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LP-THEORY OF THE NAVIER-STOKES FLOW IN THE EXTERIOR
OF A MOVING OR ROTATING OBSTACLE
Comizis M. GEISSERT anp M. HIEBER

ABSTRACT. In this paper we describe two recent approaches for the LP-theory of the Navier-
Stokes flow in the exterior of a moving or rotating obstacle.

1. INTRODUCTION

Consider a compact set O C R”, the obstacle, with boundary T' := 0O of class C1'. Set
Q) :=R™\O. For ¢t > 0 and a real n x n-matrix M we set

Qt) == {y@t) = Mz, z € Q} and T'(t) := {y(t) = eMz,z € T}.
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Then the motion past the moving obstacle O is governed by the equations of Navier-Stokes

Go Back given by
Ow—Aw+w-Vw+Vqg = 0, in Q(t) x Ry,
V-w = 0, in Q(t) x Ry,
Full Screen (1) w(y’ t) _ My, on F(t) % R+,
w(y,0) = wo(y), in Q.
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Here w = w(y,t) and ¢(y,t) denote the velocity and the pressure of the fluid, respectively.
The boundary condition on I'(¢) is the usual no-slip boundary condition. Quite a few articles
recently dealt with the equation above, see [2], [3], [4], [5], [6], [8], [10], [11], [15], [16].

In this paper, we describe two approaches to the above equations for the LP-setting where
1 < p < oo. The basic idea for both approaches is to transfer the problem given on a domain
Q(t) depending on t to a fixed domain. The first transformation described in the following
Section 2 yields additional terms in the equations which are of Ornstein-Uhlenbeck type.
We shortly describe the techniques used in [15] and [12] in order to construct a local mild
solution of (1).

In contrast to the first transformation, the second one, inspired by [17] and [6], allows to
invoke maximal LP-estimates for the classical Stokes operator in exterior domains and like
this we obtain a unique strong solution to (1). This approach is described in section 3.

2. MILD SOLUTIONS

In this section we construct mild solutions to the Navier-Stokes problem (1). To do this
we first transform the equations (1) to a fixed domain. Let €2, Q(¢) and I'(t) be as in the
introduction and suppose that M is unitary. Then by the change of variables z = e My
and by setting v(z,t) = e "™Mw(e™z,t) and p(x,t) = q(e"™x,t) we obtain the following set

of equations defined on the fixed domain Q:

oov—Av+v-Vvo— Mz -Vo+ Mv+Vp = 0, in Q xRy,
(2) Vv = 0, in Q x R+,
v(z,t) = Mauz, on ' x Ry,

v(z,0) _ wo(z), in Q.
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Note that the coefficient of the convection term Mz - Vu is unbounded, which implies that
this term cannot be treated as a perturbation of the Stokes operator.

This problem was first considered by Hishida in L2(Q) for Q C R® and Mz = w x z with
w = (0,0,1)T in [15] and [16]. The LP-theory was developed by Heck and the authors in
[12] even for general M.

We will construct mild solutions for wg € L2(2), p > n, to the problem (2) with Kato’s
iteration (see [18]).

The starting point is the linear problem

Ou—Au— Mz -Vu+ Mu+b-Vu+u-Vb+Vp = 0, in Q xRy,
3) V-u = 0, in Q xRy,
u = 0, on I' xR,

u(z,0) = wp(z), inQ,

where b € C2°(€2). The additional term b- Vu + - Vb simplifies the treatment of the Navier-
Stokes problem (see (11) below). We will first show that the solution of (3) is governed by a
Co-semigroup on L2 (). More precisely, let Lo, be defined by

LQ’bU, o= PQ,Cbu
D(Layp) = {ue€W2P(Q)NW,P(Q)NLE(Q) : Mz - Vu € LP(Q)},
where Lyu := Au+ Mx - Vu — Mu+b-Vu+ u-Vb. Then the following theorem is proved
in [12].

Theorem 2.1. Let 1 < p < oo and let @ C R" be an exterior domain with CY1-boundary.
Assume that trt M = 0 and b € C°(Q2). Then the operator Lq generates a Cy-semigroup
Tap on LE().


http://www.river-valley.com

Home Page

Title Page

Contents

Page 4 of 14

Go Back

Full Screen

Sketch of the proof. The proof is devided into several steps. First it is shown that Lq is
the generator of an Cp-semigroup Ty on L2(Q2). Then a-priori LP-estimates for Tq, are
proved. Once we have shown this we can easily define a consistent family of semigroups T s
on LP(Q) for 1 < p < co. In the last step the generator of T, on L () is identified to be
LQ’b.

We start by showing that Lq p is the generator of a Cp-semigroup on L2 (). Choose R > 0
such that suppbU Q° C Bg(0) = {z € R” : |z| < R}. We then set

D = QN Bgys(0),
K, = {z€eQ:R<|z| <R+ 3},
Ky, = {z€Q:R+2<|z|]<R+5}.

Denote by B; for i € {1,2} Bogovskii’s operator (see [1], [9, Chapter IIL.3], [13]) associated
to the domain K; and choose cut-off functions ¢, n € C°°(R™) such that 0 < ¢, n < 1 and

(z) = 0, |z < R+1, A ) = 1, |z| < R+ 3,
PE=1U1, Jel>R+2, ¢ T T 10,  |z|>R+4

For f € LE(Q) we denote by f the extension of f by 0 to all of R™. Then, since CZ% (1) is
dense in L2(2), f® € LP(R™). Furthermore, we set f? = nf—Ba((Vn)f). Since S, (V) f =
0 it follows from [9, Chapter I11.3] that fP € LE(D).

By the perturbation theorem for analytic semigroups there exists w; > 0 such that for
A > w; there exist functions u? and p? satisfying the equations

A=Lo)uf +VpY = fP,  inDxRy,
(4) V-ul = 0, in D xRy,
ul = 0, on 0D x R..
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Moreover, by [14, Lemma 3.3 and Prop. 3.4], there exists wy > 0 such that for A > wo there
exists a function uf? satisfying

(5) (/\ — Lg)uf = fR, in R™ x R+,
V-ull = 0, in R” x Ry.

For A > max{w;, wa} we now define the operator Uy : L2(2) — LP(Q) by

(6) Urf = ouil + (1 = p)ui + B1(Ve(u)l —uf)),

where uf and uf are the functions given above, depending of course on f. By definition, we
have

(7) Unf e {veW?P(Q)nW,P(Q)NLE(Q) : Mz - Vo € L2(Q)}.
Setting Pyf = (1 — ¢)p?, we verify that (Uxf, Pyf) satisfies

(A= Lpy)Urf + VP\f f+Tnf, inQxR,,
V-Uyf 0, in O x Ry,
Uyf 0, on 02 x Ry,

where T is given by

Tnf = —2(Vo)V(ulf —ul) — (Ap + Mz - (V) (uf —ul) + (Ve)p?
+A—A—-Mz-V+ M)B1((V<,0)(u§ft — uf))

It follows from [12, Lemma 4.4] that for a € (0, QLP,), where %+ 1% = 1, there exists a strongly
continuous function H : (0,00) — L(LE2(2)) satisfying

(8) IH®)ll 2z < Ct* e, t>0
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for some @ > 0 and C' > 0 such that X\ — PuT) is the Laplace Transform of H. We thus
easily calculate

||PQT)\||£(L1;(Q)) <CA Y A>w.

Therefore, Ry := U, E;o:()(PQT)\)j exists for A large enough and (A — Ly)Ryf = f for
f € LZ(Q). Since Lq is dissipative in L2(Q), L, generates a Co-semigroup T, on L2 ().
Moreover, we have the representation

(9) Tﬂ,b(t)f = Z Tn(t)f7 fe LZ’(Q)7
n=0
where T, (t) := fg Ty—1(t — s)H(s) ds for n € N and

To(t) = ¢Tr(t)f + (1 = 9)Tps () f + Bi((Ve)(Tr()fF = Tpp()fP)), t20.

Here T denotes the semigroup on L2 (R™) generated by Lgn~ o and T j, denotes the semigroup
on L2(D) generated by Lp ;. Note that A — U, is the Laplace Transform of 7. Since the
right hand side of the representation (9) is well defined and exponentially bounded in L2 (€2)
by [12, Lemma 4.6], we can define a family of consistent semigroups To;, on LP(Q) for
1 < p < co. Finally, the generator of T on LP(Q) is Lo which can be proved by using
duality arguments (cf. [12, Theorem 4.1]). O

Remark 2.2. (a) The semigroup Tq is not expected to be analytic since, by [16,
Proposition 3.7, the semigroup Tgs in R? is not analytic.

(b) As the cut-off function ¢ is used for the localization argument similarly to [15] the
purpose of 7 is to ensure that fp € L2(). This is essential to establish a decay
property in A for the pressure PP (cf. [12, Lemma 3.5]) and Ty.

(c) The crucial point for a-priori LP-estimates for Tq, on LZ(12) is the existence of H
satisfying (8).
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Since LP-L9 smoothing estimates for Tr and Tp p follow from [14, Lemma 3.3 and Prop.
3.4] and [12, Prop. 3.2], the representation of the semigroup T ; given by (9) and estimates
for sums of convolutions of this type (cf. [12, Lemma 4.6]) yield the following proposition.

Proposition 2.3. Let 1 < p < q < 0o and let @ C R" be an exterior domain with C**-
boundary. Assume that tr M = 0 and b € C°(Q). Then there exist constants C > 0,w > 0
such that for f € LE()

(@) ITos®)fllzsy < O 36D et fllp ), ¢>0,
(b) VTas(t)fllzr() < Ct~ 26| fll 1z (), t>0.
Moreover, for f € LE(Q)
162 G T (0 fll gy + 162 Vs (@) fllry — 0, for t—0.

In order to construct a mild solution to (2) choose ¢ € C°(R™) with 0 < ¢ < 1 and
¢ = 1 near I'. Further let K C R” be a domain such that supp V¢ € K. We then define
b:R"™ — R" by

(10) b(z) :== (M=z — B ((V{)Maz),

where By is Bogovskii’s operator associated to the domain K. Then divb = 0 and b(z) = Mz
on I'. Setting u := v — b, it follows that u satisfies

Owu—Lyu+Vp = F in Q x (0,7),
a1) Vou = 0 in Q x (0,7),
u = 0 onT' x (0,7),

u(z,0) = wuo(z) —b(z), inf,
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with V- (ug —b) =0in Q and F = —Ab— Mz - Vb+ Mb+ b - Vb, provided u satisfies (2).
Applying the Helmholtz projection Py to (11), we may rewrite (11) as an evolution equation
in LP(Q):
u —Lopyu+ Po(u-Vu) = PoF, 0<t<T,

u(0) = wg—0b.
Note that we need the compatibility condition ug(z)-n = Mz -n on 0 to obtain ug—b €

L2 (). In the following, given 0 < T < oo, we call a function u € C([0,T); LE(S2)) a mild
solution of (12) if u satisfies the integral equation for 0 < ¢t < T

(12)

] ]

u(t) = T (£) (o — b) — / Tos(t — 5)Pa(u - Vu)(s) ds + / To(t — 5)PaF(s) ds.
0 0
Then the main result of [12] is the following theorem.

Theorem 2.4. Letn >2, n<p<qg< o and_let Q) C R"™ be an exterior domain with
CY1-boundary. Assume that trt M =0 and b € C(Q) and ug —b € L2(Q). Then there exist
To > 0 and a unique mild solution w of (12) such that

s t%(%_é)u(t) € C([0,To]; LL(Q)),
t 3G Vu(t) € O ([0, To] ; LY(Q)) -
3. STRONG SOLUTIONS

In this section we construct strong solutions to problem (1) for @ C R, n > 2 and tr M = 0.
The main difference to the method presented in the previous section is another change of
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variables. Indeed, we construct a change of variables which coincides with a simple rotation
in a neighborhood of the rotating body but it equals to the identity operator far away from
the rotating body. More precisely, let X (-,¢) : R® — R™ denote the time dependent vector
field satisfying

19,4
W(Zﬁt) = _b(X(y7 t))7 NS Rn7 t> 07
X(y,O) = Y y €R",

where b is as in (10). Similarly to [6, Lemma 3.2], the vector field X (-, ¢) is a C*°-diffeo-
morphism form 2 onto Q(¢) and X € C°(]0,00) x R™). Let us denote the inverse of X (-,t)
by Y (:,t). Then, Y € C*°([0,00) x R™). Moreover, it can be shown that for any 7" > 0 and
|a| + &k > 0 there exists Ck 7 > 0 such that

ok 9~ ok o~

(13) . ot 9

y€ER" 0<t<T

ate sup
z€RM ,0<t<T

M@X(y’ t) Y(:I?,t)’ S Ck,a,To-

Setting
v(@,t) = Ix (Y (2,1), hw(Y (z,t), 1), =€, t>0,
where Jx denotes the Jacobian of X (-,¢) and
p(o,t) = a(Y (2,),), €9, t>0,

similarly to [6, Prop. 3.5] and [17], we obtain the following set of equations which are equiv-
alent to (1).

ov—Lv+ Mv+Nv+Gp = 0, in Q xRy,
(14) V.w = 0, in Q xRy,
v(z,t) = Mauz, onT'x Ry,

v(z,0) = wo(x), in Q.
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The obvious advantage of this approach is that we do not have to deal with an unbounded
drift term since all coefficients appearing in £, N/, M and G are smooth and bounded on finite
time intervals by (13). However, we have to consider a non-autonomous problem. Setting
u = v — b, we obtain the following problem with homogeneous boundary conditions which is
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Ou — Lu+ Mu+Nu+Bu+Gp = F, in Q xRy,
V u = 0 in Q X RJ’_,
Contents (15) u = 0, on I' X R.;,_,
u(z,0) = wo(z)—b(z), in Q.
Here, n b, ou no
(Bu)i =Y <uj8—mf + bjan> +2 3 Thuibe,  Fy= Lb— Mb— Nb.
j=1 / / Jk=1
Since g% is smooth and g% (-,0) = ¢;; by definition, it follows from (13) that
(16) 9" (- t) = 8ijllLeo@) = 0, ¢ —0.

In other words, £ is a small perturbation of A and G is a small perturbation of V for small
times ¢. This motivates to write (15) in the following form.

Page 11 of 14

ou—Au+Vp = F(u,p), in Q xRy,
Go Back (17) V-ou = 0, in Q x R+,
u = 0, onI' x Ry,
u(:c, 0) = wO(x) - b(m>a in Qv
Al S where F(u,p) := (L — A)u — Mu — Nu+ (V — G)p — Bu + Fy. We will use maximal LP-

regularity of the Stokes operator and a fixed point theorem to show the existence of a unique
strong solution (u,p) of (15). More precisely, let

XP9 .= WhP(0,T; L9(Q)) N LP(0,T; D(A,)) x LP(0,T; WP (),

where D(A,) := W29(Q) N W,9(Q) N LL(R) is the domain of the Stokes operator. Then, by
maximal LP-regularity of the Stokes operator, Holder’s inequality and Sobolev’s embedding
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theorems @ : X727 — X ®((a@,p)) := (u, p) where (u,p) is the unique solution of

Owuw—Au+Vp = F(4,p), in Q x (0,7T)
V.-u = 0, in Q x (0,7),
u = 0, on I'" x (0,7),

U(JJ,O) = ’u}o(l‘) - b(l’), in Q»

is well-defined for 1 < p, ¢ < oo with 2% -+ % < % and T > 0. Here, the restriction on p and ¢
comes from the nonlinear term N

Finally, let X775 := {(u,p) € X7 : ||(u, p) = (@, )| xps < 6,u(0) = wo — b} with (@,p) =
®(2(0,0)). Then by (16), Holder’s inequality and Sobolev’s embedding theorems, it can be
shown that for small enough 6 > 0 and 7" > 0, ¥|x». is a contraction.

We summarize our considerations in the next theorem which is proved in [7]. Note that
the cases n = 2,3 and p = g = 2 were already proved in [6].

Theorem 3.1. Let 1 < p,q < oo such that % <+ % < % and let Q C R™ be an exterior
domain with C*'-boundary. Assume that tr M = 0 and that wo — b € (LL(Q), D(A,))
Then there exist T > 0 and a unique solution (u,p) € X5 of problem (15).
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