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Lp-THEORY OF THE NAVIER-STOKES FLOW IN THE EXTERIOR
OF A MOVING OR ROTATING OBSTACLE

M. GEISSERT and M. HIEBER

Abstract. In this paper we describe two recent approaches for the Lp-theory of the Navier-
Stokes flow in the exterior of a moving or rotating obstacle.

1. Introduction

Consider a compact set O ⊂ Rn, the obstacle, with boundary Γ := ∂O of class C1,1. Set
Ω := Rn\O. For t > 0 and a real n× n-matrix M we set

Ω(t) := {y(t) = etMx, x ∈ Ω} and Γ(t) := {y(t) = etMx, x ∈ Γ}.

Then the motion past the moving obstacle O is governed by the equations of Navier-Stokes
given by

∂tw −∆w + w · ∇w +∇q = 0, in Ω(t)× R+,
∇ · w = 0, in Ω(t)× R+,

w(y, t) = My, on Γ(t)× R+,
w(y, 0) = w0(y), in Ω.

(1)
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Here w = w(y, t) and q(y, t) denote the velocity and the pressure of the fluid, respectively.
The boundary condition on Γ(t) is the usual no-slip boundary condition. Quite a few articles
recently dealt with the equation above, see [2], [3], [4], [5], [6], [8], [10], [11], [15], [16].

In this paper, we describe two approaches to the above equations for the Lp-setting where
1 < p < ∞. The basic idea for both approaches is to transfer the problem given on a domain
Ω(t) depending on t to a fixed domain. The first transformation described in the following
Section 2 yields additional terms in the equations which are of Ornstein-Uhlenbeck type.
We shortly describe the techniques used in [15] and [12] in order to construct a local mild
solution of (1).

In contrast to the first transformation, the second one, inspired by [17] and [6], allows to
invoke maximal Lp-estimates for the classical Stokes operator in exterior domains and like
this we obtain a unique strong solution to (1). This approach is described in section 3.

2. Mild solutions

In this section we construct mild solutions to the Navier-Stokes problem (1). To do this
we first transform the equations (1) to a fixed domain. Let Ω, Ω(t) and Γ(t) be as in the
introduction and suppose that M is unitary. Then by the change of variables x = e−tMy
and by setting v(x, t) = e−tMw(etMx, t) and p(x, t) = q(etMx, t) we obtain the following set
of equations defined on the fixed domain Ω:

∂tv −∆v + v · ∇v −Mx · ∇v + Mv +∇p = 0, in Ω× R+,
∇ · v = 0, in Ω× R+,

v(x, t) = Mx, on Γ× R+,
v(x, 0) = w0(x), in Ω.

(2)
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Note that the coefficient of the convection term Mx · ∇u is unbounded, which implies that
this term cannot be treated as a perturbation of the Stokes operator.

This problem was first considered by Hishida in L2
σ(Ω) for Ω ⊂ R3 and Mx = ω × x with

ω = (0, 0, 1)T in [15] and [16]. The Lp-theory was developed by Heck and the authors in
[12] even for general M .

We will construct mild solutions for w0 ∈ Lp
σ(Ω), p ≥ n, to the problem (2) with Kato’s

iteration (see [18]).
The starting point is the linear problem

∂tu−∆u−Mx · ∇u + Mu + b · ∇u + u · ∇b +∇p = 0, in Ω× R+,
∇ · u = 0, in Ω× R+,

u = 0, on Γ× R+,
u(x, 0) = w0(x), in Ω,

(3)

where b ∈ C∞
c (Ω). The additional term b ·∇u+u ·∇b simplifies the treatment of the Navier-

Stokes problem (see (11) below). We will first show that the solution of (3) is governed by a
C0-semigroup on Lp

σ(Ω). More precisely, let LΩ,b be defined by

LΩ,bu := PΩLbu

D(LΩ,b) := {u ∈ W 2,p(Ω) ∩W 1,p
0 (Ω) ∩ Lp

σ(Ω) : Mx · ∇u ∈ Lp(Ω)},

where Lbu := ∆u + Mx · ∇u−Mu + b · ∇u + u · ∇b. Then the following theorem is proved
in [12].

Theorem 2.1. Let 1 < p < ∞ and let Ω ⊂ Rn be an exterior domain with C1,1-boundary.
Assume that trM = 0 and b ∈ C∞

c (Ω). Then the operator LΩ,b generates a C0-semigroup
TΩ,b on Lp

σ(Ω).

http://www.river-valley.com
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Sketch of the proof. The proof is devided into several steps. First it is shown that LΩ,b is
the generator of an C0-semigroup TΩ,b on L2

σ(Ω). Then a-priori Lp-estimates for TΩ,b are
proved. Once we have shown this we can easily define a consistent family of semigroups TΩ,b

on Lp
σ(Ω) for 1 < p < ∞. In the last step the generator of TΩ,b on Lp

σ(Ω) is identified to be
LΩ,b.

We start by showing that LΩ,b is the generator of a C0-semigroup on L2
σ(Ω). Choose R > 0

such that supp b ∪ Ωc ⊂ BR(0) = {x ∈ Rn : |x| < R}. We then set

D = Ω ∩BR+5(0),
K1 = {x ∈ Ω : R < |x| < R + 3},
K2 = {x ∈ Ω : R + 2 < |x| < R + 5}.

Denote by Bi for i ∈ {1, 2} Bogovskĭı’s operator (see [1], [9, Chapter III.3], [13]) associated
to the domain Ki and choose cut-off functions ϕ, η ∈ C∞(Rn) such that 0 ≤ ϕ, η ≤ 1 and

ϕ(x) =
{

0, |x| ≤ R + 1,
1, |x| ≥ R + 2,

and η(x) =
{

1, |x| ≤ R + 3,
0, |x| ≥ R + 4.

For f ∈ Lp
σ(Ω) we denote by fR the extension of f by 0 to all of Rn. Then, since C∞

c,σ(Ω) is
dense in Lp

σ(Ω), fR ∈ Lp
σ(Rn). Furthermore, we set fD = ηf−B2((∇η)f). Since

∫
K2

(∇η)f =
0 it follows from [9, Chapter III.3] that fD ∈ Lp

σ(D).
By the perturbation theorem for analytic semigroups there exists ω1 ≥ 0 such that for

λ > ω1 there exist functions uD
λ and pD

λ satisfying the equations

(λ− Lb)uD
λ +∇pD

λ = fD, in D × R+,

∇ · uD
λ = 0, in D × R+,

uD
λ = 0, on ∂D × R+.

(4)
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Moreover, by [14, Lemma 3.3 and Prop. 3.4], there exists ω2 ≥ 0 such that for λ > ω2 there
exists a function uR

λ satisfying

(λ− L0)uR
λ = fR, in Rn × R+,

∇ · uR
λ = 0, in Rn × R+.

(5)

For λ > max{ω1, ω2} we now define the operator Uλ : Lp
σ(Ω) → Lp

σ(Ω) by

Uλf = ϕuR
λ + (1− ϕ)uD

λ + B1(∇ϕ(uR
λ − uD

λ )),(6)

where uR
λ and uD

λ are the functions given above, depending of course on f . By definition, we
have

Uλf ∈ {v ∈ W 2,p(Ω) ∩W 1,p
0 (Ω) ∩ Lp

σ(Ω) : Mx · ∇v ∈ Lp
σ(Ω)}.(7)

Setting Pλf = (1− ϕ)pD
λ , we verify that (Uλf, Pλf) satisfies

(λ− Lb)Uλf +∇Pλf = f + Tλf, in Ω× R+,
∇ · Uλf = 0, in Ω× R+,

Uλf = 0, on ∂Ω× R+,

where Tλ is given by

Tλf = −2(∇ϕ)∇(uR
λ − uD

λ )− (∆ϕ + Mx · (∇ϕ))(uR
λ − uD

λ ) + (∇ϕ)pD
λ

+ (λ−∆−Mx · ∇+ M)B1((∇ϕ)(uR
λ − uD

λ )).

It follows from [12, Lemma 4.4] that for α ∈ (0, 1
2p′ ), where 1

p + 1
p′ = 1, there exists a strongly

continuous function H : (0,∞) → L(Lp
σ(Ω)) satisfying

‖H(t)‖L(Lp
σ(Ω)) ≤ Ctα−1eω̃t, t > 0(8)

http://www.river-valley.com
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for some ω̃ ≥ 0 and C > 0 such that λ 7→ PΩTλ is the Laplace Transform of H. We thus
easily calculate

‖PΩTλ‖L(Lp
σ(Ω)) ≤ Cλ−α, λ > ω.

Therefore, Rλ := Uλ

∑∞
j=0(PΩTλ)j exists for λ large enough and (λ − Lb)Rλf = f for

f ∈ L2
σ(Ω). Since LΩ,b is dissipative in L2

σ(Ω), LΩ,b generates a C0-semigroup TΩ,b on L2
σ(Ω).

Moreover, we have the representation

TΩ,b(t)f =
∞∑

n=0

Tn(t)f, f ∈ L2
σ(Ω),(9)

where Tn(t) :=
∫ t

0
Tn−1(t− s)H(s) ds for n ∈ N and

T0(t) = ϕTR(t)fR + (1− ϕ)TD,b(t)fD + B1((∇ϕ)(TR(t)fR − TD,b(t)fD)), t ≥ 0.

Here TR denotes the semigroup on Lp
σ(Rn) generated by LRn,0 and TD,b denotes the semigroup

on Lp
σ(D) generated by LD,b. Note that λ 7→ Uλ is the Laplace Transform of T0. Since the

right hand side of the representation (9) is well defined and exponentially bounded in Lp
σ(Ω)

by [12, Lemma 4.6], we can define a family of consistent semigroups TΩ,b on Lp(Ω) for
1 < p < ∞. Finally, the generator of TΩ,b on Lp(Ω) is LΩ,b which can be proved by using
duality arguments (cf. [12, Theorem 4.1]). 2

Remark 2.2. (a) The semigroup TΩ,b is not expected to be analytic since, by [16,
Proposition 3.7], the semigroup TR3 in R3 is not analytic.

(b) As the cut-off function ϕ is used for the localization argument similarly to [15] the
purpose of η is to ensure that fD ∈ Lp

σ(Ω). This is essential to establish a decay
property in λ for the pressure PD

λ (cf. [12, Lemma 3.5]) and Tλ.
(c) The crucial point for a-priori Lp-estimates for TΩ,b on L2

σ(Ω) is the existence of H
satisfying (8).

http://www.river-valley.com
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Since Lp-Lq smoothing estimates for TR and TD,b follow from [14, Lemma 3.3 and Prop.
3.4] and [12, Prop. 3.2], the representation of the semigroup TΩ,b given by (9) and estimates
for sums of convolutions of this type (cf. [12, Lemma 4.6]) yield the following proposition.

Proposition 2.3. Let 1 < p < q < ∞ and let Ω ⊂ Rn be an exterior domain with C1,1-
boundary. Assume that trM = 0 and b ∈ C∞

c (Ω). Then there exist constants C > 0, ω ≥ 0
such that for f ∈ Lp

σ(Ω)

(a) ‖TΩ,b(t)f‖Lq
σ(Ω) ≤ Ct−

n
2

(
1
p−

1
q

)
eωt‖f‖Lp

σ(Ω), t > 0,

(b) ‖∇TΩ,b(t)f‖Lp(Ω) ≤ Ct−
1
2 eωt‖f‖Lp

σ(Ω), t > 0.

Moreover, for f ∈ Lp
σ(Ω)

‖t
n
2

(
1
p−

1
q

)
TΩ,b(t)f‖Lq

σ(Ω) + ‖t 1
2∇TΩ,b(t)f‖Lp(Ω) → 0, for t → 0.

In order to construct a mild solution to (2) choose ζ ∈ C∞
c (Rn) with 0 ≤ ζ ≤ 1 and

ζ = 1 near Γ. Further let K ⊂ Rn be a domain such that supp∇ζ ⊂ K. We then define
b : Rn → Rn by

b(x) := ζMx−BK((∇ζ)Mx),(10)

where BK is Bogovskĭı’s operator associated to the domain K. Then div b = 0 and b(x) = Mx
on Γ. Setting u := v − b, it follows that u satisfies

∂tu− Lbu +∇p = F in Ω× (0, T ),
∇ · u = 0 in Ω× (0, T ),

u = 0 on Γ× (0, T ),
u(x, 0) = u0(x)− b(x), in Ω,

(11)

http://www.river-valley.com
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with ∇ · (u0 − b) = 0 in Ω and F = −∆b−Mx · ∇b + Mb + b · ∇b, provided u satisfies (2).
Applying the Helmholtz projection PΩ to (11), we may rewrite (11) as an evolution equation
in Lp

σ(Ω):

u′ − LΩ,bu + PΩ(u · ∇u) = PΩF, 0 < t < T,
u(0) = u0 − b.

(12)

Note that we need the compatibility condition u0(x) ·n = Mx ·n on ∂Ω to obtain u0− b ∈
Lp

σ(Ω). In the following, given 0 < T < ∞, we call a function u ∈ C([0, T );Lp
σ(Ω)) a mild

solution of (12) if u satisfies the integral equation for 0 < t < T

u(t) = TΩ,b(t)(u0 − b)−
t∫

0

TΩ,b(t− s)PΩ(u · ∇u)(s) ds +

t∫
0

TΩ,b(t− s)PΩF (s) ds.

Then the main result of [12] is the following theorem.

Theorem 2.4. Let n ≥ 2, n ≤ p ≤ q < ∞ and let Ω ⊂ Rn be an exterior domain with
C1,1-boundary. Assume that trM = 0 and b ∈ C∞

c (Ω) and u0− b ∈ Lp
σ(Ω). Then there exist

T0 > 0 and a unique mild solution u of (12) such that

t 7→ t
n
2 ( 1

p−
1
q )u(t) ∈ C ([0, T0] ; Lq

σ(Ω)) ,

t 7→ t
n
2 ( 1

p−
1
q )+ 1

2∇u(t) ∈ C ([0, T0] ; Lq(Ω)) .

3. Strong solutions

In this section we construct strong solutions to problem (1) for Ω ⊂ Rn, n ≥ 2 and tr M = 0.
The main difference to the method presented in the previous section is another change of

http://www.river-valley.com


Home Page

Title Page

Contents

JJ II

J I

Page 9 of 14

Go Back

Full Screen

Close

Quit

variables. Indeed, we construct a change of variables which coincides with a simple rotation
in a neighborhood of the rotating body but it equals to the identity operator far away from
the rotating body. More precisely, let X(·, t) : Rn → Rn denote the time dependent vector
field satisfying

∂X

∂t
(y, t) = −b(X(y, t)), y ∈ Rn, t > 0,

X(y, 0) = y, y ∈ Rn,

where b is as in (10). Similarly to [6, Lemma 3.2], the vector field X(·, t) is a C∞-diffeo-
morphism form Ω onto Ω(t) and X ∈ C∞([0,∞)× Rn). Let us denote the inverse of X(·, t)
by Y (·, t). Then, Y ∈ C∞([0,∞)× Rn). Moreover, it can be shown that for any T > 0 and
|α|+ k > 0 there exists Ck,α,T > 0 such that

sup
y∈Rn,0≤t≤T

∣∣∣∣ ∂k

∂tk
∂α

∂yα
X(y, t)

∣∣∣∣+ sup
x∈Rn,0≤t≤T

∣∣∣∣ ∂k

∂tk
∂α

∂xα
Y (x, t)

∣∣∣∣ ≤ Ck,α,T0 .(13)

Setting
v(x, t) = JX(Y (x, t), t)w(Y (x, t), t), x ∈ Ω, t ≥ 0,

where JX denotes the Jacobian of X(·, t) and

p(x, t) = q(Y (x, t), t), x ∈ Ω, t ≥ 0,

similarly to [6, Prop. 3.5] and [17], we obtain the following set of equations which are equiv-
alent to (1).

∂tv − Lv +Mv +N v + Gp = 0, in Ω× R+,
∇ · v = 0, in Ω× R+,

v(x, t) = Mx, on Γ× R+,
v(x, 0) = w0(x), in Ω.

(14)

http://www.river-valley.com
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Here

(Lv)i =
n∑

j,k=1

∂

∂xj

(
gjk ∂vi

∂xk

)
+ 2

n∑
j,k,l=1

gklΓi
jk

∂vj

∂xl

+
n∑

j,k,l=1

(
∂

∂xk
(gklΓi

jl) +
n∑

m=1

gklΓm
jlΓ

i
km

)
vj ,

(N v)i =
n∑

j=1

vj
∂vi

∂xj
+

n∑
j,k=1

Γi
jkvjvk,

(Mv)i =
n∑

j=1

∂Xj

∂t

∂vi

∂xj
+

n∑
j,k=1

(
Γi

jk

∂Xk

∂t
+

∂Xi

∂xk

∂2Yk

∂xj∂t

)
vj ,

(Gp)i =
n∑

j=1

gij ∂p

∂xj

with

gij =
n∑

k=1

∂Xi

∂yk

∂Xj

∂yk
, gij =

n∑
k=1

∂Yk

∂xi

∂Yk

∂xj
and

Γk
ij =

1
2

n∑
l=1

gkl

(
∂gil

∂xj
+

∂gjl

∂xi
+

∂gij

∂xl

)
.

The obvious advantage of this approach is that we do not have to deal with an unbounded
drift term since all coefficients appearing in L, N , M and G are smooth and bounded on finite
time intervals by (13). However, we have to consider a non-autonomous problem. Setting
u = v − b, we obtain the following problem with homogeneous boundary conditions which is

http://www.river-valley.com
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equivalent to (14).

∂tu− Lu +Mu +Nu + Bu + Gp = Fb, in Ω× R+,
∇ · u = 0 in Ω× R+,

u = 0, on Γ× R+,
u(x, 0) = w0(x)− b(x), in Ω.

(15)

Here,
(Bu)i =

n∑
j=1

(
uj

∂bi

∂xj
+ bj

∂ui

∂xj

)
+ 2

n∑
j,k=1

Γi
jkujbk, Fb = Lb−Mb−N b.

Since gij is smooth and gij(·, 0) = δij by definition, it follows from (13) that

‖gij(·, t)− δij‖L∞(Ω) → 0, t → 0.(16)

In other words, L is a small perturbation of ∆ and G is a small perturbation of ∇ for small
times t. This motivates to write (15) in the following form.

∂tu−∆u +∇p = F (u, p), in Ω× R+,
∇ · u = 0, in Ω× R+,

u = 0, on Γ× R+,
u(x, 0) = w0(x)− b(x), in Ω,

(17)

where F (u, p) := (L − ∆)u −Mu − Nu + (∇ − G)p − Bu + Fb. We will use maximal Lp-
regularity of the Stokes operator and a fixed point theorem to show the existence of a unique
strong solution (u, p) of (15). More precisely, let

Xp,q
T := W 1,p(0, T ;Lq(Ω)) ∩ Lp(0, T ;D(Aq))× Lp(0, T ; Ŵ 1,p(Ω)),

where D(Aq) := W 2,q(Ω)∩W 1,q
0 (Ω)∩Lq

σ(Ω) is the domain of the Stokes operator. Then, by
maximal Lp-regularity of the Stokes operator, Hölder’s inequality and Sobolev’s embedding

http://www.river-valley.com
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theorems Φ : Xp,q
T → Xp,q

T , Φ((ũ, p̃)) := (u, p) where (u, p) is the unique solution of

∂tu−∆u +∇p = F (ũ, p̃), in Ω× (0, T )
∇ · u = 0, in Ω× (0, T ),

u = 0, on Γ× (0, T ),
u(x, 0) = w0(x)− b(x), in Ω,

is well-defined for 1 < p, q < ∞ with n
2q + 1

p < 3
2 and T > 0. Here, the restriction on p and q

comes from the nonlinear term N .
Finally, let Xp,q

T,δ := {(u, p) ∈ Xp,q
T : ‖(u, p)− (û, p̂)‖Xp,q

T
≤ δ, u(0) = w0 − b} with (û, p̂) =

Φ(Φ(0, 0)). Then by (16), Hölder’s inequality and Sobolev’s embedding theorems, it can be
shown that for small enough δ > 0 and T > 0, Ψ|Xp,q

T,δ
is a contraction.

We summarize our considerations in the next theorem which is proved in [7]. Note that
the cases n = 2, 3 and p = q = 2 were already proved in [6].

Theorem 3.1. Let 1 < p, q < ∞ such that n
2q + 1

p < 3
2 and let Ω ⊂ Rn be an exterior

domain with C1,1-boundary. Assume that trM = 0 and that w0 − b ∈ (Lq
σ(Ω), D(Aq))1− 1

p ,p.
Then there exist T > 0 and a unique solution (u, p) ∈ Xp,q

T of problem (15).
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