been studied recently
by several authors, see [1]-[5], [7, 8] and the references therein. In particular it
was shown by Gilding [5] that the large time limits

w = litm info(z,t) <w:=limsupv(z,t)
—00

t—o0
are independent of 2 € RY. One of the main results of [5] is the following.
Theorem A. Assume 0 < ¢ <2 and ug € C,(RY). Then w = .

It was known that Theorem A fails for the linear heat equation and, moreover,
Gilding observed that it fails for ¢ = 2. The aim of this short note is to show that
the assumption ¢ < 2 in Theorem A is actually necessary.

Theorem 1. Assume q > 2. Then there exists ug € Cy(RY) such that w < @.

Proof. Tt is known (see e. g. [5, Proposition H1]) that there exists vg € C1(R™)N
W1o(RN) such that the solution v of the heat equation

vy — Av =0, t>0 zeRVN
@ { v(0, ) = vo(x), z€RN
satisfies
(3) w* = liminfo(z,t) < T* = limsupwv(z,t), = cRY.

t—o0 t—o0
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Moreover, upon replacing vg by Avg+ u for suitable constants A, u, one can assume
that

(4) w* =0
and
[vollee <1/2, [[Vvolloe <1/2.
Now, set
(5) up(x) == e"0@ —1,

The function w := eV —1 satisfies

©) {wt—Aw:|Vw|2, t>0, zeRY

w(0,z) = uo(z), x € RV,
Let u be the solution of (1) with initial data ug defined by (5). We note that
||Vuo||oo < ||VU()||OO ||e”0 ||oo < (1/2) ol/2 <1

Since it is known (see e.g. [5, Lemma 2]) that |Vu/| satisfies a maximum principle,
it follows that

|Vu| < |[Vuglleo <1 in @ := (0,00) x RV,
Due to g > 2, we deduce that
up — Au = |Vul? < |[Vul*  in Q.
In view of (6), it follows from the comparison principle that
u<w=e"-1 inQ.
In particular, there holds
(7) w<e —1=0.

But on the other hand, we have ug > vg due to (5). In view of (2), the maximum
principle implies that u > v, hence

(8)
Combining (3), (4), (7) and (8), we conclude that

>wr.

€]

D> >w=0>w

€|

and the proof of Theorem 1 is complete. O
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