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SELF-PROPAGATING HIGH TEMPERATURE SYNTHESIS (SHS)
IN THE HIGH ACTIVATION ENERGY REGIME

R. MONNEAU and G. S. WEISS

Abstract. We derive the precise limit of SHS in the high activation energy scaling suggested
by B. J. Matkowsky and G. I. Sivashinsky in 1978 and by A. Bayliss, B. J. Matkowsky and A.P.
Aldushin in 2002. In the time-increasing case the limit turns out to be the Stefan problem for
supercooled water with spatially inhomogeneous coefficients.

Although the present paper leaves open mathematical questions concerning the convergence,
our precise form of the limit problem suggests a strikingly simple explanation for the numerically
observed pulsating waves.

1. Introduction

The system

∂tu−∆u = vf(u)

∂tv = −vf(u) ,
(1)
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where u is the normalized temperature, v is the normalized concentration of the reactant and
the non-negative nonlinearity f describes the reaction kinetics, is a simple but widely used
model for solid combustion (i.e. the case of the Lewis number being +∞). In particular it is
being used to model the industrial process of Self-propagating High temperature Synthesis
(SHS). In the case of high activation energy interesting phenomena like the instability of
planar waves, fingering and helical waves are observed.

Since the seventies (and possibly even earlier) it has been argued that the problem is for
high activation energy related to a Stefan problem describing the freezing of supercooled
water (see [20], [10, p. 57]). In [20] B. J. Matkowsky and G. I. Sivashinsky derived a formal
singular limit containing a jump condition for the temperature on the interface. Later the
Stefan problem for supercooled water – the intuitive limit – became the basis for numerous
papers focusing on stability analysis of (1), fingering, helical waves etc. (see for example
[10],[11],[9],[13],[12],[14],[8],[1],[2]).

Surprisingly there are few mathematical results on the subject: In [19] E. Logak and
V. Loubeau proved existence of a planar wave in one-space dimension and gave a rigorous
proof for convergence as the activation energy goes to infinity.

Instability of the planar wave for a special linearization (and high activation energy) is
due to [4].

In the present paper we argue that the SHS system converges to the irreversible Stefan
problem for supercooled water. As the initial data of the reactant concentration enters the
equation as the activation energy goes to infinity, our result also suggests a surprisingly simple
explanation for the numerically observed pulsating waves (cf. [1] and [2]), namely that they
are caused by the spatial inhomogeneity v0 (or Y 0, respectively) in the below equation and
are therefore mathematically related to the pulsating waves in [3].

http://www.river-valley.com
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In the time-increasing case we give a rigorous convergence proof in higher dimensions. For
general initial data in one space-dimension see our forthcoming paper [21].

In the original setting by B. J. Matkowsky and G. I. Sivashinsky [20, equation (2)],

∂tuN −∆uN = (1− σN )N eNvN exp
(
− N

uN

)
,

∂tvN = −N eNvN exp
(
− N

uN

)
,

(2)

each limit u∞ of uN > 0 as N →∞ satisfies for (σN )N∈N ⊂⊂ [0, 1) (for σN ↑ 1, N →∞ the
limit in this scaling is the solution of the heat equation; cf. Section 5.1 and Theorem 4.1)

∂tu∞ − v0∂tχ = ∆u∞ in (0,+∞)× Ω,(3)

where v0 are the initial data of v∞ and

χ(t, x)
{
∈ [0, 1], esssup (0,t)u∞(·, x) ≤ 1 ,

= 1, esssup (0,t)u∞(·, x) > 1 ,

and in the time-increasing case,

χ(t, x)

 = 0, u∞(t, x) < 1 ,
∈ [0, 1], u∞(t, x) = 1 ,
= 1, u∞(t, x) > 1 .

http://www.river-valley.com
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In the SHS system with another scaling and a temperature threshold (see [2, p. 109–110]),

(4)

∂tθN −∆θN = (1− σN )NYN exp
(

N(1− σN )(θN − 1)
σN + (1− σN )θN

)
χ{θN >θ̄},

∂tYN = −(1− σN )NYN exp
(

N(1− σN )(θN − 1)
σN + (1− σN )θN

)
χ{θN >θ̄}

where N(1− σN ) >> 1, σN ∈ (0, 1) and θ̄ ∈ (0, 1), each limit θ∞ of θN satisfies (cf. Section
5.2 and Theorem 4.1)

∂tθ∞ − Y 0∂tχ = ∆θ∞ in (0,+∞)× Ω,(5)

where Y 0 are the initial data of Y∞ and

χ(t, x)
{
∈ [0, 1], esssup (0,t)θ∞(·, x) ≤ 1 ,

= 1, esssup (0,t)θ∞(·, x) > 1 ,

and in the time-increasing case,

χ(t, x)

 = 0, θ∞(t, x) < 1 ,
∈ [0, 1], θ∞(t, x) = 1 ,
= 1, θ∞(t, x) > 1 .

To our knowledge this precise form of the limit problem, i.e. the equation with the discon-
tinuous hysteresis term, has not been known. Even in the time-increasing case it does not
coincide with the formal result in [20].

In the case that θ∞ (or u∞, respectively) is increasing in time and v0 (or Y 0, respectively)
is constant, our limit problem coincides with the Stefan problem for supercooled water, an
extensively studied ill-posed problem (for a survey see [5]). As it is a forward-backward

http://www.river-valley.com


Home Page

Title Page

Contents

JJ II

J I

Page 5 of 18

Go Back

Full Screen

Close

Quit

parabolic equation it is not clear whether one should expect uniqueness (see [6, Remark 7.2]
for an example of non-uniqueness in a related problem).

On the positive side, much more is known about the Stefan problem for supercooled water
than the SHS system, e.g. existence of a finger ([15]), instability of the finger ([18]), one-
phase solutions ([6]); those results, when combined with our convergence result, suggest that
similar properties should be true for the SHS system.

It is interesting to observe that even in the time-increasing case our singular limit selects
certain solutions of the Stefan problem for supercooled water. For example, u(t) = (κ −
1)χ{t<1} + κχ{t>1} is for each κ ∈ (0, 1) a perfectly valid solution of the Stefan problem for
supercooled water, but, as easily verified, it cannot be obtained from the ODE

∂tuε(t) = −∂t exp

(
−1

ε

∫ t

0

exp

(
1− 1

(uε(s)+1)

ε

)
ds

)
as ε → 0 .

2. Notation

Throughout this article Rn will be equipped with the Euclidean inner product x · y and the
induced norm |x| . Br(x) will denote the open n-dimensional ball of center x , radius r and
volume rn ωn . When the center is not specified, it is assumed to be 0.

When considering a set A, χA shall stand for the characteristic function of A, while ν shall
typically denote the outward normal to a given boundary. The operator ∂t will mean the
partial derivative of a function in the time direction, ∆ the Laplacian in the space variables
and Ln the n-dimensional Lebesgue measure.

Finally W2,1
p denotes the parabolic Sobolev space as defined in [17].

http://www.river-valley.com


Home Page

Title Page

Contents

JJ II

J I

Page 6 of 18

Go Back

Full Screen

Close

Quit

3. Preliminaries

In what follows, Ω is a bounded C1-domain in Rn and

uε ∈
⋂

T∈(0,+∞)

W2,1
2 ((0, T )× Ω)

is a strong solution of the equation

∂tuε(t, x)−∆uε(t, x) = −v0
ε(x)∂t exp

(
−1

ε

∫ t

0

gε(uε(s, x)) ds

)
,

uε(0, ·) = u0
ε in Ω,(6)

∇uε · ν = 0 on (0,+∞)× ∂Ω;

here gε is a non-negative function on R satisfying:
0) gε is for each ε ∈ (0, 1) piecewise continuous with only one possible jump at z0,

gε(z0−) = gε(z0) = 0 in case of a jump, and gε satisfies for each ε ∈ (0, 1) and for
every z ∈ R the bound gε(z) ≤ Cε(1 + |z|).

1) gε/ε → 0 as ε → 0 on each compact subset of (−∞, 0).
2) for each compact subset K of (0,+∞) there is cK > 0 such that min(gε, cK) → cK

uniformly on K as ε → 0.
The initial data satisfy 0 ≤ v0

ε ≤ C < +∞, v0
ε converges in L1(Ω) to v0 as ε → 0,

(u0
ε)ε∈(0,1) is bounded in L2(Ω), it is uniformly bounded from below by a constant umin, and

it converges in L1(Ω) to u0 as ε → 0.

Remark 3.1. Assumption 0) guarantees existence of a global strong solution for each
ε ∈ (0, 1).

http://www.river-valley.com
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4. The High Activation Energy Limit

Theorem 4.1. The family (uε)ε∈(0,1) is for each T ∈ (0,+∞) precompact in L1((0, T )×
Ω), and each limit u of (uε)ε∈(0,1) as a sequence εm → 0, satisfies in the sense of distributions
the initial-boundary value problem

∂tu− v0∂tχ = ∆u in (0,+∞)× Ω,

u(0, ·) = u0 + v0H(u0) in Ω,(7)

∇u · ν = 0 on (0,+∞)× ∂Ω,

where

χ(t, x)

{
∈ [0, 1], esssup (0,t)u(·, x) ≤ 0 ,

= 1, esssup (0,t)u(·, x) > 0 ,

and H is the maximal monotone graph

H(z)


= 0, z < 0,

∈ [0, 1], z = 0,

= 1, z > 0 .

Moreover, χ is increasing in time and u is a supercaloric function.
If (uε)ε∈(0,1) satisfies ∂tuε ≥ 0 in (0, T ) × Ω, then u is a solution of the Stefan problem for
supercooled water, i.e.

∂tu− v0∂tH(u) = ∆u in (0,+∞)× Ω .

http://www.river-valley.com
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Remark 4.2. Note that assumption 1) is only needed to prove the second statement “If
. . .”.

Proof. Step 0. (Uniform Bound from below):
Since uε is supercaloric, it is bounded from below by the constant umin.

Step 1. (L2((0, T )× Ω)-Bound):

The time-integrated function vε(t, x) :=
∫ t

0
uε(s, x) ds, satisfies

∂tvε(t, x)−∆vε(t, x) = wε(t, x) + u0
ε(x)(8)

where wε is a measurable function satisfying 0 ≤ wε ≤ C. Consequently

∫ T

0

∫
Ω

(∂tvε)2 +
1
2

∫
Ω

|∇vε|2(T ) =
∫ T

0

∫
Ω

(wε + u0
ε)∂tvε

≤ 1
2

∫ T

0

∫
Ω

(∂tvε)2 +
T

2

∫
Ω

(C + |u0
ε|)2,

implying ∫ T

0

∫
Ω

u2
ε ≤ T

∫
Ω

(C + |u0
ε|)2 .(9)

Step 2. (L2((0, T )× Ω)-Bound for ∇min(uε,M):
For

GM (z) :=


z2

2
, z < M,

Mz − M2

2
, z ≥ M ,

http://www.river-valley.com
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and any M ∈ N,

∫
Ω

GM (uε)−GM (u0
ε) +

∫ T

0

∫
Ω

|∇min(uε,M)|2

=
∫ T

0

∫
Ω

−v0
ε min(uε,M)∂t exp

(
−1

ε

∫ t

0

gε(uε(s, x)) ds

)
.

As ∂t exp(− 1
ε

∫ t

0
gε(uε(s, x)) ds) ≤ 0, we know that ∂t exp(− 1

ε

∫ t

0
gε(uε(s, x)) ds) is bounded

in L∞(Ω;L1((0, T ))), and

∫ T

0

∫
Ω

−v0
ε min(uε,M)∂t exp

(
−1

ε

∫ t

0

gε(uε(s, x)) ds

)
≤ C

∫
Ω

sup
(0,T )

max(min(uε,M), 0) ≤ CMLn(Ω).

Step 3. (Compactness):
Let χM : R → R be a smooth non-increasing function satisfying χ(−∞,M−1) ≤ χM ≤ χ(−∞,M)

and let ΦM be the primitive such that ΦM (z) = z for z ≤ M − 1 and ΦM ≤ M . Moreover,
let (φδ)δ∈(0,1) be a family of mollifiers, i.e. φδ ∈ C0,1

0 (Rn; [0,+∞)) such that
∫

φδ = 1 and
supp φδ ⊂ Bδ(0) . Then, if we extend uε and v0

ε by the value 0 to the whole of (0,+∞)×Rn,

http://www.river-valley.com
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we obtain by the homogeneous Neumann data of uε that

∂t ( ΦM (uε) ∗ φδ) (t, x)

=
((

χM (uε)
(

χΩ∆uε − v0
ε∂t exp

(
−1

ε

∫ t

0

gε(uε(s, x)) ds

)))
∗ φδ

)
(t, x)

=
∫

Rn

χM (uε)(t, y) (χΩ(y)∆uε(t, y)

−
(

v0
ε(y)∂t exp

(
−1

ε

∫ t

0

gε(uε(s, y)) ds

))
φδ(x− y) dy

=
∫

Rn

φδ(x− y)
(
− χ′M (uε(t, y))χΩ(y)|∇uε(t, y)|2

− χM (uε(t, y))v0
ε(y)∂t exp

(
−1

ε

∫ t

0

gε(uε(s, y)) ds

))
+ χM (uε(t, y))χΩ(y)∇uε(t, y) · ∇φδ(x− y) dy.

Consequently ∫ T

0

∫
Rn

|∂t (ΦM (uε) ∗ φδ) | ≤ C1(Ω, C, M, δ, T )

and ∫ T

0

∫
Rn

|∇ (ΦM (uε) ∗ φδ) | ≤ C2(Ω,M, δ, T ) .

It follows that (ΦM (uε) ∗ φδ)ε∈(0,1) is for each (M, δ, T ) precompact in L1((0, T )× Rn).

http://www.river-valley.com
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On the other hand∫ T

0

∫
Rn

|ΦM (uε) ∗ φδ − ΦM (uε)|

≤ C3

(
δ2

∫ T

0

∫
Ω

|∇ΦM (uε)|2
) 1

2

+ 2(M − umin)TLn(Bδ(∂Ω))

≤ C4(C,Ω, umin,M, T ) δ.

Combining this estimate with the precompactness of (ΦM (uε) ∗ φδ)ε∈(0,1) we obtain that
ΦM (uε) is for each (M,T ) precompact in L1((0, T ) × Rn). Thus, by a diagonal sequence
argument, we may take a sequence εm → 0 such that ΦM (uεm) → zM a.e. in (0,+∞)× Rn

as m → ∞, for every M ∈ N. At a.e. point of the set {zM < M − 1}, uεm
converges to

zM . At each point (t, x) of the remainder
⋂

M∈N{zM ≥ M − 1}, the value uεm
(t, x) must

for large m (depending on (M, t, x)) be larger than M − 2. But that means that on the set⋂
M∈N{zM ≥ M−1}, the sequence (uεm

)m∈N converges a.e. to +∞. It follows that (uεm
)m∈N

converges a.e. in (0,+∞) × Ω to a function z : (0,+∞) × Ω → R ∪ {+∞}. But then, as
(uεm

)m∈N is for each T ∈ (0,+∞) bounded in L2((0, T )×Ω), (uεm
)m∈N converges by Vitali’s

theorem (stating that a.e. convergence and a non-concentration condition in Lp imply in
bounded domains Lp-convergence) for each p ∈ [1, 2) in Lp((0, T )× Ω) to the weak L2-limit
u of (uεm)m∈N. It follows that

Ln+1(
⋂

M∈N
{zM ≥ M − 1}) = Ln+1({u = +∞}) = 0.

Step 4. (Identification of the Limit Equation in esssup (0,t)u > 0):

Let us consider (t, x) ∈ (0,+∞) × Ω such that uεm
(s, x) → u(s, x) for a.e. s ∈ (0, t) and

http://www.river-valley.com
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u(·, x) ∈ L2((0, t)). In the case esssup (0,t)u(·, x) > 0, we obtain by Egorov’s theorem and
assumption 2) that

exp
(
− 1

εm

∫ t

0

gεm
(uεm

(s, x)) ds

)
→ 0 as m →∞.

Step 5. (The case ∂tuε ≥ 0):
Let (t, x) be such that uεm(t, x) → u(t, x) = λ < 0: Then by assumption 1),

exp
(
− 1

εm

∫ t

0

gεm(uεm(s, x)) ds

)
≥ exp

(
−t

max[umin,λ/2] gεm

εm

)
→ 1 as m →∞.

�

Remark 4.3.

1) For a more general result in one space-dimension see the forthcoming paper [21].
2) We also obtain a rigorous convergence result in the case of (higher dimensional) trav-

eling waves with suitable conditions at infinity. In this case our L2(W 1,2)-estimate
(Step 2) implies a no-concentration property of the time-derivative.

5. Applications

Although the limit equation is an ill-posed problem, the convergence to the limit seems to
be robust with respect to perturbations of the ε-system and the scaling: here we mention
two examples of different systems leading to the same limit. Other examples can be found
in mathematical biology (see [16] and [22]).

http://www.river-valley.com
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5.1. The Matkowsky-Sivashinsky scaling

We apply our result to the scaling in [20, equation (2)], i.e.

∂tuN −∆uN = (1− σN )NvN exp
(

N

(
1− 1

uN

))
,

∂tvN = −NvN exp
(

N

(
1− 1

uN

))
,

(10)

where the normalized temperature uN and the normalized concentration vN are non-negative,
(σN )N∈N ⊂⊂ [0, 1) (in the case σN ↑ 1, N → ∞ the limit equation in the scaling as it is
would be the heat equation, but we could still apply our result to uN/(1 − σN )) and the
activation energy N →∞.

Setting umin := −1, ε := 1/N , uε := uN − 1 and

gε(z) :=

 exp

(
1− 1

z+1

ε

)
, z > −1

0, z ≤ −1

and integrating the equation for vN in time, we see that the assumptions of Theorem 4.1 are
satisfied and we obtain that each limit u∞, σ∞ of uN , σN satisfies

∂tu∞ − (1− σ∞)v0∂tχ = ∆u∞ in (0,+∞)× Ω,(11)

where

χ(t, x)

{
∈ [0, 1], esssup (0,t)u∞(·, x) ≤ 1 ,

= 1, esssup (0,t)u∞(·, x) > 1 ,

http://www.river-valley.com
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and in the time-increasing case,

∂tu∞ − (1− σ∞)v0∂tH(u∞) = ∆u∞ in (0,+∞)× Ω,

u∞(0, ·) = u0 + v0H(u0) in Ω,(12)

∇u∞ · ν = 0 on (0,+∞)× ∂Ω,

where v0 are the initial data of v∞. Moreover, χ is increasing in time and u∞ is a supercaloric
function.

5.2. SHS in another scaling with temperature threshold

Here we consider (cf. [2, p. 109–110]), i. e.

∂tθN −∆θN = (1− σN )NYN exp
(

N(1− σN )(θN − 1)
σN + (1− σN )θN

)
χ{θN >θ̄},

∂tYN = −(1− σN )NYN exp
(

N(1− σN )(θN − 1)
σN + (1− σN )θN

)
χ{θN >θ̄}

(13)

where N(1 − σN ) >> 1, σN ∈ (0, 1) and the constant θ̄ ∈ (0, 1) is a threshold parameter at
which the reaction sets in.

Setting umin = −1, ε := 1/(N(1− σN )), κ(ε) := 1− σN , uε := θN − 1,

gε(z) :=

 exp

(
z

κ(ε)z+1

ε

)
, z > θ̄ − 1

0, z ≤ θ̄ − 1

http://www.river-valley.com
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and integrating the equation for YN in time, we see that the assumptions of Theorem 4.1 are
satisfied and we obtain that each limit u∞ of uN satisfies

∂tu∞ − v0∂tχ = ∆u∞ in (0,+∞)× Ω,(14)

χ(t, x)

{
∈ [0, 1], esssup (0,t)u∞(·, x) ≤ 1 ,

= 1, esssup (0,t)u∞(·, x) > 1 ,

and in the time-increasing case,

∂tu∞ − v0∂tH(u∞) = ∆u∞ in (0,+∞)× Ω,

u∞(0, ·) = u0 + v0H(u0) in Ω,(15)

∇u∞ · ν = 0 on (0,+∞)× ∂Ω,

where v0 are the initial data of v∞. Moreover, χ is increasing in time and u∞ is a supercaloric
function.

6. Open questions

The most pressing task is of course to study the existence or non-existence of “peaking” (cf.
Figure 1) of the solution in the negative phase (for the case of one space dimension see the
forthcoming paper [21]). A related question is whether (uε)ε∈(0,1) is bounded in L∞ in the
case of uniformly bounded initial data. Although this seems obvious, it is not obvious how
to prevent concentration close to the interface.

Uniqueness for the limit problem (the irreversible Stefan problem for supercooled water)
in general seems unlikely. One might however ask whether time-global uniqueness holds in
the case that u is strictly increasing in the x1-direction. By the result in [7] for the ill-posed
Hele-Shaw problem, time-local uniqueness is likely to be true here, too.

http://www.river-valley.com
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10 R. MONNEAU and G. S. WEISS

Figure 1. Is it possible for the solution to have a tiny peak traveling at high speed?.

By the result in [7] for the ill-posed Hele-Shaw problem, time-local uniqueness is242

likely to be true here, too.243

Acknowledgment. We thank Stephan Luckhaus, Mayan Mimura, Stefan244

Müller, and Juan J. L. Velázquez for discussions.245

References246

1. Aldushin A. P., Bayliss A. and Matkowsky B. J., Dynamics in layer models of solid flame247

propagation, Phys. D 143(1–4) (2000), 109–137.248

2. Bayliss A., Matkowsky B. J. and Aldushin A. P., Dynamics of hot spots in solid fuel com-249

bustion, Phys. D 166(1–2) (2002), 104–130.250

3. Berestycki H. and Hamel F., Front propagation in periodic excitable media, Comm. Pure251

Appl. Math. 55(8) (2002), 949–1032.252

4. Bonnet A. and Logak E., Instability of travelling waves in solid combustion for high activa-253

tion energy, Preprint.254

5. Dewynne J. N., A survey of supercooled Stefan problems, Mini-Conference on Free and255

Moving Boundary and Diffusion Problems (Canberra, 1990), volume 30 of Proc. Centre256

Math. Appl. Austral. Nat. Univ., pages 42–56. Austral. Nat. Univ., Canberra, 1992.257

6. DiBenedetto E. and Friedman A., The ill-posed Hele-Shaw model and the Stefan problem258

for supercooled water, Trans. Amer. Math. Soc. 282(1) (1984), 183–204.259

7. Duchon J. and Robert R., Évolution d’une interface par capillarité et diffusion de volume. I.260

Existence locale en temps, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1(5) (1984) 361–378.261
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17. Ladyženskaja O. A., Solonnikov V. A., and Ural′ceva. N. N. Linear and quasilinear equations of parabolic

type, Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23.

American Mathematical Society, Providence, R.I., 1967.
18. Langer J. S., Instabilities and pattern formation in crystal growth, Rev. Mod. Phys. 52 (1980), 1–28.

19. Logak E. and Loubeau V., Travelling wave solutions to a condensed phase combustion model, Asymptotic
Anal. 12(4) (1996), 259–294.

http://www.river-valley.com


Home Page

Title Page

Contents

JJ II

J I

Page 18 of 18

Go Back

Full Screen

Close

Quit

20. Matkowsky B. J. and Sivashinsky G. I., Propagation of a pulsating reaction front in solid fuel combustion,
SIAM J. Appl. Math. 35(3) (1978), 465–478.

21. Monneau R. and Weiss G. S., Hidden dynamics and the origin of pulsating waves in Self-propagating
High temperature Synthesis, submitted,
(http://arxiv.org/abs/math.AP/0605543).

22. Satnoianu R. A., Maini P. K., Garduno F. S. and Armitage J. P., Travelling waves in a nonlinear
degenerate diffusion model for bacterial pattern formation, Discrete Contin. Dyn. Syst. Ser. B 1(3)
(2001), 339–362.

R. Monneau, Ecole Nationale des Ponts et Chaussées, CERMICS, 6 et 8 avenue Blaise Pascal, Cité Descartes
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