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SADDLE POINT THEOREM AND FREDHOLM ALTERNATIVE∗

PETR TOMICZEK†

Abstract. Let the operator A : H → H be linear, compact, symmetric and positive on the sep-
arable Hilbert space H. In this paper we prove that the Fredholm alternative for such an operator is
a consequence of the Saddle Point Theorem.
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1. Motivation. This article was inspired by a result in [4] where we deal with the
nonlinear problem

u′′(x) + m2u(x) + g(x, u(x)) = f̃(x), x ∈ (0, π),
u(0) = u(π) = 0,

(1.1)

where f̃ ∈ L1(0, π), m ∈ N and g : (0, π) × R → R is a bounded, Caratheodory type
function, i.e. g(·, s) is measurable for all s ∈ R and g(x, ·) is continuous for a.e. x ∈ (0, π).
We define

G(x, s) =
∫ s

0

g(x, t) dt

and

G+(x) = lim inf
s→+∞

G(x, s)
s

, G−(x) = lim sup
s→−∞

G(x, s)
s

.

If we assume that the following potential Landesman-Lazer type condition holds∫ π

0

[
G−(x)(sinmx)+G+(x)(sinmx)−

]
dx

<

∫ π

0

f̃(x) sinmx dx <

∫ π

0

[
G+(x)(sinmx)+ −G−(x)(sinmx)−

]
dx

(1.2)

then using the Saddle Point Theorem we have proved in [4] that the problem (1.1) has at
least one solution.

But for g ≡ 0 there is no function f̃ satisfying conditions (1.2). In this linear case

u′′(x) + m2u(x) = f̃(x) , x ∈ (0, π) ,

u(0) = u(π) = 0,
(1.3)

we usually use a Fredholm alternative (see below) to prove the existence of solution of the
problem (1.3). In this paper we obtain the existence result for the equation (1.3) using
the Saddle Point Theorem and we prove that the Fredholm alternative is a consequence
of the Saddle Point Theorem.
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2. Preliminaries. We set H = W 1,2
0 (0, π) is the Sobolev space of absolutely con-

tinuous functions u : (0, π) → R such that u′ ∈ L2(0, π) , u(0) = u(π) = 0 . We denote
(., .) a scalar product on the Hilbert space H and for u, v ∈ H we define an operator
A : H → H and an element f ∈ H by

(u, v) =
π∫
0

u′v′ dx , (Au, v) =
π∫
0

uv dx , (f, v) = − 1
m2

π∫
0

f̃v dx .

We remark that the operator A is a linear, symmetric, positive and compact operator
(with respect to the compact imbedding H into L2(0, π)).

Now we can write a weak formulation of the equation (1.3), i.e.

π∫
0

u′v′ dx−
π∫

0

m2uv dx = −
π∫

0

f̃v dx ∀v ∈ H

in the form

1
m2

(u, v)− (Au, v) = (f, v) .

We put λ = 1
m2 and we have the equation

λu−Au = f (2.1)

in the Hilbert space H, and for f ≡ 0

λu−Au = 0 . (2.2)

We denote Hλ = {u ∈ H : u is a solution of (2.2) } .
A number λ is called an eigenvalue of the operator A : H → H if there exists ϕλ 6= 0

such that λϕλ −Aϕλ = 0 . Such an element ϕλ ∈ H is called an eigenvector of A.
We formulate the Fredholm alternative for equation (2.1) which is proved in Zei-

dler [5].

Theorem 2.1. (Fredholm alternative)
Let the operator A : H → H be linear, compact and self-adjoint on the separable Hilbert
space H. Let f ∈ H, λ ∈ R , λ 6= 0 . Then the problem (2.1) has a solution iff

(f , u) = 0 for all u ∈ Hλ . (2.3)

To use the Saddle Point Theorem instead of the Fredholm alternative we define a func-
tional F : H → H

F (u) = 1
2

(
λ(u, u)− (Au, u)

)
− (f, u)

and we find a critical point u0 of the functional F , i.e. F ′(u0) = 0 (here F ′ is a Frechet
derivative of F ). We have for all v ∈ H

(F ′(u0), v) = λ(u0, v)− (Au0, v)− (f, v) = 0 ⇒ λ(u0, v)− (Au0, v) = (f, v) .

We see that the critical point u0 is also a weak solution of (1.3) and vice versa.
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We say that F satisfies the Palais-Smale condition (PS) if every sequence {un} for which
F (un) is bounded in H and F ′(un)→ 0 (as n→∞) possesses a convergent subsequence.

We use the Saddle Point Theorem which is proved in Rabinowitz [3].

Theorem 2.2. (Saddle Point Theorem)
Let H = Ĥ ⊕ H̃, dim Ĥ <∞ and dim H̃ =∞. Let F : H → R be a functional such that
F ∈ C1(H, R) and

(a) there exists a bounded neighborhood D of 0 in Ĥ and a constant α such that
F/∂D ≤ α,

(b) there is a constant β > α such that F/H̃ ≥ β.
(c) F satisfies the Palais-Smale Condition (PS).

Then the functional F has a critical point in H.

The following theorem is proved in Dunford-Schwartz [1].

Theorem 2.3. (Courant-Fisher Principle)
Let the operator A : H → H be linear, compact, self-adjoint and positive operator on
a real separable Hilbert space H. Then all eigenvalues of A are positive reals and there
exists an orthonormal basis of H which consists of eigenvectors of A. Moreover, if

λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λn ≥ · · · > 0
denote the eigenvalues of A repeated according to (finite) multiplicity and ϕ1 , ϕ2 , . . . ,
. . . , ϕn , . . . corresponding eigenvectors, then

λ1 = max
u∈H

(Au , u)
‖u‖2

,

λn+1 = max
u∈H

{
(Au , u)
‖u‖2

: (u, ϕ1) = · · · = (u, ϕn) = 0
}

where ϕ1 , ϕ2 , . . . , ϕn are the previously obtained eigenvectors and lim
n→∞

λn = 0 .

3. Main result.

Theorem 3.1. Let the operator A : H → H be a linear, compact, symmetric and
positive on the separable Hilbert space H and let λ ∈ R , λ1 > λ > 0 . Then the Fredholm
alternative for the operator A and the equation (2.1) is a consequence of the Saddle Point
Theorem.

Proof. Let ϕn be an eigenvector corresponding to the eigenvalue λn of A . We know
from Theorem 2.3 that the sequence {ϕn} creates an orthonormal basis of H . We
denote by Ĥ the subspace of H spanned by the eigenvectors ϕ1, . . . , ϕm corresponding
to all eigenvalues λ1 ≥ . . . ≥ λm > λ and by H̃ the subspace of H spanned by the
eigenvectors ϕn corresponding to all eigenvalues λn < λ . Then H = Ĥ ⊕ Hλ ⊕ H̃ and
dim Ĥ < ∞, dim H̃ =∞. Let λm = min{λn : λn > λ} and λM = max{λn : λn < λ}
(λm > 0, λM > 0). Then it follows from Theorem 2.3

(Au, u) ≥ λm‖u‖2 for u ∈ Ĥ , (3.1)

(Au, u) ≤ λM‖u‖2 for u ∈ H̃ . (3.2)

We will verify the assumptions of the Saddle Point Theorem 2.2 on the space H⊥
λ = Ĥ ⊕ H̃ .

We suppose that f ∈ H⊥
λ (i.e. (f, u) = 0 for all u ∈ Hλ and f satisfies condition (2.3)).
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(a) We take an arbitrary α and prove that there exists a bounded neighborhood
D of 0 in Ĥ such that F/∂D ≤ α .
The inequality (3.1) yields

F (u) =
1
2
(
λ(u, u)− (Au, u)

)
− (f, u) ≤ 1

2
(
λ− λm)‖u‖2 + ‖f‖‖u‖ ≤ α

provided ‖u‖ is sufficiently large since λ < λm .

(b) For u ∈ H̃ we use the inequality (3.2) and we obtain

F (u) =
1
2

(
λ‖u‖2 − (Au, u)

)
− (f, u)

≥ 1
2
(λ− λM )

(
‖u‖2 − 2

(λ− λM )
‖f‖ ‖u‖

)
≥ − ‖f‖2

2 (λ− λM )
.

Hence it follows that there are constants α, β, β >α and a bounded neighbor-
hood D of 0 such that F/H̃ ≥ β and F/∂D ≤ α .

(c) We prove that F satisfies the Palais-Smale Condition (PS).
We take a sequence (un) ⊂ H⊥

λ and suppose that there exists a constant c1 such
that ∣∣F (un)

∣∣ ≤ c1 (3.3)

and

lim
n→∞

‖F ′(un)‖ = 0 . (3.4)

Because λ 6∈ σ(A|H⊥λ ) (λ is not an eigenvalue of A on H⊥
λ ) then there exists a

constant c2 > 0 such that

‖λu−Au‖ ≥ c2‖u‖ ∀u ∈ H⊥
λ (3.5)

Suppose by contradiction that such c does not exist, i.e. there are un ∈ H⊥
λ such

that

‖un‖ = 1 and ‖λun −Aun‖ <
1
n
‖un‖ .

Then one can find a subsequence (unk
) for which Aunk

converges to some y (A
is the compact operator).
Since λunk

−Aunk
→ o , λunk

→ y ∈ H⊥
λ and ‖y‖ = λ > 0 , there

(λI −A)λunk
→ (λI −A)y , i.e. y ∈ Hλ ∩H⊥

λ , and thus y = 0 .

This is a contradiction because ‖y‖ 6= 0 .

We use (3.4), (3.5) and we have

0←‖F ′(un)‖=‖λun−Aun−f‖≥‖λun−Aun‖ − ‖f‖≥c2‖un‖ − ‖f‖.

This implies that the sequence (un) ⊂ H⊥
λ is bounded. Then there exists u0 ∈ H⊥

λ

such that un ⇀ u0 in H⊥
λ (taking a subsequence if it is necessary) and

0← λun −Aun − f ⇀ λu0 −Au0 − f .
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It yields

λun −Aun − f → λu0 −Au0 − f

=⇒ (λI −A)(un − u0)→ 0
(3.5)
=⇒ un → u0 ∈ H⊥

λ .

This shows that F satisfies the Palais-Smale condition and the assumptions of
the Saddle Point Theorem 2.2 on H⊥

λ .

It implies that there is a critical point u0 ∈ H⊥
λ of F , i.e. F ′(u0) = 0 .

Now we prove that u0 is also a solution of (2.1). We can write an arbitrary v ∈ H in
the form v = w + ϕλ, where w ∈ H⊥

λ , ϕλ ∈ Hλ. We use that A is self-adjoint and for all
v ∈ H we have

(F ′(u0), v) = (F ′(u0), w) + (λu0 −Au0, ϕλ) + (f, ϕλ)

= (u0, λϕλ −Aϕλ) + (f, ϕλ) = (f, ϕλ)
(3.6)

We see that u0 is a critical point of F and also a solution of (2.1) iff (f, ϕλ) = 0 for all
solutions ϕλ of (2.2) , i.e. we prove the Fredholm alternative for operator A .

4. Fredholm alternative for nonlinear equation. A weak formulation of the
equation (1.1) is

π∫
0

u′v′ dx−
π∫

0

m2uv dx−
π∫

0

g(x, u)v dx = −
π∫

0

f̃v dx ∀v ∈ H

and the corresponding functional F : H → H is

F (u) =
1
2

π∫
0

[(u′)2 −m2u2] dx−
π∫

0

[G(x, u)− f̃v] dx .

We set (S(u), v) = 1
m2

π∫
0

g(x, u)v dx then S : H → H is a continuous compact operator

and we investigate the equation

F ′(u) = λu−Au− S(u)− f = 0 (4.1)

We add an assumptions to nonlinear operator S.
We will suppose that there is α ∈ (0, 1) such that

|g(x, s)| ≤ c3|s|α for a.e. x ∈ (0, π) and for all s ∈ R (4.2)

with c3 > 0 . Then it holds

‖S(u)‖ ≤ c4‖u‖α with c4 > 0 (4.3)

and

lim
|s|→∞

G(x, s)
s2

→ 0 . (4.4)

We denote Tu = λu−Au and we formulate the nonlinear Fredholm alternative (see [2])
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Theorem 4.1. Let the equation Tu = o have only a trivial solution and suppose g(x, s)
satisfies (4.2). Then for each f the equation Tu− S(u) = f has at least one solution.

Proof. We verify that the functional F satisfies the assumptions of the Saddle Point
Theorem 2.2.

(a) For u∈Ĥ we use the inequalities (3.1). We take an arbitrary α and the assump-
tions (4.2), (4.4) yield

F (u) =
1
2
(
λ(u, u)− (Au, u)

)
−

π∫
0

G(x, u) dx− (f, u)

≤ 1
2
(
λ− λm)‖u‖2 +

π∫
0

G(x, u)
u2

u2

‖u‖2
dx + ‖f‖‖u‖ ≤ α

provided ‖u‖ is sufficiently large since λ < λm .
We have proved that there exists a bounded neighborhood D of 0 in Ĥ such that
F/∂D ≤ α .

(b) For u ∈ H̃ we use the inequalities (3.2) and we have

F (u) =
1
2

(
λ‖u‖2 − (Au, u)

)
−

π∫
0

G(x, u) dx− (f, u)

≥ ‖u‖2
(1

2
(λ− λM )−

π∫
0

G(x, u)
u2

u2

‖u‖2
dx− ‖f‖

‖u‖

)
.

Together with (4.2), (4.4) this implies that F (u) ≥ 0 for sufficiently large ‖u‖
since λ > λM . Hence F is bounded from below .
Then there are constants α, β, β>α and a bounded neighborhood D of 0 such
that F/H̃ ≥ β and F/∂D ≤ α .

(c) We use (3.4), (3.5), (4.3) and we have

0← ‖F ′(un)‖ = ‖λun −Aun − S(un)− f‖
≥ ‖λun −Aun‖ − ‖S(un)‖ − ‖f‖ ≥ c2‖un‖ − c4‖un‖α − ‖f‖ .

Since α ∈ (0, 1) this implies that the sequence (un) ⊂ H⊥
λ is bounded. Then there

exists u0 ∈ H⊥
λ such that un ⇀ u0, S(un)→ S(u0) in H⊥

λ (taking a subsequence
if it is necessary) and

0← λun −Aun − S(un)− f ⇀ λu0 −Au0 − S(u0)− f .

It yields

(λI −A)(un − u0)→ 0
(3.5)
=⇒ un → u0 ∈ H⊥

λ .

This shows that F satisfies the Palais-Smale condition and the assumptions of
the Saddle Point Theorem 2.2 and u0 is a critical point of F on H⊥

λ .
We have that if Hλ is trivial (i. e. H⊥

λ = H) then λu−Au−S(u) = f has a solution
for each f ∈ H.
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