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ANALYSIS TOOLS FOR FINITE VOLUME SCHEMES

R. EYMARD, T. GALLOUËT, R. HERBIN and J.-C. LATCHÉ

Abstract. This paper is devoted to a review of the analysis tools which have been developed

for the the mathematical study of cell centred finite volume schemes in the past years. We first
recall the general principle of the method and give some simple examples. We then explain how

the analysis is performed for elliptic equations and relate it to the analysis of the continuous
problem; the lack of regularity of the approximate solutions is overcome by an estimate on
the translates, which allows the use of the Kolmogorov theorem in order to get compactness.
The parabolic case is treated with the same technique. Next we introduce a co-located scheme
for the incompressible Navier–Stokes equations, which requires the definition of some discrete
derivatives. Here again, we explain how the continuous estimates can guide us for the discrete
estimates. We then give the basic ideas of the convergence analysis for non linear hyperbolic
conservation laws, and conclude with an overview of the recent domains of application.

1. Introduction

Finite volume methods (FVM) are known to be well suited for the discretisation of con-
servation laws; these conservation laws may yield partial differential equations (PDE’s) of
different nature (elliptic, parabolic or hyperbolic) and also to coupled systems of equations of
different nature. Consequently, the functional spaces in which the solutions of the continuous
problems are sought may be quite different: H1

0 , L2(0, T,H1), L∞. . . , so that it might seem
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rash to think of approximating them all equally with piecewise constant functions, as with
the cell centred FVM considered here; indeed, even though it seems natural that the space
L∞ should be approximated by the discrete space consisting of piecewise constant functions
on the control volumes, this is no longer the case when the continuous functional space is
H1

0 . Surprisingly, the cell centred approximation is quite efficient even in the case of elliptic
and parabolic equations, as a number of works have proved in the past fifteen years. Indeed,
analysis tools have been developed for all types of equations, most of them adapted from tools
used in the study of the respective continuous partial differential equations. The unified the-
ory of these discrete analysis tools, which was initiated in the late 80’s, allows to tackle the
numerical analysis of the discretisation of more complex systems. The aim of the present
paper is to give a unified presentation of the cell centred FVM analysis for different types of
PDE’s, and give a review of the main analysis tools which were developed for different model
problems, and relate them to their continuous counterparts.

The first question that is often asked by a layman is: what is the difference between finite
volumes and, say, finite elements or finite differences? The answer truly lies in the concepts
of the methods, but indeed, in some cases, these methods yield similar schemes (this may
be seen on the simple example −u′′ = f discretized by the three above mentioned methods
with a constant mesh step). The concepts, however, are quite different. Roughly speaking,
one could say that the finite element method is based on a weak formulation coupled with a
convenient approximation of the functional spaces while the finite difference method relies on
an approximation of the original differential operators by Taylor expansions; and the finite
volume method is constructed from a balance equation, rather than the PDE itself, with a
consistent approximation of the fluxes defined on the boundary of the control volumes.

Confusion between the finite volume method and the finite difference method arises from
the fact that the FVM has often been called finite differences methods when the flux on the
boundary of the control volumes are approximated by finite differences. This is the case,
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for instance, in oil reservoir simulations, where rectangular cartesian grids are used, so that
the diffusion flux can easily be dicretised by a differential quotient, at least in the isotropic
case. Moreover, numerous schemes which have been designed for hyperbolic equations and
systems, and cast in the finite difference family, are also of the finite volume type, since they
are based on a suitable approximation of the fluxes at the interfaces of the discretisation
cells. Links between the FVM and the finite element method (FEM) can also be mentioned.
Indeed, for particular problems, the FVM may be written as a FEM with some particular
integration rule. Conversely, there are cases where the FEM can be seen as a FVM. For
instance, the piecewise linear finite element method for the discretisation of the Laplace
operator on a triangular mesh satisfying the weak Delaunay condition yields a matrix which
is the same as that of the FVM on the dual Voronöı mesh, see [38] for details. The FVM
may also be seen as a discontinuous Galerkin method (DGM) of lowest order; although
the DGM, derived from the finite element ideas, is also based on a weak formulation, the
approximation of the continuous space is no longer conforming, as is also the case in the cell
centred FVM. However, the tools used to analyse the DGM of higher order do not seem to
apply to the FVM. Let us also mention that other families of FVM’s have been developed,
such as vertex centered schemes, box or co–volume schemes, finite volume element methods:
see [6, 3, 15, 23, 33, 68, 26, 58, 59] and references therein. Our interest for cell centred
schemes is primarily motivated by the fact that they are probably the most widely used in
industrial codes.

The outline of this paper is as follows. In Section 2, we shall give the principle of the cell
centred FVM for general conservation laws. Section 3 is devoted to the convergence analysis
of the FVM approximations for steady state convection diffusion equations. We show that
one of the key ingredients is an estimate on the translates of the approximate solutions, which
allows the use of the Kolmogorov theorem. Time dependent convection diffusion problems
are then tackled in Section 4, where estimates on the time translates are also developed.
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Sections 5 and 6 are devoted to more recent works on the incompressible Stokes and Navier-
Stokes equations. Discrete derivatives are introduced to handle the gradient and divergence
terms. In Section 7, we give the main ideas which lie behind the (difficult) analysis of cell
centred FVM’s for hyperbolic equations. Finally we conclude in Section 8 by mentioning
the different problems which have been studied in the past, along with some of the ongoing
works.

2. Principle of the finite volume method

Let Ω be a polygonal open subset of Rd, T ∈ R, and let us consider a balance law written
under the general form:

ut + div(F (u,∇u)) + s(u) = 0 on Ω× (0, T ),(1)

where F ∈ C1(R × Rd,R) and s ∈ C(R,R). Let T be a finite volume mesh of Ω. For the
time being, we shall only assume that T is a collection of convex polygonal control volumes
K, disjoint one to another, and such that: Ω̄ = ∪K∈T K̄. The balance equation is obtained
from the above conservation law by integrating it over a control volume K and applying the
Stokes formula: ∫

K

ut dx+
∫

∂K

F (u,∇u) · nK dγ(x) +
∫

K

s(u) dx = 0,

where nK stands for the unit normal vector to the boundary ∂K outward to K and γ denotes
the integration with respect to the (d − 1)–dimensional Lebesgue measure. Let us denote
by E the set of edges (faces in 3D) of the mesh, and EK the set of edges which form the
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boundary ∂K of the control volume K. With these notations, the above equation reads:∫
K

ut dx+
∑

σ∈EK

∫
σ

F (u,∇u) · nK dγ(x) +
∫

K

s(u) dx = 0.

Let k = T/M , where M ∈ N,M ≥ 1, and let us perform an explicit Euler discretization of
the above equation (an implicit or semi-implicit discretization could also be performed, and
is sometimes preferable, depending on the type of equation). We then get:∫

K

u(m+1) − u(m)

k
dx +

∑
σ∈EK

∫
σ

F (u(m),∇u(m)) · nK dγ(x)+
∫

K

s(u(m)) dx = 0,

where u(m) denotes an approximation of u(·, t(m)), with t(m) = mk. Let us then introduce
the discrete unknowns (one per control volume and time step) (u(m)

K )K∈T , m∈N; assuming
the existence of such a set of real values, we may define a piecewise constant function by:

u
(m)
T ∈ HT (Ω) : u(m)

T =
∑
K∈T

u
(m)
K 1K ,

where HT (Ω) denotes the space of functions from Ω to R which are constant on each control
volume of the mesh T , and 1K the characteristic function of K, that is 1K(x) = 1 if x ∈ K,
1K(x) = 0 otherwise. In order to define the scheme, the fluxes

∫
σ
F (u(m),∇u(m)) ·nK dγ(x)

need to be approximated as a function of the discrete unknowns. We denote by FK,σ(u(m)
T )

the resulting numerical flux, the expression of which depends on the type of flux to be
approximated. Let us now give this expression for various simple examples.
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First we consider the case of a linear convection equation, that is equation (1) where the
flux F (u,∇u) reduces to F (u,∇u) = vu, v ∈ Rd, and s(u) = 0:

ut + div(vu) = 0 on Ω.(2)

In order to approximate the flux vu·n on the edges of the mesh, one needs to approximate the
value of u on these edges, as a function of the discrete unknowns uK associated to each control
volume K. This may be done in several ways. A straightforward choice is to approximate
the value of u on the edge σ = σKL separating the control volumes K and L by the mean
value 1

2 (uK + uL). This yields the following numerical flux:

F
(cv,c)
K,σ (uT ) = vK,σ

uK + uL

2

where vK,σ =
∫

σ
v ·nK,σ, and nK,σ denotes the unit normal vector to the edge σ outward to

K. This centred choice is known to lead to stability problems, and is therefore often replaced
by the so–called upstream choice, which is given by:

F
(cv,u)
K,σ (uT ) = v+

K,σuK − v−K,σuL,(3)

where x+ = max(x, 0) and x− = −min(x, 0).

If we now consider a linear convection diffusion reaction equation, that is equation (1)
with F (u,∇u) = −∇u+ vu,v ∈ Rd, and s(u) = bu, b ∈ R:

ut −∆u+ div(vu) + bu = 0 on Ω,(4)

the flux through a given edge then reads:∫
σ

F (u) · nK,σ =
∫

σ

−∇u · nK,σ + v · nK,σ u,

http://www.river-valley.com
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so that we now need to discretize the additional term
∫

σ
−∇u · nK,σ; this diffusion flux

involves the normal derivative to the boundary, for which a possible discretization is obtained
by considering the differential quotient between the value of uT in K and in the neighbouring
control volume, let say L:

F
(d)
K,σ(uT ) = − |σ|

dKL
(uL − uK).(5)

where |σ| stands for the (d− 1)–dimensional Lebesgue measure of σ and dKL is the distance
between some points of K and L, which will be defined further. Using the above upstream
scheme (3) for the convective part of the scheme, we then obtain the following numerical
flux:

F
(cvd)
K,σ (uT ) = − |σ|

dKL
(uL − uK) + v+

K,σuK − v−K,σuL.

However, we are able to prove that this choice for the discretization of the diffusion flux yields
accurate results only if the mesh satisfies the so-called orthogonality condition, that is, there
exists a family of points (xK)K∈T , such that for a given edge σKL, the line segment xKxL is
orthogonal to this edge (see Figure 1). The length dKL is then defined as the distance between
xK and xL. This geometrical feature of the mesh will be exploited to prove the consistency
of the flux, a notion which is detailed in the next section. Of course, this orthogonality
condition is not satisfied for any mesh. Such a family of points exists for instance in the case
of triangles, rectangles or Voronöı meshes. We refer to [38] for more details.
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above upstream scheme (3) for the convective part of the scheme, we then obtain134

the following numerical flux:135

F
(cvd)
K,σ (uT ) = − |σ|

dKL
(uL − uK) + v+

K,σuK − v−K,σuL.
136

However, we are able to prove that this choice for the discretization of the diffusion137

flux yields accurate results only if the mesh satisfies the so-called orthogonality138

condition, that is, there exists a family of points (xK)K∈T , such that for a given139

edge σKL, the line segment xKxL is orthogonal to this edge (see Figure 1). The140

length dKL is then defined as the distance between xK and xL. This geometrical141

feature of the mesh will be exploited to prove the consistency of the flux, a notion142

which is detailed in the next section. Of course, this orthogonality condition is143

not satisfied for any mesh. Such a family of points exists for instance in the case144

of triangles, rectangles or Voronöı meshes. We refer to [38] for more details.

xL

xK

L
K

|σ|

σKL

dKL

dK,σ

Figure 1. Notations for a control volume.

145

3. Convergence analysis for the steady state146

reaction convection diffusion equation147

3.1. The continuous and discrete problems148

Let Ω be an open bounded polygonal subset of R
d, d = 2 or 3, f ∈ L2(Ω), v ∈ R

d
149

and b ∈ R, and let us consider the following steady–state linear reaction convection150

diffusion equation:151

−∆u+ div(vu) + bu = f on Ω,(6)152

with homogeneous boundary conditions on ∂Ω. A weak formulation of this prob-153

lem is:154 ⎧⎪⎪⎨
⎪⎪⎩

Find u ∈ H1
0 (Ω) such that∫

Ω

∇u · ∇φ dx+
∫

Ω

div(vu)φ dx+
∫

Ω

buφ dx =
∫

Ω

fφ dx,

∀φ ∈ H1
0 (Ω).

(7)

155

Figure 1. Notations for a control volume.

3. Convergence analysis for the steady state
reaction convection diffusion equation

3.1. The continuous and discrete problems

Let Ω be an open bounded polygonal subset of Rd, d = 2 or 3, f ∈ L2(Ω), v ∈ Rd and b ∈ R,
and let us consider the following steady–state linear reaction convection diffusion equation:

−∆u+ div(vu) + bu = f on Ω,(6)
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with homogeneous boundary conditions on ∂Ω. A weak formulation of this problem is:
Find u ∈ H1

0 (Ω) such that∫
Ω

∇u · ∇φ dx+
∫

Ω

div(vu)φ dx+
∫

Ω

buφ dx =
∫

Ω

fφ dx,

∀φ ∈ H1
0 (Ω).

(7)

Let (T , E ,P) be a discretization of Ω: T denotes the set of control volumes, E the set of edges
of the mesh, P the set of points satisfying the above mentioned orthogonality condition. The
finite volume scheme may be written under the following weak form: Find uT ∈ HT (Ω) such that

[uT , φ]T + cT (uT , φ) +
∫

Ω

buT φ dx =
∫

Ω

fφ dx, ∀φ ∈ HT (Ω).(8)

where:

1. HT (Ω) is the space of piecewise constant functions on the control volumes of T ,
2. the inner product [·, ·]T is defined by:

[u, v]T =
∑

σKL∈Eint

|σKL|
dKL

(uL − uK)(vL − vK) +
∑

σ∈Eext

|σ|
dK,σ

uK vK ,

where Eint (resp. Eext, EK) denotes the set of edges included in Ω (resp. ∂Ω, ∂K), |σ|
the (d− 1)–dimensional Lebesgue measure of σ, dKL the distance between xK and xL

(see Figure 1) and dK,σ the distance between xK and σ; in the first summation, σKL

denotes the edge separating the control volumes K and L, and in the last summation,
the volume K is the unique volume of which σ is an edge.

http://www.river-valley.com
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3. the bilinear convective form is defined by:

cT (uT , φ) =
∑
K∈T

φK

[ ∑
σKL∈EK

(v+
K,σKL

uK − v−K,σKL
uL) +

∑
σ∈EK∩Eext

v+
K,σuK

]
.

The finite volume scheme may equivalently be written under its more classical flux form:∑
σ∈EK

FK,σ(uT ) + b|K|uK = |K|fK , ∀K ∈ T ,(9)

where |K| denotes the d dimensional Lebesgue measure of K and:

(10) FK,σ(uT ) =


− |σ|
dKL

(uL − uK) + v+
K,σuK − v−K,σuL, if σ = σKL,

− |σ|
dKL

(−uK) + v+
K,σuK , if σ is an edge of K located on ∂Ω.

Indeed, taking φ = 1K in (8), it is easily seen that (8) implies (9). Conversely, let
φ ∈ HT (Ω). Multiplying (9) by φK , summing the resulting equations for all K ∈ T and
reordering the summations leads to (8).

One may also define a discrete Laplace operator in HT in the following way. For v ∈ HT ,
let ∆T v ∈ HT be defined by:

(∆T v)K = − 1
|K|

∑
σ∈EK

F
(d)
K,σ(v),

http://www.river-valley.com
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where:

F
(d)
K,σ(v) =


− |σ|
dKL

(vL − vK) if σ = σKL,

− |σ|
dKL

(−vK) if σ ⊂ ∂Ω.
(11)

Then one may remark that, thanks to the property of conservativity of the flux (that is
FK,σ = −FL,σ if σ = σKL), one has:

[u, v]T = −
∫

Ω

∆T u v dx = −
∫

Ω

u ∆T v dx, ∀ u, v ∈ HT (Ω).(12)

The formulation (8) highlights a property of finite volume schemes for elliptic equations,
namely the fact that, as Galerkin methods, they may be derived from a coercive variational
formulation. However, because of the non-conforming nature of finite volumes, going further
in the analogy with Galerkin methods does not seem to be of practical interest: the coercivity
of the formulation is not inherited from the coercivity of the continuous problem but rather
stems from the conservativity of the fluxes; even if the convergence of the method is proven
by an analogue of the second Strang lemma, classical in the finite element framework, it relies
in fine on the consistency of the fluxes, at least in the presently available analyses.

Note that, thanks to the following Poincaré inequality which holds for u ∈ HT (see e.g.
[38, Lemma 9.1]):

‖u‖L2(Ω) ≤ diam(Ω) ||u||1,T ,(13)

http://www.river-valley.com


Home Page

Title Page

Contents

JJ II

J I

Page 12 of 43

Go Back

Full Screen

Close

Quit

we may define a mesh dependent “discrete H1
0 norm” using the inner product introduced

above:

(14) ‖u‖1,T = ([u, u]T )1/2 =

( ∑
σKL∈Eint

|σ|
dKL

(uL − uK)2 +
∑

σ∈Eext

|σ|
dK,σ

u2
K

)1/2

.

3.2. Convergence results

The mathematical analysis of any numerical scheme must address the question of existence
of a solution, which is rather easy here since the problem is linear, and the question of
convergence (i. e. “does the approximate solution converge to the solution of the continuous
problem as the mesh size tends to 0?”). A related question is the obtention of a rate of
convergence, through error estimates, usually conditionned to regularity assumptions on the
continuous solution. The proof of the convergence of the finite volume scheme for a semi-
linear equation generalizing (6) was first proven in [37] (see also [38]). We shall state the
result here for the linear case, and explain the main steps of the proof, since the presented
techniques extend to nonlinear problems.

Under the assumptions given at the beginning of this section, it is easily seen that the
system (8) (resp. (9)) has a unique solution uT ∈ HT (resp. (uK)K∈T ). Let (Tn)n∈N be a
sequence of finite volume discretizations satisfying the orthogonality condition, and let hTn

be the size of the mesh Tn, that is the maximum of the diameters of the control volumes
of Tn. We suppose that hTn

→ 0 as n → +∞ and we are going to show that, in this case,
the corresponding sequence (uTn

)n∈N converges in L2(Ω) to the unique solution of (7). The
proof of this result may be decomposed into four steps:

http://www.river-valley.com
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1. We first get some a priori estimates on the approximate solution in the HT norm and
the L2 norm which yield existence (and uniqueness) of uT solution of the scheme. We
can then also deduce the weak convergence of (uTn

)n∈N in L2(Ω), up to a subsequence,
to some ū ∈ L2(Ω).

2. Strong convergence and regularity of the limit, that is ū ∈ H1
0 (Ω), are obtained through

a kind of discrete Rellich theorem, which we shall describe hereafter.
3. The fact that the limit ū is a weak solution of the continuous problem is obtained by

a passage to the limit in the scheme (as hT → 0).
4. We then use a classical argument of uniqueness to show that the whole sequence

converges.

Note that we do not need to assume the existence of the solution to the continuous problem:
we get it as a by-product of the convergence of the scheme. In the present easy linear case,
this is quite useless, since existence is well-known. For more complicated nonlinear problems,
obtaining the existence of the solution via the convergence of the numerical scheme may come
in handy (see e.g. [9]).

These four steps will be detailed in the following paragraphs for the pure diffusion operator,
for the sake of simplicity. We also sketch the proof of order h convergence in L2 andHT norms,
under regularity conditions on the solution, namely u ∈ H2(Ω). Note that the upstream
scheme for the convection flux does not lead to any additional difficulty, see [37, 53].

Order 2 convergence in the L2 norm may be proven for the pure diffusion operator on
uniform grids. However, the same result on triangular meshes, which is observed in numerical
experiments, remains an open problem; recall that higher convergence rates in weaker norms
(including this special case) are known and proven for most Galerkin methods via duality
arguments (the so-called Aubin-Nitsche lemma, [24]).

http://www.river-valley.com
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3.3. A priori estimate

Definition 1 (Discrete H−1 norm). Let ψ be a function of L2(Ω), then

‖ψ‖−1,T = sup
v∈HT (Ω),v 6=0

∫
Ω

ψv dx

‖v‖1,T
.(15)

Note that, by the discrete Poincaré inequality (13), we have:

‖ψ‖−1,T ≤ diam(Ω) ‖ψ‖L2(Ω).

Assuming v = 0 and b = 0 and using the notation (8), the finite volume scheme reads:

[uT , v]T =
∫

Ω

fv dx, ∀v ∈ HT (Ω).

Choosing v = uT , we get by definition (1):

‖uT ‖1,T ≤ ‖f‖−1,T .(16)

Taking f = 0, we thus obtain uniqueness (and therefore existence) of the discrete solution.
This estimate also yields weak convergence of a subsequence of approximate solutions in
L2(Ω).

3.4. Convergence theorem

In order to prove strong convergence of the approximate solutions, we need some control on
their oscillations. In the finite element framework, the family of approximate solutions is
bounded in H1(Ω), and one may therefore use the Rellich theorem to obtain compactness
in L2(Ω). This is not the case here, but we note that the Rellich theorem derives from
the Kolmogorov theorem, which gives a necessary and sufficient condition for a bounded

http://www.river-valley.com
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family of Lp(Ω), p < +∞, to be relatively compact. Because of the lack of regularity of our
approximate solutions, the Kolmogorov theorem is an adequate tool. In order to use it, we
need some estimates on the translates of functions of HT (Ω). Indeed, one may show, in a
way which is close to that of the continuous case (replacing the derivatives by differences)
that for any function v ∈ HT (Ω), one has:

‖v(·+ η)− v‖2
L2(Ω) ≤ |η| (|η|+ 4hT )) ‖v‖2

1,T , ∀η ∈ Rd.

From this estimate, we may deduce the following result.

Theorem 1 (Discrete Rellich theorem). Let (Tn)n∈N be a sequence of finite volume dis-
cretizations satisfying the orthogonality condition, such that hTn

→ 0, and let (un)n∈N ⊂
L2(Ω) such that un ∈ HTn

and ‖un‖1,Tn
≤ C, where C ∈ R. Then there exists a subsequence

(un)n∈N and u ∈ H1
0 (Ω) such that un → u in L2(Ω) as n→ +∞.

From the discrete H1 estimate (16), we then deduce from the above theorem the strong
convergence of a subsequence of the approximate solutions in L2(Ω), to some function ū ∈
H1

0 (Ω).

3.5. Passage to the limit in the scheme

We now need to show that the limit ū is solution to the continuous variational problem. Let
(Tn) be a sequence of discretizations such that hTn

→ 0. For each mesh Tn, the finite volume
scheme reads:

[uTn
, v]Tn

=
∫

Ω

fv dx, ∀v ∈ HTn
(Ω).(17)

Lemma 1 (Consistency of the discrete Laplace operator). Let T be a finite volume mesh
satisfying the orthogonality condition. We denote by PT and ΠT the following interpolation

http://www.river-valley.com
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operators:

PT : C(Ω) → HT (Ω), PT ϕ(x) = ϕ(xK), ∀x ∈ K, ∀K ∈ T ,(18)

ΠT : L2(Ω) → HT (Ω), ΠT ϕ(x) =
1
|K|

∫
K

ϕ dx, ∀x ∈ K, ∀K ∈ T .(19)

For ϕ ∈ C∞c (Ω), let us define the consistency error R∆,T (ϕ) ∈ HT (Ω) on the discrete Laplace
operator by:

R∆,T (ϕ) = ∆T PT ϕ−ΠT (∆ϕ).

Then there exists Cϕ depending only on ϕ such that:

‖R∆,T (ϕ)‖−1,T ≤ CϕhT .(20)

Proof. For ϕ ∈ C∞c (Ω), one has:

‖R∆,T (ϕ)‖−1,T = sup
v∈HT (Ω),‖v‖1,T =1

X(v),

with:
X(v) =

∑
K∈T

|K| [(∆T PT ϕ)K vK − (ΠT (∆ϕ))K vK ] .

For hT small enough, ϕ vanishes in all the control volumes having an edge on the boundary
of the domain so that, by definition of ∆T , PT and ΠT , one has:

X(v) =
∑
K∈T

vK

[ ∑
σ∈EK

FK,σ(PT ϕ)−
∫

σ

∇ϕ · nK,σ dγ(x)

]
=

∑
σKL∈Eint

|σ| RK,σ(ϕ) (vK − vL),
(21)
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where RK,σ(ϕ) is the consistency error on the fluxes, defined by:

RK,σ(ϕ) =
1
|σ|
(
FK,σ(PT ϕ)−

∫
σ

∇ϕ · nK,σ dγ(x)
)
.

Now we use the property of consistency of the fluxes, namely that for a regular function ϕ,
there exists cϕ ∈ R depending only on ϕ such that:

|RK,σ(ϕ)| ≤ cϕhT .

This result, proven in [38], is a central argument of the proof. It relies on the orthogonality
condition for the mesh, and is obtained by Taylor’s expansions. By the Cauchy–Schwarz
inequality, we then obtain from (21) that:

X(v) ≤ CϕhT ‖v‖1,T ,

which concludes the proof. �

An immediate consequence is the following corollary.

Corollary 1. Let (Tn)n∈N be a family of meshes satisfying the orthogonality property and
such that hTn → 0. Let (uTn)n∈N ⊂ L2(Ω) and ū ∈ H1(Ω) such that ‖uTn‖1,T ≤ C, where
C ∈ R+, and uTn

→ ū in L2(Ω) as n→ +∞, then:∫
Ω

uTn
∆Tn

(PTn
ϕ) dx→

∫
Ω

ū ∆ϕ dx as n→ +∞, ∀ ϕ ∈ C∞c (Ω).

We now sketch the proof of convergence of the scheme. Let us now take v = PTn
ϕ in (17).

Thanks to (12), we have:

−
∫

Ω

uTn
∆Tn

(PTn
ϕ) dx =

∫
Ω

fPTn
ϕ dx.

http://www.river-valley.com


Home Page

Title Page

Contents

JJ II

J I

Page 18 of 43

Go Back

Full Screen

Close

Quit

Let us then pass to the limit as n→ +∞. From Corollary 1 and the fact that the right hand
side converges to

∫
Ω
ϕ dx, we get that:

−
∫

Ω

ū∆ϕ dx =
∫

Ω

fϕ dx.

Since we know from the previous step that ū ∈ H1
0 (Ω), we obtain that ū is indeed the solution

to (7).

3.6. Error analysis

An error estimate for convection diffusion equations was first obtained in [60] in the case of
continuous data and triangular meshes. It was extended to L2 data and general admissible
meshes and general boundary conditions in [53]. The key argument for the error analysis
is the fact that the consistency Lemma (1) still holds, under regularity assumptions for the
mesh, for φ in H2(Ω). Using the variational form of the scheme (17), we have:

[uTn − PTnu, v]Tn =
∫

Ω

fv dx− [PTnu, v]Tn , ∀v ∈ HTn(Ω),

where u is the solution to the continuous problem. Integrating the continuous equation
−∆u = f over each control volume to replace the first term of the right hand side of the
above relation, we get:

[uTn − PTnu, v]Tn =
∫

Ω

R∆,Tn(u)v dx, ∀v ∈ HTn(Ω).

A first order convergence result in the HT norm then follows by the stability estimate (16);
first order convergence is also obtained in the L2 norm, thanks to the discrete Poincaré
inequality.
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4. The parabolic case

4.1. The continuous problem

We now consider a transient convection diffusion equation. Let T > 0, u0 ∈ L2(Ω) and
v ∈ Rd be given; the partial derivative equation at hand reads:

u : Ω× [0, T ] → R;

ut + div(vu)−∆u = 0 in Ω× (0, T ),

u = 0 in ∂Ω× (0, T ),

u(., 0) = u0 in Ω.

(22)

A weak formulation of this problem is:

(23)


Find u ∈ L2(0, T ; H1

0 (Ω)) such that ut ∈ L2(0, T ; H−1(Ω)) and

< ut, ϕ >H−1,H1
0

+
∫

Ω

∇u(x, ·) ∇ϕ(x, ·) dx = 0, ∀ ϕ ∈ H1
0 (Ω),

u(·, 0) = u0.

As in the steady state case, we shall use some estimates on the translates of u in order to
get compactness properties, despite the lack of regularity of the approximate finite volume
solutions. To get some insight into what kind of estimates we should be aiming at, it is
informative to look at the estimates that can be obtained on the continuous solution. First,
we see that since u ∈ L2(0, T ; H1

0 (Ω)), we have the following estimate on the translates in
space:

‖u(·+ η, ·)− u(·, ·)‖L2(0,T ; L2(Ω)) ≤ C|η|, ∀η ∈ Rd.
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Then, since u ∈ L2(0, T ; H1
0 (Ω)) and ut ∈ L2(0, T ; H−1(Ω)), the following estimate on

the time translates holds:

‖u(·, ·+ τ)− u(·, ·)‖L2(0,T ; L2(Ω)) ≤ C|τ | 12 , ∀τ ∈ R.

We shall therefore look for the same kind of estimates in the discrete framework.

4.2. The finite volume scheme

Let k = 1/M be the (uniform) time step. The finite volume scheme, using an implicit Euler
discretization in time, reads:

|K|
un+1

K − un
K

k
+
∑

σ∈EK

FK,σ(un+1
T ) = 0, 0 ≤ n ≤M − 1,

u0
K =

1
|K|

∫
K

u0(x) dx.
(24)

with FK,σ(un+1
T ) = − |σ|

dKL
(un+1

L − un+1
K ) + v+

K,σu
n+1
K − v−K,σu

n+1
L .

The existence and uniqueness of a solution (un
K)n∈N to (24) is easily deduced from the

steady state case. Let us denote by HD(Ω × (0, T )) the set of functions of L2(Ω × (0, T ))
which are piecewise constant on the subsets K × [tn, tn+1). We define the approximate
solution uD ∈ HD(Ω× (0, T )) by uD(x, t) = un

K , ∀x ∈ K, ∀t ∈ [tn, tn+1). Using a variational
technique similar to the way the estimate (16) is established in the steady state case, the
following a priori estimates on uD may be obtained:

‖uD‖L∞(0,T ; L2(Ω)) ≤ C, k
M∑

n=1

‖uD(·, tn)‖2
1,D ≤ C.(25)
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where C only depends on the initial condition. As in the steady state case, the second relation
above yields an estimate on the space translates:

‖uD(·+ η, ·)− uD(·, ·)‖L2(0,T ; L2(Ω)) ≤ C
(
|η|(|η|+ hD)

) 1
2 , ∀η ∈ Rd.

Using equation (24), we are then able to derive an estimate on the time translates:

‖uD(·, ·+ τ)− uD(·, ·)‖L2(0,T ; L2(Ω)) ≤ C|τ | 12 , ∀τ ∈ R.

By a discrete Rellich theorem, we deduce as in the steady state case the convergence in
L2(0, T ; L2(Ω)) of uD to some function ū ∈ L2(0, T ; H1

0 (Ω)). As in the elliptic case, a
passage to the limit in the scheme yields that ū = u, weak solution of (23). This analysis
may be generalized to the case of non-homogeneous Dirichlet boundary conditions, see [9].

5. The Stokes problem

A huge amount of literature is devoted to the numerical solution of the Stokes and Navier–
Stokes equations. Among the proposed methods is the wellknown finite element method
[54, 55, 58] and finite volume method [73, 74]; finite difference schemes on staggered grids
were also studied [70, 71]. This type of staggered scheme was also generalized to non–
cartesian finite volume grids [41, 42]. However, staggered grids are not easy to handle in the
computational practice, and several industrial and commercial codes are based on co-located
finite volume method, that is a method where the primitive variables (velocity and pressure)
are used, and all located within a discretization cell; in this section we shall give an example
of a co–located finite volume scheme for which a convergence theory was developped for both
the Stokes and Navier–Stokes equations.
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5.1. The continuous problem

The centred finite volume scheme may also be used to discretize the Navier–Stokes equations.
For reasons of simiplicity, let us start with the steady state Stokes equations. The aim is to
find u : Ω → Rd and p : Ω → R such that:

−ν∆u+∇p = f in Ω,

divu = 0 in Ω,

u = 0 on ∂Ω,∫
Ω

p dx = 0.

(26)

Let E(Ω) := {v ∈ (H1
0 (Ω))d,divv = 0 a.e. in Ω}, and assume that f ∈ L2(Ω)d. A weak

formulation of (26) is:

u = (u(1), . . . , u(d))t ∈ E(Ω),

ν

∫
Ω

∇u : ∇v dx =
∫

Ω

f · v dx, ∀v ∈ E(Ω),
(27)

with
∫

Ω

∇u : ∇v dx =
∑

i=1,d

∫
Ω

∇u(i) · ∇v(i) dx.

5.2. Discrete gradient and divergence

As in the preceding sections, we consider the discrete space HT (Ω) ⊂ L2(Ω) of piecewise
constant functions on the control volumes. In order to construct a finite volume scheme, we
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need to discretize the divergence operator. Let us remark that for u ∈ H1(Ω)d, one has:∫
K

divu dx =
∑

L∈NK

∫
σKL

u · nK,σKL
dγ(x).

Adopting a centred discretization of u ·n on σKL leads to the following definition of a discrete
divergence operator:

for u ∈ HT (Ω)d, (divT u)K =
1
|K|

∑
L∈NK

|σKL|
(uK + uL)

2
· nK,σKL

,

so that divT u is a linear operator from HT (Ω)d to HT (Ω). Note that one could also choose
a more precise interpolation of the values uK and uL than their mean value, see [44].

Remark 1. Note that since nK,σKL
= −nL,σKL

, we have:

(28)
∫

Ω

divT u(x) dx =
∑
K∈T

|K|(divT u)K = 0, ∀u ∈ HT (Ω).

Now we define the discrete gradient as the adjoint of the discrete divergence, that is a
linear operator ∇T from HT (Ω) to HT (Ω)d such that:∫

Ω

divT u p dx = −
∫

Ω

u · ∇T p dx, ∀u ∈ HT (Ω)d, ∀p ∈ HT (Ω).

An easy calculation leads to:

(∇T p)K =
1
|K|

∑
L∈NK

|σKL|
(pL − pK)

2
nK,σKL

.(29)
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Since
∑

L∈NK

|σKL| nK,σKL
= 0, one may also write the discrete gradient as:

(∇T p)K =
1
|K|

∑
L∈NK

|σKL|
(pL + pK)

2
nK,σKL

,(30)

this latter form being conservative.
Let us then give some convergence properties of the discrete gradient.

Theorem 2 (Weak convergence of the gradient). Let (Tn)n∈N be a sequence of admissible
meshes of Ω with vanishing mesh size, and (un)n∈N ⊂ L2(Ω) such that un ∈ HTn

(Ω) and
‖u(n)‖1,Tn

≤ C for all n ∈ N. Then there exists ū ∈ H1
0 (Ω) and a subsequence of (u(n))n∈N

(still denoted (u(n))n∈N) such that u(n) → ū as n → +∞ in L2(Ω), and such that, for any
ϕ ∈ C∞c (Ω),

1. lim
n→+∞

[u(n), PTn
ϕ]Tn

=
∫

Ω

∇ū · ∇ϕ dx.

2. ∇Tn
u(n) weakly converges to ∇ū in L2(Ω)d as n→ +∞.

Item 1 is already known from the study in the elliptic case. Item 2 follows from the
following lemma.

Lemma 2 (Consistency of the discrete derivatives). Let T be a finite volume mesh satis-
fying the orthogonality condition. With the notations introduced in Lemma 1, let ϕ ∈ C∞c (Ω),
let us define the consistency error R∂i,T (ϕ) ∈ HT (Ω) on the discrete derivative by:

R∂i,T (ϕ) = ∂
(i)
T PT ϕ−ΠT (∂(i)ϕ).

where ∂(i)
T PT ϕ stands for the component (i) of the above defined discrete gradient. Then:

‖R∂i,T (ϕ)‖−1,T ≤ CϕhT .
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The proof of this lemma uses the consistency of the approximation of the normal flux u ·n
(see [43] for details).

5.3. A stabilized finite volume scheme for the Stokes equations

Let ET (Ω) = {u ∈ (HT (Ω))d,divT (u) = 0}, then a natural finite volume discretization of
problem (27) is:

u ∈ ET (Ω), ν[u, v]T =
∫

Ω

f · v dx, ∀v ∈ ET (Ω),

where [u, v]T stands for
∑

i=1,d[u
(i), v(i)]T . However, this is not a very useful form since the

”direct” construction of the space ET (Ω) is far from being an easy task. The standard way
to proceed is then to write the condition divT (u) = 0 as a constraint, but it is well known
that such a scheme suffers from some stability problems, related to the fact that no inf-sup
condition is not satisfied for colocated schemes. A cure for this problem which has become
classical in the finite element framework, is then to use a modified divergence constraint
including a stabilization term, which yields a scheme of the following form:

(31)


(u, p) ∈ HT (Ω)d ×HT (Ω),

ν[u, v]T −
∫

Ω

p divT (v) dx =
∫

Ω

f · v dx, ∀v ∈ HT (Ω)d,∫
Ω

divD(u) q dx = −〈p, q〉T ,λ, ∀q ∈ HT (Ω),

where

〈p, q〉T ,λ =
∑

σKL∈Eint

λK|L
|σKL|
dKL

(pL − pK)(qL − qK),(32)
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and the coefficients λK|L are determined according to the choice of stabilization. A first
possible choice [43], inspired by the well known Brezzi–Pitkäranta [14] scheme in the finite
element framework, is to take λK|L = βhD

α, α ∈ (0, 2). A stabilization by “clusters” was
recently introduced [22, 45], which yields a scheme the accuracy of which is less affected by
the size of the stabilization coefficient [21]. The idea is to introduce a partition of the mesh
into clusters, each cluster containing some control volumes of the mesh. It is assumed that
the maximum diameter of each cluster is bounded by a constant times the mesh size, and
therefore, it tends to zero with the mesh size. For any control volume K we denote by CK

the cluster which contains K; let γ ≥ 0, we define the cluster stabilization by:

λK|L =
{

0, CK 6= CL,
γ, CK = CL.

Note that one could also consider a stabilization term γ on each cluster which would
depend on h, and would lessen the weight of the stabilization within each cluster. The pros
and cons of the various choices are currently being investigated.

Stabilizations by penalization of the pressure jumps across either all the internal edges of
the mesh or only the internal edges of macro-elements have already been proposed in the
finite element context for the stabilization of the so-called Q1 − Q0 element [62]; besides
an extension to the finite volume framework, the above scheme considerably generalizes the
notion of macro-element. Under some simple geometrical assumptions for the clusters, we
are able to prove that the pair of spaces associating HT (Ω)d for the velocity and constant by
cluster pressures is “inf-sup stable” [46]. The cluster stabilization can then be interpreted as
a minimal stabilization procedure, as defined by Brezzi and Fortin [13]; this interpretation
suggests a variation of γ as the square of the mesh size [46].
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The finite volume scheme (31) may also be written in its more classical flux form:

−ν
∑

L∈NK

|σKL|
dKL

(uL − uK)− ν
∑

σ∈EK∩Eext

|σ|
dK,σ

(−uK)

+
∑

L∈NK

|σKL|
(pL − pK)

2
nK,σKL

=
∫

K

f dx, ∀K ∈ T ,∑
L∈NK

GK,L(uT , pT ) = 0, ∀K ∈ T ,

where

GK,L(uT , pT ) = |σKL|
(uK + uL)

2
· nK,σKL

− λKL
|σKL|
dKL

(pL − pK).(33)

This finite volume scheme must be supplemented by the condition
∫
pT dx = 0.

As in the elliptic case, the convergence analysis for this scheme is based on a priori
estimates. First, taking v = uT and q = pT in (31) yields:

ν2 ‖uT ‖2
1,T + 2ν |pT |2T ,λ ≤ ‖f‖2

−1,T ,

where ‖ · ‖1,T and ‖ · ‖−1,T are now the discrete H1 and H−1 norms on HT (Ω)d, easily
deduced from their scalar counterparts, and | · |T ,λ is the semi–norm associated with the inner
product defined by (32). Note that for both considered stabilizations, the above estimate on
the pressure is mesh dependent, and therefore does not yield a uniform estimate.

The second step is then to prove an L2 estimate on the pressure. To this purpose, we
take benefit of the fact that the inf-sup condition is verified at the continuous level, so there
exists v̄ ∈ H1

0 (Ω)d such that divv̄ = pT and ‖v̄‖H1
0 (Ω)d ≤ C‖pT ‖L2(Ω) [69]; taking ΠT v̄ as test
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function in the first relation of the scheme (31) then yields and estimate of ‖pT ‖L2(Ω)−|pT |T ,λ

which, combined with the preceding bound, yields the result.
From these estimates, we then obtain existence and uniqueness of u and p solution to

(31), which implies the weak convergence of both velocities and pressure in L2(Ω). As in the
elliptic case, the compactness on the velocities, and the regularity of the limit, are obtained by
estimates on the translates. We thus obtain the strong convergence in L2(Ω) of a subsequence
of the approximate velocities to some ũ ∈ H1

0 (Ω), and the convergence of a subsequence of
approximate pressures to some p̃ weakly in L2(Ω). In order to conclude the convergence
proof, we then consider ϕ ∈ C∞c (Ω)d, and v = PT ϕ in (31). A passage to the limit as
the mesh size tends to 0, using the weak convergence of the divergence and of the gradient
(Theorem 2) yields that (ũ, p̃) is the solution to (27).

If we assume that the weak solution (ū, p̄) to (27) belongs to H2(Ω)d × H1(Ω), we may
also obtain an error estimate, we refer to [43, 44, 45, 46] for both theoretical and numerical
results.

6. Transient isothermal incompressible Navier Stokes

Let us now consider the (adimensionalised) isothermal incompressible Navier Stokes; we seek
u : Ω× [0, T ] → Rd and p : Ω× [0, T ] → R such that:


ut − ν∆u+ div(u⊗ u) +∇p = f in Ω× (0, T ),
divu = 0, in Ω× (0, T ),
u = 0 in ∂Ω× (0, T ),
u(·, 0) = u0 in Ω,

(34)
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where u0 is a divergence free vector field of L∞(Ω)d, u⊗u is the tensor such that (u⊗u)(i,j) =
u(i)u(j) and div(u ⊗ u)(i) =

∑d
j=1 ∂j(u ⊗ u)(i,j), so that if divu = 0, then div(u ⊗ u) =∑d

i=1 ui∂iu = (u · ∇)u.
Let us then consider a convenient weak formulation of (34), in the sense that it is the

formulation obtained when passing to the limit in the finite volume scheme which we shall
introduce in the sequel (see e.g. [77] or [10] for other weak formulations). Let E(Ω) = {v ∈
H1

0 (Ω)d; divv = 0 a.e. in Ω}; we seek a function u of time and space such that:

u ∈ L2(0, T ; E(Ω)) ∩ L∞(0, T ; L2(Ω)d),

−
∫ T

0

∫
Ω

u · ∂tϕ dx dt−
∫

Ω

u0 · ϕ(·, 0) dx

+ ν

∫ T

0

∫
Ω

∇u : ∇ϕ dx dt+
∫ T

0

∫
Ω

(u · ∇)u · ϕ dx dt

=
∫ T

0

∫
Ω

f(x) · ϕ dx dt,

∀ϕ ∈ L2(0, T ;E(Ω)) ∩ C∞c (Ω× [0, T ))d.

(35)

In order to define the finite volume scheme, we need to discretize the nonlinear convection
term, which is integrated over a control volume K in the following way:

∫
K

(u · ∇)u dx =
∫

∂K

(u · nK)u dγ(x) =
∑

σKL∈EK

∫
σKL

(u · nK,σ)u dγ(x),
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which is then naturally discretized as:

∑
σKL∈EK

GK,L(uT , pT )
uK + uL

2
,

where GK,L(uT , p) is the discretisation of the mass flux through the edge separating K and
L which was introduced in (33). We then obtain the following discrete approximation of the

nonlinear form b(u, v, w) =
∫

Ω

(u · ∇)v · w dx :

bT (uT , vT , wT ) =
∑

σKL∈EK

GK,L(uT , pT )
vK + vL

2
· wK .

We perform a time discretisation of the system of equations (34) by the well known Crank-
Nicolson scheme:


un+1 − un

δt
− ν∆un+ 1

2 + (un+ 1
2 · ∇)un+ 1

2 +∇pn+ 1
2 = fn+ 1

2

divun+ 1
2 = 0,

with un+ 1
2 = 1

2 (un + un+1) and pn+ 1
2 = 1

2 (pn + pn+1). With the same definition of HD(Ω×
(0, T )) as in the parabolic case (space and time piecewise constant functions), the finite
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volume scheme for (35) may then be written:

(36)



(uD, pD) ∈ HD(Ω× (0, T ))d ×HD(Ω× (0, T )),∫
Ω

un+1
D − un

D
δt

v dx+ ν[un+ 1
2

D , v]D + bD(un+ 1
2

D , u
n+ 1

2
D , v)

−
∫

Ω

p
n+ 1

2
D divD(v) dx =

∫
Ω

f · v dx, ∀v ∈ HT (Ω)d,∫
Ω

divD(un+ 1
2

D ) q dx = −〈pn+ 1
2

D , q〉T ,λ, ∀q ∈ HT (Ω),

with uDn+ 1
2 = 1

2 (uDn +uD
n+1) and pDn+ 1

2 = 1
2 (pDn + pD

n+1). As in the previous sections,
the convergence of the scheme is obtained by first deriving a compactness property for a
family of approximate solutions, thanks to some estimates on the translates, which are a bit
more difficult to obtain in the present case. Let us for instance study the three-dimensional
case and have a glance at the estimates on the translates which may be obtained for the
continuous problem. Let u be a solution to (35). First, since u ∈ L2(0, T ; E(Ω)), we get
that:

‖u(·+ η, ·)− u(·, ·)‖L2(0,T ; L2(Ω)3) ≤ C|η|, ∀η ∈ R3.(37)

Next, since u ∈ L2(0, T ; E(Ω)) and ut ∈ L
4
3 (0, T ; E(Ω)′), we have that:

‖u(·, ·+ τ)− u(·, ·)‖
L

4
3 (0,T ; L2(Ω)3)

≤ C|τ | 12 , ∀τ ∈ R.(38)

In fact, we may also remark that we have the simpler estimates u ∈ L2(0, T ; E(Ω)) and
ut ∈ L1(0, T ; E(Ω)′) which yield:

‖u(·, ·+ τ)− u(·, ·)‖L1(0,T ; L2(Ω)3) ≤ C|τ | 12 , ∀τ ∈ R,(39)
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but note that, contrary to the parabolic case, we have no L2(0, T ; L2(Ω)3) estimate on the
time translates. We thus derive corresponding discrete estimates to (37) and (39) for the
discrete problem. Let uD ∈ HD(Ω× (0, T )) be a solution to (36). Then there exists C ∈ R+

depending only on Ω, ν, u0, f, T such that [43]:

‖uD‖L∞(0,T ; L2(Ω)3) ≤ C and ‖uD‖L2(0,T ; HD(Ω)) ≤ C.

Furthermore, if one assumes some reasonable regularity assumptions on the mesh, see [43],
then there exists C ∈ R+ depending only on Ω, ν, u0, f, T and on the regularity of the mesh
such that the following estimates on the space and time translates hold:

(40)
‖uD(·+ η, ·)− uD(·, ·)‖L2(0,T ; L2(Ω)3) ≤ C

(
|η|(|η|+ hD)

) 1
2 , ∀ η ∈ R3,

‖uD(·, ·+ τ)− uD(·, ·)‖L1(0,T ; L2(Ω)3) ≤ Cτ
1
2 , ∀τ ∈ R+.

The estimate on the space translates is identical to the parabolic case; the proof on the time
translates, however, is much more technical, in particular because we have to deal with L1 and
not L2, we refer to [43] for details. The proof of the convergence of the discrete approximation
uD to the solution of (35) may be found in [43] in the case where the stabilisation pressure
term is not taken into account in the nonlinear convective term. The proof in the case
presented here is somewhat similar. Using the above estimates and the Kolmogorov theorem,
we get the convergence of a subsequence of the approximate solutions to ū ∈ L2(0, T ; E(Ω))
in L1(0, T ; L2(Ω)3) as the mesh size tends to 0. Finally, a passage to the limit in the scheme
yields that ū is indeed a solution of (35).

7. Hyperbolic equations

Let us finally briefly mention the wide use of finite volume schemes for nonlinear hyperbolic
equations. We refer to [56, 57, 38, 64, 7] for more on this subject. Here we only consider
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the following nonlinear hyperbolic equation:

(41)

{
ut + div(vf(u)) = 0 in Rd × (0, T ),

u(·, 0) = u0,

u0 ∈ L∞(Ω),v ∈ Rd, f ∈ C1(R,R), f ′ ≥ 0. It is well known that the above problem is
well–posed, in the sense that it admits a unique weak entropy solution, that is a function u
satisfying:

(42)


u ∈ L∞(Rd × (0, T )),∫ T

0

∫
Rd

(η(u)ϕt + Φ(u) · ∇ϕ) dx dt+
∫

Rd

η(u0(x))ϕ(x) dx ≥ 0,

∀ η ∈ C2(R),Φ ; Φ′ = f ′η′, ∀ ϕ ∈ C∞c (Rd × [0, T ),R+).

With the same notations as in the previous sections, let T be a finite volume mesh of Ω. A
finite volume scheme with an upwind choice for the convection flux can be written:

|K|
un+1

K − un
K

δt
+
∑

σ∈EK

Fn+1
K,σ = 0, n ≥ 0,

u0
K =

1
|K|

∫
K

u0(x) dx,

with: Fn+1
K,σ = v+

K,σf(un+1
K ) − v−K,σf(un+1

L ). Note that this flux is consistent without any
condition on the mesh, since there is no more diffusion flux. Multiplying the scheme by uK

and summing on K yields an L∞ estimate on uD: there exists C only depending on u0, T,v
such that:

‖uD‖L∞(Rd×(0,T )) ≤ C.(43)
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Hence if we consider a family of meshes with vanishing size, we get the weak ? convergence
(up to a subsequence) to ū in L∞(Rd × (0, T )). This estimate is not sufficient to pass to the
limit in the scheme even in the linear case (except in the case of uniform meshes). In order
to obtain convergence we use the so-called weak-BV inequality, first used in the linear case in
[19] and nonlinear case in [20], and named BV because it involves the jumps of the discrete
function at the interfaces: ∑

σKL∈Eint

|vK,σKL
|(f(un

K)− f(un
L))2 ≤ C.(44)

This estimate is obtained thanks to the diffusion term added by the upwinding on f(u).
Roughly speaking, this diffusion term may be seen as the discretisation of the continuous
diffusion term hD

∑d
i=1 ∂

(i)(|v(i) f ′(u)| ∂(i)u), so that the scheme may be seen as the dis-
cretisation of the following parabolic equation:

ut + div(vf(u))− hD

d∑
i=1

∂(i)(|v(i) f ′(u)| ∂(i)u) = 0(45)

Along the same lines, we may remark that the BV inequality (44) is related to the following
weak H1 inequality obtained from Equation (45):

d∑
i=1

‖v(i) f ′(u) ∂(i)u)‖L2(K) ≤
1√
hD

, for any compact subset K of Rd × (0, T ).

Even though this inequality is sufficient to pass to the limit in the linear case, it does not yield
strong compactness, so that one needs yet another tool in the nonlinear case. Indeed, from
the L∞ estimate, we only obtain a weak ? converging subsequence of approximate solutions,
and the question is how to pass to the limit in the nonlinearity. The key to this point is
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the nonlinear weak ? convergence [34] or [38, page 965], which is equivalent to the notion of
Young measure [76]. The notion of nonlinear weak ? convergence may be stated as follows:

Theorem 3 (Non linear weak ? convergence). Let (un)n∈N be a bounded sequence of
L∞( Rd × (0, T )). There exist ū ∈ L∞(Ω × (0, T ) × (0, 1)) and a subsequence of (un)n∈N,
still denoted (un)n∈N, such that g(un) tends to

∫ 1

0
g(ū(·, α))dα in L∞(Ω× (0, T )) weak ?, as

n→ +∞, that is: ∫
Ω

g(un(x))ϕ(x) dx→
∫ 1

0

∫
Ω

g(ū(x, α))ϕ(x) dxdα,

for all ϕ ∈ L1(Ω × (0, T )) and all g ∈ C(R,R). We shall say that un converges (up to a
subsequence) in the nonlinear weak ? sense. Note that

∫ 1

0
g(ū(x, α)) dα =

∫
R g(s) dνx(s), and

that νx is a probability on R.

Using the nonlinear ? convergence, we get that a subsequence of approximate solutions
converges to an entropy weak process solution of (41), that is a function ū such that:

(46)


u ∈ L∞(Rd × R+×(0, 1)),∫ 1

0

∫
R+

∫
Ω

(η(u)ϕt + Φ(u) · ∇ϕ dx dtdα+
∫

R+

η(u0(x)) ϕ(x) dx ≥ 0,

∀ η ∈ C2(R),Φ ; Φ′ = f ′η′, ∀ ϕ ∈ C∞c (Rd × [0, T ),R+).

The following uniqueness theorem then allows to conclude to the convergence of the scheme
towards the entropy weak solution.

Theorem 4. If ū ∈ L∞(Ω× (0, T )× (0, 1)) is an entropy weak process solution then:
• ū(x, α) does not depends on α.
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• ū is the unique entropy weak solution u.

The proof uses the doubling variables method of Krushkov, [52, 34] or [38].
Hence, if we consider a family of approximate solutions on meshes with mesh size tending

to 0, we get that there exists a subsequence of this solution tending to a weak entropy
process solution, which is, by the above theorem, the unique entropy weak solution of (41).
The convergence holds in Lp(Rd × (0, T )) for all p < ∞. Note that (non optimal) error
estimates may also be obtained, see e.g. [34, 17, 78, 25].

8. Conclusions and perspectives

In this paper, we presented an outline of the analysis of the cell centred finite volume method
for elliptic, parabolic equations, for the incompressible Navier–Stokes equations and for scalar
hyperbolic conservation laws. Numerous works now exist for the analysis of the cell centred
scheme for a number of problems and applications; to cite only a few on elliptic or parabolic
problems, let us mention the works on general boundary conditions [53, 11], non coercive
problems with H−1 or measure right hand side [30, 31]; other topics include nonlinear re-
action diffusion equations and degenerate equations, see [36, 65, 79, 40] and references
therein, variational inequalities [61], hyperbolic equations with boundary conditions and dis-
continuous fluxes, see [48] and references therein. Similar tools were also used for a posteriori
estimates and mesh adaptation [63, 72], domain decomposition [1, 16, 75], numerical ho-
mogeneisation [35] or image processing [66, 67]. It is quite impossible to give a full review
on the ongoing works on finite volumes; let us however mention the difficulty of anisotropic
diffusion problems or diffusion problems on distorted meshes [2, 39, 28, 29], which give rise
to a number of methods for the construction of discrete gradients and divergence operators,
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raising the issue of the discrete maximum principle [8]. Some techniques are also being de-
veloped for coupled systems leading to irregular right hand sides [12, 18], and for diffusion
problems in the presence of singularities in the domain [4, 27]. Two phase flow in porous
media was maybe one of the major incentive for the development of the analysis of cell cen-
tred finite volume schemes, and has been and still is often addressed [47, 32]. Boundary
conditions for hyperbolic problems [79, 5] and the difficult problem of efficient solvers for
hyperbolic systems [49, 50, 51] are also being intensively studied.
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11. Bradji A. and Gallouët T., Finite volume approximation for an oblique derivative boundary value prob-

lem, In Raghay S. BenkhaldounF. and Ouazar D., editors, Finite Volumes for Complex Applications IV
(FVCA IV), pp. 143–152, Herms Science Publishing, 2005.

12. Bradji A. and Herbin R., Convergence analysis of discretisation schemes for the coupled electrical and
thermal conduction problem, submitted, 2006.

13. Brezzi F. and Fortin M., A minimal stabilisation procedure for mixed finite element methods, Numerische
Mathematik, 89(3) (2001), 457–491.
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