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Pavel Brunovský
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The book presents a comprehensive exposition of the theory of optimal
decision making in several stages. It shows how to use the theory to
formulate and solve problems in economics, finance and management.
From the reader it requires knowledge of mathematics at the level of
mathematical, economic, finance or management study programs. It can
be used as a textbook in those programs.
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Preface to English Edition

The present text is a free English translation of the book Optimálne
riadenie: Viacetapové rozhodovacie procesy v ekonómii a financiách pub-
lished in 2009 in Slovak. The book has served as a text for the study
program Mathematics of Economs and Finance at Comenius University
in Bratislava. Thanks to the project Preparation of the study of mathe-
matics and informatics at Comenius University in English supported by
the Agency of the Ministry of Education, Science, Research and Sport
of the Slovak Republic for the Structural Funds of EU we obtained an
opportunity to translate the book into English and so, in accord with
the intention of the project, to allow the students to study our program
in English.

This English edition follows the contents of the Slovak book and
uses the same enumeration of theorems and exercises. Nevertheless, the
cultural background of the examples has occasionally been altered albeit
without effect on the solutions. We have also included corrections of all
errors and misprints we learned about during the 6 years of our use of
the book.

Discrete time optimal control theory has received much less atten-
tion in the past than its continuous time counterpart. Some issues of
the former are to our knowledge discussed in the present book for the
first time. This is why we believe that this text may be of interest to a
wider community of readers.

Bratislava, September 2015 Authors
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Preface

A piece of wood floating on the Danube does not have control over the
arm of the river delta it ends up. Fish does. It decides the arm promising
more food or better living conditions for its offsprings. It chooses the
best possibility, or, as we will say, it optimizes. Living organisms differ
from inanimate materia among other things also in their capability to
take decisions. The higher their evolutionary level, the more complicated
decisions they are able to take.

Man as a species on the highest evolutionary level is most advanced
in decision taking. He is distinguished by creativity – he is capable to
take decisions in dilemmas he encountered never before. Sometimes,
his common sense, intuition, is sufficient. At other instances it is more
involved to take the right decision and is virtually impossible without
a more thorough examination. Here mathematics becomes useful. Its
part dealing with decision making and optimization is called operations
research. It encompasses e.g. linear, nonlinear and integer programming,
network optimization etc.

One of the branches of operations research is devoted to problems
in which there is a need to make a sequence of decisions in several stages
rather than a single one. Decision in one stage affects not only the result
but also the constraints for the subsequent decisions. For instance, a
rational and perspectively thinking individual in possession of larger
financial amount lays aside a part for increasing its value in order to
utilize it later. A good example can be found in the Old Testament:
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PREFACE

Joseph ordered to store a part of the crop during the seven fertile years
as a reserve for the coming infertile ones. An analogy to pension saving
is obvious.

The branch of operations research dealing with multistage decision
procedures was born in the second part of the last century. It is mostly
called optimal control theory. This is because, as a rule, the variable
representing the decision factor is called control. Alternatively, the the-
ory is being called theory of optimal processes, dynamic optimization or
dynamic programming. However, the last name is not completely ade-
quate: dynamic programming is only one of the possible approaches to
the problem.

The initial impetus to the birth of the theory came from automation
and aeronautics in USA and the former USSR. This is also the reason
why historically the continuous version developed earlier. This theory
assumes that decisions are being taken continuously in time. The crucial
result, Pontryagin maximum principle (L. S. Pontryagin), was developed
in the USSR. Parallel to the Pontryagin theory, in the USA an alter-
native approach to the solution of optimal control problems has been
developed. It was motivated largely by economic problems. It is at-
tributed mainly to R. Bellman. Unlike Pontryagin’s continuous theory it
focuses primarily to decisions in separated discrete time instants, stages.
It is based on a simple optimality principle and leads to a recursive pro-
cedure for the computation of optimal control, called Bellman dynamic
programming method. Later the relation of dynamic programming to
the Pontryagin maximum principle and to the calculus of variations has
been discovered.

Initially, optimal control theory found its application mainly in engi-
neering disciplines like aeronautics, chemical and electrical engineering,
robotics. In the later decades it has found more and more applications
in economic theory and computational finance, e. g. in macroeconomic
growth theory, microeconomic theory of firm and consumer as well as in
the management of investment portfolios. For an individual saving for
his pension it is of interest to decide into which fund he should allocate
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PREFACE

his savings. In turn, those applications gave origin to further require-
ments on the development of specific components of the theory and have
pushed the theory forward.

There is a number of books of various nature on optimal control
theory. Some of them focus on rigorous presentation of the theory either
in the discrete or in the continuous context, others on applications in
various disciplines.

In our book we deal exclusively with discrete optimal control prob-
lems. As an important component, the book contains a rich spectrum
of both solved and unsolved problems principally from the fields of eco-
nomics and finance. The problems may come from models which are
naturally discrete but may also be a discretization of continous ones.

What are the discrete optimal control problems, we learn in Chap-
ter 1. Chapter 2 deals with dynamic programming, which is a useful
tool for solving discrete problems numerically. One of its subchapters
is devoted to stochastic dynamic programming. Chapter 3 deals with
the maximum principle, which has its origin in the continuous theory.
Although its validity in the discrete theory is limited, it is still a useful
tool for qualitative analysis. The last Chapter 4 consists of appendices
summarizing results from nonlinear programming, difference equations
and probability needed in Chapters 2 and 3.

The book is primarily meant for a reader who would like to master
the basics of discrete optimal control theory in depth. Unlike in many
other textbooks presenting concepts and principles in a rather intuitive
level, this book strives for mathematical rigor and all crucial conclusions
are mathematically justified. Organization of the text allows the reader
to skip some of the proofs, or, to restrict himself to conclusions for
simpler situations. To master the text the reader needs knowledge of the
foundations of mathematical analysis of functions of several variables;
knowledge of probability theory and nonlinear programming being an
advantage, but not a necessity, all needed concepts and conclusions from
those areas are outlined in the appendices.

We strived to illustrate the theory and the tools developed in it on
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PREFACE

a wide spectrum of specific problems originating in economics, business
and finance. Problems of optimal consumption, optimal allocation of
funds into several investment projects, optimal investment into the par-
ticular funds of the pension saving, or several kinds of optimal renewal
problems may serve as examples. As a rule the problems are simplified
to such an extent that their solutions are not overly time consuming.
In such a way theory can be understood better. Realistic problems can
frequently not be solved in such a simple manner, in particular in the
presence of uncertainty. Therefore, the book contains sample problems
exhibiting how theory can be employed to write a computer code capable
to solve more involved problems.

The purpose of some of the examples is to indicate variability of
problems which can be solved by the methods discussed in the book.
They should help the reader to get an intuition to which kinds of prob-
lems the theory can be applied. Simultaneously, in Chapter 1 we discuss
in detail how the problems from practice should be formulated in a way
allowing us to solve them by the presented theory. Some of the problems
appear in several modifications through the text. This helps to compare
various solution methods. The optimal consumption problem may serve
as an example. Extended space is dedicated to it, partially due to its
importance in current dynamic macroeconomic models. A part of the
examples is solved completely in the text, solutions of others are left to
the reader.

Bratislava, February 2009 Authors
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Chapter 1

Introduction to Discrete Optimal

Control Theory

In this chapter we specify the subject of discrete optimal control theory.
We begin by several examples which allow us to comprehend the general
formulation of the standard optimal control problem.

1.1 Examples

Example 1.1. Optimal allocation of resources. An investor
owns capital of initial amount a > 0 and has two alternatives how to
invest it: into oil drills and into real estates. At the beginning of every
year he needs to decide how to allocate his disposable capital into those
two investment alternatives. Capital of amount y, invested into oil drills
yields yearly profit gy with g > 0; invested into real estate, it yields
profit hy with h > 0. Profit is not being invested any more. Invested
capital depreciates by yearly rate 0 ≤ b < 1 in the case of oil drills and
by the rate 0 ≤ c < 1 in the case of real estate. The sum of those
two capitals net of depreciation at the end of each year is the capital to
be invested in the next year. The goal of the investor’s decisions is to
maximize total profit during the planning period of k years.

Label the years of the planning period consecutively by i =
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DISCRETE OPTIMAL CONTROL THEORY

0, . . . , k − 1. Denote xi the amount of the disposable capital at the
beginning of the i-th year. Let ui ∈ [0, 1] be the ratio of the amount of
capital to be invested into oil drills to its total amount xi. That is, from
the amount xi to be invested in the i-th year, the part uixi is invested
into oil drills and the remainder (1 − ui)xi into real estate. This deci-
sion yields at the end of the year profit guixi + h(1 − ui)xi, the amount
xi+1 = buixi + c(1 − ui)xi will remain for investment in the (i + 1)-th
year. The goal of the investment decisions is to

maximize
k−1∑

i=0

[guixi + h(1 − ui)xi] (1.1)

subject to xi+1 = buixi + c(1 − ui)xi, i = 0, . . . , k − 1, (1.2)

x0 = a, (1.3)

ui ∈ [0, 1], i = 0, . . . , k − 1, (1.4)

where a, b, c, g, h are given constants and maximum is to be found with
respect to the variables ui, i = 0, . . . , k − 1 and xi, i = 0, . . . , k.

We have obtained a mathematical programming problem of a par-
ticular structure characteristic for a multistage decision procedure. The
decision procedure (of reallocation and investment of capital in our
case) is divided into stages (years in our case), consecutively labeled
by i = 0, . . . , k − 1. The state of the process at the beginning of the
i- th stage is represented by the state variable xi (capital assigned for
investment). The process is subject to external decisions ui (defining
the allocation of capital between the two investment alternatives) called
control variable. The values of the state and control variables in the i-th
stage determine the revenue of the i-th stage (the i-th summand in the
objective function (1.1)) as well as the value of the state variable at the
beginning of the next (i + 1)-th stage (the right hand side of the dif-
ference equation (1.2)). Let us note that the decision maximizing total
profit need not maximize partial profits of individual stages.

Classification of optimization variables into state and control ones,
a certain separability of the objective function as well constraints in the
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EXAMPLES

form of a difference equation will be present in the next example as well.

Example 1.2. Optimal consumption. Assume that we own capital
the volume of which at the beginning of the i-th month we denote by
xi. During the i-th month the capital xi yields interest rxi. At the
end of each month we can decide which part of the available capital we
consume. Consumption of the amount ui provides us with (discounted)
utility ( 1

1+δ )
i lnui, where δ > 0 being the measure of impatience of

consumption in time.1 We assume that at the beginning of the process
we possess the amount a > 0 of capital. The goal is to determine
consumption during each month in such a way that the value of capital
at the end of the planning period of k months reaches a prescribed
value b ≥ 0 and the total discounted utility of consumption during the
planning period is maximal.

Mathematically, we end up with the problem

maximize

k−1∑

i=0

(
1

1 + δ

)i

lnui (1.5)

subject to xi+1 = (1 + r)xi − ui, i = 0, . . . , k − 1, (1.6)

x0 = a, (1.7)

xk = b, (1.8)

where a, b, δ, r, are given constants and the maximum is sought with
respect to the variables ui, i = 0, . . . , k − 1 and xi, i = 0, . . . , k.

Also in this case the problem can be understood as a k-stage decision
process, with months as stages. The state variable is represented by
xi; the control variable by ui - it should be understood as an input by
the choice of which we influence the development of the process. The

1By the choice of an increasing and concave function lnui as a measure of utility
we express that a unit increase of consumption represents for the consumer a smaller
increase of utility at a higher consumption value than at a smaller one. By the
discount factor we express that the consumer prefers instantaneous consumption to
a later one.
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DISCRETE OPTIMAL CONTROL THEORY

behavior of the process during the transition from the i-th stage to the
(i+1)-th one is described by the difference equation (1.6), the right hand
side of which again depends on xi and ui only – the values of the state
and control variables in the i-th stage. The objective function sums the
discounted utilities of the particular stages, the utility of each particular
stage i depending only on xi and ui.

As in the preceding example, the objective function (1.5) exhibits a
certain separability and the dynamics of the system is described by the
difference equation (1.6), completed by the initial condition (1.7). Unlike
in Example 1.1, the state variable is subject to a terminal condition (1.8)
but we have no constraint on the control variable of type (1.4).

1.2 Standard Form of the Optimal Control

Problem

In this subchapter we formulate a general optimization problem which
covers Examples 1.1 and 1.2 as special cases.

Assume that we have an object the behavior of which we control
in the course of k stages. The state of the system at the beginning of
stage i, i = 0, . . . , k − 1, is described by the state variable xi ∈ Xi. The
behavior of the object in the i-th stage we control by the control variable
ui ∈ Ui, the input to the system. Here Xi is a given set of admissible
states and Ui is the set of admissible values of the control variable in
the i-th stage. The values of xi and ui determine uniquely the value
of xi+1 := fi(xi, ui), where fi is a given function. The yield in the i-th
stage is determined by the value f 0

i (xi, ui) with f 0
i given. We assume

that at the beginning the value of the state variable x0 is equal to a
given value a and we require that xk, the value of the state variable at
the end of the process, belongs to a given set of terminal states C. The
goal is to determine in each stage the value of the control variable ui in
such a way that all the conditions are satisfied and the sum of all yields
of the particular stages is maximal.
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STANDARD FORM OF THE OPTIMAL CONTROL PROBLEM

The problem can be written as follows:

maximize

k−1∑

i=0

f0
i (xi, ui) (1.9)

subject to xi+1 = fi(xi, ui), i = 0, . . . , k − 1, (1.10)

x0 = a, (1.11)

xk ∈ C, (1.12)

ui ∈ Ui, i = 0, . . . , k − 1, (1.13)

xi ∈ Xi, i = 0, . . . , k − 1. (1.14)

Maximum is to be found with respect to the variables ui, i = 0, . . . , k−
1 and xi, i = 0, . . . , k. In this formulation the variables xi and ui
seemingly have the same status. However, observe that by the choice of
the control variables ui the variables xi become uniquely determined as
the solution of the difference equation (1.10) with initial value (1.11).
Both in the terminology and in the solution methods this circumstance is
reflected in the understanding of (1.9)–(1.14) as optimal control problem.

Let us now formulate the problem (1.9)–(1.14) as an optimal control
one. To this end we need to define the concepts of control, its response,
admissible and optimal control.

By a control we call a sequence of values of the control variables
U = {u0, . . . , uk−1} satisfying ui ∈ Ui for all i = 0, . . . , k − 1. By the
response to the control U for a fixed initial value (1.11) we understand
the sequence, X = {x0, . . . , xk}, where the values xi = xi(U) solve the
state equation (1.10) with given control U and initial condition (1.11).
Obviously, the response to a particular control may, but may not satisfy
the constraints (1.12) and (1.14). If it does, then the control is called ad-
missible. This means that an admissible control and its response satisfy
all the constraints of the problem (1.9)–(1.14). The class of admissible
controls we denote by P. The value of the objective function in (1.9)
can now be understood as a function of the control U . Hence, we denote
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DISCRETE OPTIMAL CONTROL THEORY

it by

J(U) :=

k−1∑

i=0

f0
i (xi(U), ui).

The optimal control problem is to find among all admissible controls
U the one for which the objective function J(U) reaches its maximal
value. Such a control is called optimal. Formally, we write the problem
as follows:

max
U∈P

J(U).

Remark 1.1. Problems with minimum instead of maximum can be
rewritten in the standard form by replacing the objective function by its
negative.

Remark 1.2. As a rule, the variable i = 0, . . . , k−1 labeling the decision
stages has commonly the nature of time, therefore we call it accordingly.
In addition to the values of control and state variables, the functions
fi, f

0
i and the sets Ui a Xi (i.e. the data of the problem ) may vary

with the stages as well. Such problems are called non-autonomous. In
case the data do not depend on i, the problem is called autonomous. To
distinguish an autonomous problem from a non-autonomous one will be
particularly important in the next chapter. Observe that Example 1.1
leads to an autonomous problem, whereas Example 1.2 leads to a non-
autonomous one, because f 0

i (xi, ui) = (1 + δ)−i lnui depends on i.

Remark 1.3. Occasionally the constraint (1.13) or (1.14) is absent. In
such case we refer to a problem without control constraints or a problem
without state constraints, respectively. The control and state variables
can then attain arbitrary values from the natural domains of definition
of the functions fi and f0

i . Example 1.1 leads to a problem with control
constraint (cf. (1.4)) but without state constraints. Example 1.2 leads
to a problem without constraints on either control or state. The natural
domain of definition of the function ln which appears in (1.5) limits
the domain of the control variable to real positive ui > 0. In both

14



STANDARD FORM OF THE OPTIMAL CONTROL PROBLEM

the motivating examples the functions fi a f0
i are defined on Euclidean

spaces or their positive sectors and hence ui and xi have a continuous
nature. However, we will encounter also problems in which ui and xi
will be of discrete nature, either due to constraints (1.13), (1.14) or due
to the natural domain of definition of the functions fi and f0

i .

Remark 1.4. The constraint (1.12) concerns the terminal stage. In
case the problem does not include such a constraint, i. e. there are no
restricitions on the terminal value xk, we refer to such a problem as to
a free endpoint problem. In case C consists of a single point, we refer
to a fixed endpoint problem. In all the remaining cases we refer to a
partially restricted endpoint problem. Obviously, Example 1.1 leads to a
free endpoint problem, while Example 1.2 to a fixed endpoint one.

Remark 1.5. In all the motivating examples mentioned in this chapter
both the control and the state variables have a single component only, i.e.
they are one-dimensional. In general, they may be higher dimensional.
Such a problem can be obtained from Problem 1.4; a number of higher
dimensional problems will be encountered in the following chapters.

Remark 1.6. In the standard problem we maximize the sum of yields
from the particular stages which leads to an objective function of form
(1.9). The optimal control problem in this form is being called a
problem in Lagrange form in the literature. However, multistage de-
cision processes may lead to a need to maximize also a function of
the terminal state. In such case the objective function has the form
∑k−1

i=0 f
0
i (xi, ui) +φ(xk), or only φ(xk), where φ is a given function, and

the corresponding problem is called a problem in Bolza form, or in Mayer
form, respectively.

Remark 1.7. Frequently, particularly in economic problems, the yield
fi(xi, ui) from the i-th stage has the form fi(xi, ui) = βiFi(xi, ui), where
Fi(xi, ui) is the yield of the i-th stage and β ∈ (0, 1) is the coefficient
adjusting (discounting) this value to the time of the beginning of the
process, i.e., to the time i = 0. The factor β can reflect the loss of value
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DISCRETE OPTIMAL CONTROL THEORY

caused by inflation, by not having invested the amount to interest bear-
ing deposit with interest r = 1

β − 1 for the i-th stage (cf. Problem 1.17),

as well as propensity to prefer earlier consumption, if β = 1
1+δ , as in the

optimal consumption problem in Example 1.2. The problem in which
the objective function is in the special form J =

∑k−1
i=0 β

iFi(xi, ui) we
call problem with discount factor. Since the value of the objective func-
tion expressed in this way measures the present value of future yields,
it is sometimes called present value objective function.

Obviously, problems with discount factor are non-autonomous in
the sense of Remark 1.2. If, however, the problem is non-autonomous
solely because of discount factor, we call the problem autonomous with
discount factor. Special treatment of such problems is justified because
they share many essential features with autonomous ones. An example
of an autonomous problem with discount factor is Example 1.2.

Remark 1.8. In the standard problem (1.9)–(1.14) the number k of
stages is fixed. Therefore, we call it a fixed time problem. However,
there are problems in which k is one of the variables with respect to
which maximum is sought. Such problems are called free time prob-
lems. In free time problems, each finite sequence of control variables
of arbitrary length is a control. Economic applications frequently lead
to infinite horizon problems, in which infinite sequences serve as con-
trols. We encounter free time and infinite horizon problems in the next
chapter. Both the Problems 1.1 and 1.2 are fixed time problems.

We conclude this subchapter by a remark on notation and formula-
tion of problems.

Remark 1.9. It is frequently comfortable to call a sequence {j, . . . k}
an interval and denote it by [j, k]. Sometimes we will shorten the formu-
lations by replacing the terms maximize, resp. minimize by max, resp.
min and drop completely the formulation subject to. The conditions we
either separate from the objective function by a colon or put them in a
new row below the objective function.
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FURTHER EXAMPLES

1.3 Further Examples

Now, we present several examples documenting the variability of prob-
lems admitting optimal control formulation. We begin by a simple prob-
lem in which the admissible values of both control and state variables
belong to finite sets.

Example 1.3. Container transportation. A firm transports
containers from the railway station to its storage. It has a lorry which
can be sent to the railway station at most once a day and loaded by at
most 2 containers. The firm is informed that in the days of the coming
week it will receive in a row 1, 3, 1, 2, 1 containers for transportation.
A trip to the station costs EUR 70, penalty for an uncollected container
costs EUR 50 per day. No container remained from the previous week
and at the end of the week all the containers have to be transported.
It should be decided at which days the lorry should be ordered so as to
make the sum of the costs of the drives and penalties minimal.

In this problem the stages correspond to the days of the week to be
labeled by i = 0, . . . , 4. We denote by

• xi the number of containers waiting from previous days for trans-
port from the railway station,

• ai the number of containers received by the railway station in the
morning of i-th day,

• ui the number of containers we decide to transport from the railway
station in the afternoon of i-th day.

Since at most two containers per day can be transported from the railway
station, we have ui ∈ {0, 1, 2}. Obviously, the decision ui = 0 means no
lorry ride and, thus, no transport cost, whereas the decisions ui = 1 or
ui = 2 mean the lorry ride to the station of the cost of 70. After the
ride, at the end of day i, xi+1 := xi + ai − ui containers remain waiting
for transportation. The costs for this day will consists of the penalty
50(ai + xi − ui) for the waiting containers and 70sgn(ui) for the lorry
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ride. Here sgn(u) denotes the function which equals 1 for u positive and
0 for u = 0.

Wee have obtained the problem

minimize

4∑

i=0

[70sgn(ui) + 50(ai + xi − ui)] (1.15)

subject to xi+1 = xi + ai − ui, i = 0, . . . , 4, (1.16)

x0 = 0, x5 = 0, (1.17)

ui ∈ {0, 1, 2}, (1.18)

xi ≥ 0, i = 0, . . . , 4, (1.19)

where the constraint xi ≥ 0 expresses the condition that the number of
transported containers cannot exceed their actual number at the station,
and the condition x5 = 0 means that at the end of the week all containers
have to be transported from the station.

This problem represents a fixed time non-autonomous problem with
control and state constraints. Note that from the conditions of the prob-
lem it follows that the values of the state variable can only be nonnega-
tive integers which are bounded by the number of all received containers
from above.

The following two examples are particulary interesting in that the
stages, unlike in the previous examples, do not represent time instants.
The first example belongs (similarly as Example 1.1) again to the wide
class of resource allocation problems. The second one represents an
extremely simple case of a wide class of optimal renewal problems. It is
instructive also because the control variable values have a logical rather
than quantitative nature.

Example 1.4. Optimal allocation of funds. There are k in-
vestment plans how to use funds of amount S. An amount ui invested
into plan i yields revenue hi(ui), i = 0, . . . , k − 1. It should be decided
how to allocate the funds among the particular investment plans so as
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to maximize the total revenue, i.e.,

maximize
k−1∑

i=0

hi(ui) subject to
k−1∑

i=0

ui ≤ S.

Note that while in the previous examples the decision process was clearly
divided into time stages, in this problem this is not the case. Therefore,
in order to put this problem into the optimal control form we need to
replace time by something else: we will understand the simultaneous
decision about investment into k plans as a sequence of decisions, first
into the first plan, then into the second plan etc.

Before the i-th stage investment decision, i = 0, . . . , k − 1, we take
into account the amount xi of funds which is still available for invest-
ment. The decision consists in the choice of the amount ui of funds to
be invested into plan i. Afterwards xi+1 = xi − ui of funds remains for
investment into further plans. The condition x0 = S reflects the total
amount of funds and the condition xk ≥ 0 secures that in none of stages
we invest more than what is currently available.

We obtain the optimal control problem

maximize

k−1∑

i=0

hi(ui) (1.20)

subject to xi+1 = xi − ui, i = 0, . . . , k − 1, (1.21)

x0 = S, (1.22)

ui ≥ 0, (1.23)

xk ≥ 0. (1.24)

This is a fixed-time non-autonomous problem with control constraints,
without state constraints, with partially fixed endpoint, where C = {x :
x ≥ 0}.

Example 1.5. Optimal machine maintenance. Fruit to be pressed
arrives packed in boxes, an open box has to be pressed immediately. The
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pressing machine clogs, depending on the amount pressed its productiv-
ity decreases. More precisely, after each pressed box the pressing time
of the subsequent one increases by 20 minutes. Cleaning of the press-
ing machine takes 30 minutes. Altogether, k boxes have to be pressed.
It should be decided whether and, if yes, after which box the machine
should be cleaned so that the required number of boxes is processed in
the shortest possible time. We assume to start with a ≥ 0 boxes pressed
since the last cleaning and to end with the machine possibly uncleaned.

We introduce the following notations:
i – the sequence number of the box to be processed, i = 0, . . . , k − 1,
xi – the number of processed boxes after the last cleaning,
ui = C – if the machine is to be cleaned before pressing the i-th box,
ui = N – otherwise.

In this example the i-th stage represents the part of the process
beginning after the (i − 1)-th box has been pressed and ending with
completion of pressing the i-th one. We now describe the time sequence
of the particular steps in the i-th stage. At first we have the information
xi about the clog level of the machine. Then, we choose the value of
ui, i.e. we decide whether to clean it (ui = C) or to continue pressing
(ui = N). If ui = C is chosen, then the machine will be cleaned,
otherwise not. Then, pressing of the i-th box follows and we remember
that after the last cleaning the amount of xi+1 boxes has been pressed,
where xi+1 = xi + 1, if we have not cleaned, xi+1 = 1 otherwise. We
also record the time losses: 30 in the case of cleaning, 20xi otherwise.
Obviously x0 = a. Our goal is to find such values of ui that the total
time loss is minimal.

We have obtained the optimal control problem

minimize

k−1∑

i=0

f0(xi, ui),

subject to xi+1 =

{
xi + 1, if ui = N,

1, if ui = C,
i = 0, . . . , k − 1,

x0 = a.
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where

f0(x, u) =

{
30, if u = C,
20x, if u = N.

This is a free endpoint autonomous problem without control and state
constraints. The control variable has a logical nature, the values of the
state variable are positive integers.

1.4 Basic Tasks in Discrete Optimal Control

Theory

Obviously, the primary goal of optimal control theory is to develop effec-
tive methods to find solutions of problems – optimal controls. However,
what should we understand by the solution method? As we will see,
even fairly simple problems often do not allow a closed form solution.
Existence of powerful computing tools may lead to the idea that by
discretization of all continuous quantities the problem could be trans-
formed to optimization of a function with finite number of values which
could be solved a systematic and exhaustible search of all candidates.
We show that this road is not feasible because of the prohibitively large
extent of the resulting problem. The difficulties of this approach as well
as possible ways out we demonstrate on the problem of optimal machine
maintenance (Example 1.5).

Example 1.6. Optimal machine maintenance from Exam-
ple 1.5. This problem is naturally discrete, the control {ui}k−1

i=0 is of
logical nature with ui ∈ {C,N}. Thus the total number of admissible
controls for this problem is 2k. The exhaustive search method would
therefore be of exponential complexity. Indeed, it would require to com-
pute the value of the objective function for each admissible control. For
large values of k this leads to a problem which cannot be mastered even
by the most powerful computing technology. It is therefore natural to
look for more sophisticated solution procedures. Let us try to do so.
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Recall that the exhaustive search method requires a complete com-
putation of the objective function to be repeated in each step, even if e.g.
merely the last member uk−1 of the sequence {ui}k−1

i=0 has changed. This
shortcoming can be taken care of by computing the objective function
“from behind”. For instance, when comparing the controls {C, . . . , C,C}
and {C, . . . , C,N} we can use that for both controls the state xk−1 will
be the same (xk−1 = 1) and in this state it is optimal not to clean the
machine. It is therefore sufficient to remember that as long as the ma-
chine is in state xk−1 = 1 before pressing the last box, the smallest time
loss from pressing it is 20 minutes. This is the case if the machine is
not being cleaned, i.e. uk−1 = N . Analogically it can be concluded that
if the machine is in state xk−1 = 2 before pressing the last box, it is
optimal to clean (uk−1 = C) and the smallest time loss being 30 min.
We can equally compute the smallest possible time loss (to be denoted
by Vk−1) before pressing the last box and the optimal value uk−1 for all
remaining values of xk−1. One can similarly proceed further: if, e.g.,
the machine is in state xk−2 = 1 and we clean it, the least possible time
loss is 30+20 minutes. Indeed, by cleaning, the machine gets into state
xk−1 = 1 for which the smallest possible loss is 20 min. In case we do
not clean the machine, the smallest losses from pressing the last two
boxes will be 20+30 min. We see that in this case there are two optimal
controls with values uk−2 = C as well as uk−2 = N .

Solution of the problem for x0 = 1 and k = 3 by the exhaustive
search method is illustrated in Figure 1.1. The nodes represent the
states of the machine (i.e. xi) and the smallest losses from pressing
the remaining boxes. In each node we can decide whether to clean the
machine (dashed arrow) or not (full arrow). The number attached to the
arrow gives additional time needed to press the next box. By the bold
arrow we represent the optimal decision. In this algorithm decisions have
to be made in all 2k− 1 nodes. Complexity of the algorithm is therefore
exponential, although computation of the value of the objective function
is simpler.

However, note that in the last row the decision in the state xk−1 = 1
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(1, 0) (2, 0) (1, 0) (3, 0) (1, 0) (2, 0) (1, 0) (4, 0)

(1,20) (2,30) (1,20) (3,30)

(1,50) (2,50)

(1,70)
30

30 30

30 30 30 30

20

20 40

20 40 20 60

Figure 1.1: Solution of the optimal machine maintenance problem, ex-
ponential algorithm

appears twice and, naturally, is in both cases the same. Indeed, if the
press is in state xi before pressing the i-th box, subsequent decisions
will not depend on the way it got into that state. As we will see later,
this “Markov” property is crucial for the dynamic programming solution
method to be explained in the next chapter. In our case it implies that all
the nodes with the same state in one row can be merged. This approach
to the solution is illustrated in the scheme of Figure 1.2. Note that for
each particular i, the value of xi has to belong to the set {1, . . . , i+ 1}.
The number of mutually distinct nodes in which a decision has to be
taken is therefore (k+1)k

2 , the proposed algorithm thus has polynomial
complexity. For a large value of k the computation can be significantly
less time consuming.

Note that for problems in which the variables xi a ui are of continous
nature, the exhaustive search algorithm is equivalent to the search of
the extreme of a function of k variables, whereas the newly proposed
algorithm searches in each stage the minimum of a function of a single
variable employing the relation (cf. Problem 1.2)

max
x1,x2

[g(x1) + h(x1, x2)] = max
x1

[g(x1) + max
x2

h(x1, x2)]. (1.25)
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Figure 1.2: Solution of the optimal machine maintenance problem, poly-
nomial algorithm

Discrete optimal control theory attempts to develop methods which
would (similarly as in the above example) utilize the special nature of
optimal control problems and thus allows to solve the problems effec-
tively.

This is not all, though. As a further goal the theory studies proper-
ties of optimal controls. This means that we try to conclude something
about the optimal control directly from the nature of the problem with-
out actually knowing its numerical values. This approach is similar to
the one of stability theory of linear differential equations: we can com-
pletely decide about stability of an equilibrium from the coefficients of
the equation without having to compute its solutions. This is important
not only because we are rarely able to compute the optimal control but
also because frequently it helps to restrict radically the set of candidates.

A reader familiar with nonlinear programming may recognize the
analogy with Kuhn-Tucker conditions. This analogy is justified, nec-
essary conditions of optimality we develop in Chapter 3 are in essence
Kuhn-Tucker conditions utilizing the specific structure of optimal con-
trol problems.
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1.5 Exercises

Exercise 1.1. Using an arbitrary method solve the problem from
Example 1.1 about optimal allocation of resources for the case k =
2, b = 0.7, c = 0.4, g = 2, h = 2.5 and justify the correctness of the
solution.

Exercise 1.2. Under the assumption of existence of all maxima in
(1.25) prove equality (1.25).

Exercise 1.3. Show that an optimal control problem in Mayer form
can be transformed to a problem in Lagrange form and vice versa. Hint:
for the proof of the reverse implication introduce an additional state
variable.

Exercise 1.4. Consider the optimal control problem (1.9)–(1.14) with
additional condition

k−1∑

i=0

gi(xi, ui) = 0.

Because of this condition the problem does not have the standard form.
By introducing an additional variable reformulate the problem in a stan-
dard form. (Hint: see Example 1.4 on the optimal allocation of funds.)

Exercise 1.5. Optimal herd-keeping at the ranch. A rancher
Pacho keeps a herd of cattle with a units. If he sells y units at an annual
market he gets for them φ(y); the rest reproduces b > 1 times. Pacho
plans to ranch for 10 years and naturally wants for these 10 years achieve
the greatest possible profit.

Denote xi the state of the herd before the market in the i-th year
and formulate the problem as an optimal control problem in the two
variants: in the first one, denote ui ∈ [0, 1] the proportion of herd that
Pacho brings to the market in the i-th year; in the second one denote
ui the number of units of cattle Pacho brings to the market in the i-th
year. Discuss the advantages of each of these two formulation options
to this situation.
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Exercise 1.6. Compare both formulations of the problem from the
previous exercise with Example 1.2. Reformulate the problem from Ex-
ample 1.2 in a form, where the control expresses a proportion of the
capital for consumption. Describe the nature of the problem thus for-
mulated.

Exercise 1.7. Transport operator. Formulate the following problem
as an optimal control one. Try to guess its solution.
For the coming (5 days) week, the transport operator expects the arrival
of 10, 3, 7, 2, 5 vans in the consecutive days, which should be unloaded.
The vans are unloaded by a team which unloads a van in two hours. In
case the team works more than 8 hours in one day, for each additional
hour it receives extra payment of 15 EUR. For a van which failed to be
unloaded in the day of its arrival a penalty of 20 EUR daily has to be
paid. It should be decided what number of vans which day should be
unloaded in order to minimize the sum of extra payments and penalties.
It is assumed that the team works even numbers of hours a day (or,
equivalently, that from one day to another no van remains partially
loaded).

Exercise 1.8. Formula 1. In the Formula 1 race, the average time
passing one round increases depending on the wear of tires. Suppose that
the additional time can be expressed in seconds by 0.001n2, where n is
the number of full rounds from the last tire replacement. Replacement
takes 10 seconds. When is it worth to replace the tires? Formulate in a
standard form of discrete optimal control problem.

Exercise 1.9. Cash holding optimization. The First Bank of Šarǐs
with headquarters in Prešov has to take care that its branch in Snina
has enough cash for withdrawals of its clients. For the next week it
received requests for large withdrawals (in thousands of EUR) given by
Table 1.1.

In the case of need, cash is supplied by being driven from the headquar-
ters to the branch office before its opening hours. A supply ride costs
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Table 1.1: Cash withdrawal requests

Day Mo Tu We Th Fr

Withdrawal 200 250 130 420 310

100 EUR independently of the amount of cash driven. For safety reasons
it is not allowed to transport more than 1 mil. EUR at once. Holding
excessive amount of cash in the branch office overnight leads to losses of
the bank because it can not be placed to the interbank market. Assume
that the loss is 0,02% per day. Which days should the cash be supplied?
Formulate as a standard discrete optimal control problem.

Exercise 1.10. Vans unloading. Tomorrow morning the operator
receives 10 vans of deteriorating raw material which has to be processed
by 3 days. There are losses in the process of unloading: if 3 vans a
day or less are unloaded, the loss is 5%; if 4 resp. 5 vans (maximum
possible) a day are unloaded, the loss is 10%, resp. 15% . On the other
hand, if not unloaded, the material deteriorates: 10% during the first
and 20% during the second night. Formulate as a standard discrete
optimal control problem.

Exercise 1.11. Optimal replacement of a car. Let ψ(x) resp.
ϕ(x) be the value resp. cost of maintenance of a certain type of car
of age x. Assume that during the planning horizon k at the end of
which we sell our car the same type of car continues to be produced and
its price and maintenance costs does not change. It should be decided
when to replace our car by a new one in such a way that the total costs
during the planning horizon k are minimal. We further require that we
never hold a car for more than 5 years and that the replacement of the
car takes place at the beginning of the year. Formulate as a standard
discrete optimal control problem.
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Exercise 1.12. Optimal scheduling of general repairs. The
cost of general repair (GR) of a machine is 1 000 EUR. By using the
machine its quality deteriorates which leads to losses due to defective
products. Those losses can be estimated by 200(n + 1) EUR per year,
where n is the number of entire years elapsed from the last GR. When
should the machine be scheduled for GR if we would like to use it for 5
years and the most recent GR was yesterday? Formulate as a standard
discrete optimal control problem.

Exercise 1.13. Harvesting operator. The harvesting operator has
to harvest crop from a 10 hectares field in three days. He is able to
harvest an area of five hectares per day, but the speed of harvesting
increases the grain losses as follows:
3 hectares or less of harvesting per day, the loss is negligible,
4 hectares of harvesting per day, the loss is 5 percent,
5 hectares of harvesting per day, the loss is 15 percent.
However, the losses also increase because the grain matures and drops
out from ears, as follows:
if harvested the first day, the loss is 10 percent,
if harvested the second day, the loss is 15 percent,
if harvested the third day, the loss is 20 percent.
Assuming that the two types of daily losses are added, the goal is to
determine, what area of the field has to be harvested each day in order
that the total losses are minimal. Formulate as a standard discrete
optimal control problem.

Exercise 1.14. Optimal scheduling of orange orders. The
grocer orders oranges from the wholesaler for the months of September,
October and November. The wholesale and retail prices are given by
Table 1.2. The grocer estimates monthly demands to be consecutively
2, 3 and 4 tons. In his sale stock the grocer can store at most 3 tons. If
he wants to store more he has to rent a store, the price per month and
capacity of which is 1000 EUR and 4 tons, respectively. At the begin of
September he has a stock of 1 ton, at the end of November his sale stock
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should be empty. The deliveries from the wholesaler take place at the
beginnings of the months in entire tons only. Formulate as a standard
discrete optimal control problem.

Table 1.2: Wholesale and retail prices of oranges

September October November

Wholesale price (EUR/kg) 0.5 1 1.5

Retail price (EUR/kg) 1 1.5 2

Exercise 1.15. Formulate the following modification of Example 1.5
into an optimal control problem: at the beginning of the process the
machine is clean and at the end it has to be cleaned.

Exercise 1.16. Optimal allocation of time between work and
study. Each semester a university student decides how to partition his
time between study (e.g. attendance of lectures) and work for earning
money. He faces a similar dilemma after graduation as well. His level
of education increases his salary in the future but the level of education
decreases in time by a constant rate. The goal is to maximize the total
discounted earnings during his entire planning period. Formulate as a
standard discrete optimal control problem. Try to specify in more detail
the nature of the functions of the formulation (increasing, linear, convex)
in such a way as to reflect reality most adequately.

Exercise 1.17. In the i-th period (i > 0) we receive an income of
D units. What is its present value (at the zero period), if we assume
that during one period, one unit earns interest rate r? The result of this
exercise was used in Remark 1.7.
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Chapter 2

Dynamic Programming for

Discrete Problems

Life must be lived forward
and understood backwards.

Soren Kierkegaard.

In this chapter we deal with the first approach to optimal control prob-
lems called dynamic programming. In essence it consists in an imbedding
of the problem to be solved into a family of truncated problems. The
solution of the original problem is obtained by solving consecutively
truncated optimization problems, using the solution of a truncation in
the next step. Such a procedure has been employed in Example 1.6 solv-
ing the problem of optimal maintenance of a machine from Example 1.5.
It results in a formula called Bellman’s dynamic programming equation.
By its use we can achieve essential savings compared to the exhaustive
search method.

We first develop the dynamic programming equation for fixed time
problems. Then we extend this tool to other types of problems. In the
last subsection we discuss problems subject to random effects. Such
problems we call stochastic optimal control problems.
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2.1 Problems with Fixed Terminal Time

Consider a fixed time problem which differs from the standard one (1.9)–
(1.14) only in the labeling of the initial state. That is, we consider the
problem

maximize J(x,U) :=

k−1∑

i=0

f0
i (xi, ui), (2.1)

subject to xi+1 = fi(xi, ui), i = 0, . . . , k − 1, (2.2)

xi ∈ Xi, i = 0, . . . , k − 1, (2.3)

ui ∈ Ui, i = 0, . . . , k − 1, (2.4)

x0 = x, x is fixed in X0, (2.5)

xk ∈ C. (2.6)

Recall that by a control we understand a sequence U = {u0, ..., uk−1},
where ui ∈ Ui, for all i = 0, . . . , k−1. By the response X = {x0, . . . , xk}
to the control U we understand the solution of the state equation (2.2)
for the chosen U and the given initial state x0 = x at time 0. In case the
response X = {x0, . . . , xk} to the control U satisfies all constraints, i.e.
xi ∈ Xi, i = 0, . . . , k − 1 a xk ∈ C, the control U is called admissible.

2.1.1 Imbedding of the Problem and the Value Function

Referring to the initial time j = 0 and the initial state x0 = x we
denote the problem (2.1)–(2.6) as D0(x) and call it as problem of optimal
transition from the point x to the set C on the interval [0, k]. We imbed
it into the system of problems

D = {Dj(x) : j ∈ [0, k − 1], x ∈ Xj},
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where Dj(x) is the problem

maximize Jj(x,Uj) :=

k−1∑

i=j

f0
i (xi, ui) (2.7)

subject to xi+1 = fi(xi, ui), i = j, . . . , k − 1, (2.8)

xi ∈ Xi, i = j, . . . , k − 1, (2.9)

ui ∈ Ui, i = j, . . . , k − 1, (2.10)

xj = x, x is fixed in Xj , (2.11)

xk ∈ C. (2.12)

This problem we call problem of optimal transition from the point x to
the set C on the interval [j, k]. A control Uj = {uj , . . . , uk−1}, ui ∈
Ui, (i = j, . . . , k − 1) is called admissible in case its response Xj =
{xj , xj+1, . . . , xk} with initial point xj = x satisfies the constraints xi ∈
Xi (i = j, . . . , k − 1) and xk ∈ C. The class of admissible controls for
the problem Dj(x) we denote by Pj(x).

For each j ∈ [0, k − 1] and x ∈ Xj define Γj(x) as the set of those
u ∈ Uj , for which there exist a Uj = {uj , . . . , uk−1} ∈ Pj(x) such that
uj = u. Obviously, for some j, x, the set Γj(x) can be empty. On the
other hand, in case of a free endpoint problem without state constraints,
Γj(x) = Uj .

The lemma below establishes a crucial property of admissible con-
trols for the system of problems D. Roughly speaking, it says that a
truncation of an admissible control is admissible for the truncated prob-
lem and that a concatenation of admissible controls is admissible for the
concatenation of the problems. At the same time it provides a formula
for a recurrent computation of the objective function.

Lemma 2.1. For every j ∈ [0, k − 2] and x ∈ Xj one has: Uj =
{uj , uj+1, . . . , uk−1} ∈ Pj(x) if and only if uj ∈ Γj(x) and Uj+1 =
{uj+1, . . . , uk−1} ∈ Pj+1(fj(x, uj)). Moreover, for the objective func-
tion one has:

Jj(x,Uj) = f0
j (x, uj) + Jj+1(fj(x, uj),Uj+1). (2.13)
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Proof: The first part of the lemma is obvious, the second part, i. e.
(2.13), is the consequence of the additive nature of the objective function.

Thanks to this lemma we can utilize the notation

Uj = {uj ,Uj+1}.

From the lemma it follows that given ūj ∈ Γj(x) the set of all admissible
controls for the problem Dj+1(fj(x, ūj)) can be obtained from those
admissible controls for the problem Dj(x) the first term of which is
uj = ūj , by dropping the first term. Formally, we have

Corollary 2.1. For each j ∈ [0, k− 2], x ∈ Xj and ūj ∈ Γj(x) one has:

Pj+1(fj(x, ūj)) = {Uj+1 : {ūj ,Uj+1} ∈ Pj(x)}. (2.14)

Below we assume that the following assumption about the existence
of optimal controls is satisfied:

Assumption 2.1. For each j ∈ [0, k − 1], x ∈ Xj the following holds:
if there is an admissible control for Dj(x), then there exists an optimal
control as well, i.e. there exists an Ûj, for which

max
Uj∈Pj(x)

Jj(x,Uj) = Jj(x, Ûj).

We adopt the convention that the maximum of a function over an
empty set is −∞ and define the value function as the maximum of the
objective function as follows:

Definition 2.1. For each j ∈ [0, k − 1] define Vj : Xj → [−∞,∞) by

Vj(x) = max
Uj∈Pj(x)

Jj(x,Uj).

The function Vj is called value function for the problem Dj := {Dj(x) :
x ∈ Xj} and the sequence of functions V = {V0, . . . , Vk−1} is called value
function for the system of problems D.
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Obviously, because of Assumption 2.1, Vj(x) is finite for those j, x, for
which Pj(x) 6= ∅. Then Vj(x) = Jj(x, Ûj), where Ûj is the optimal
control from Assumption 2.1. However, because of our convention, the
function V is defined for all j ∈ [0, k − 1], x ∈ Xj .

Let us note that Assumption 2.1 is merely technical, it simplifies
the justification of the dynamic programming equation. The dynamic
programming equation holds also without this assumption, however in
this case, the maximum is replaced by supremum in Definition 2.1 and,
consequently, in Theorem 2.1 as well.

2.1.2 Dynamic Programming Equation as a Necessary

and Sufficient Optimality Condition

From the definition of the value fuction V it follows

Vk−1(x) = max
Uk−1∈Pk−1(x)

Jk−1(x,Uk−1) = max
uk−1∈Γk−1(x)

f0
k−1(x, uk−1),

(2.15)
because Uk−1 = {uk−1}. Similarly, for j = 0, . . . , k − 2, we obtain

Vj(x) = max
Uj∈Pj(x)

Jj(x,Uj)

= max
Uj∈Pj(x)

[f0
j (x, uj) + Jj+1(fj(x, uj),Uj+1)]

= max
uj∈Γj(x)

max
Uj+1∈Pj+1(fj)

[f0
j (x, uj) + Jj+1(fj(x, uj),Uj+1)]

= max
uj∈Γj(x)

[f0
j (x, uj) + max

Uj+1∈Pj+1(fj)
Jj+1(fj(x, uj),Uj+1)]

= max
uj∈Γj(x)

[f0
j (x, uj) + Vj+1(fj(x, uj))], (2.16)

where Pj+1(fj) := Pj+1(fj(x, uj)). Here we have consecutively used the
definition of the value function in the first, formula (2.13) in the second,
formula (2.14) in the third, formula (1.25) in the fourth and, finally, the
definition of the value function again in the fifth equation.
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In addition, if we define Vk(x) = 0 pre x ∈ C, we can synthetize (2.15)
a (2.16) into the equality

Vj(x) = max
uj∈Γj(x)

[f0
j (x, uj) + Vj+1(fj(x, uj))], j = 0, . . . , k − 1, (2.17)

to be called Bellman’s dynamic programming equation (DPE). In the
following theorem we will see that Bellman’s equation is not only a
necessary but also a sufficient condition of optimality.

Theorem 2.1. The function V is the value function for the system of
problems D if and only if the following identities are satisfied:

Vj(x) = max
u∈Γj(x)

[f0
j (x, u) + Vj+1(fj(x, u))], (2.18)

for j = 0, . . . , k − 1, x ∈ Xj and

Vk(x) =

{
0, for x ∈ C,

−∞, for x /∈ C.
(2.19)

Proof: The necessity part has already been proved. The sufficiency
part will be proved by induction.

The claim obviouly holds for j = k−1: if Vk−1(x) solves DPE, then

Vk−1(x) = max
u∈Γk−1(x)

f0
k−1(x, u) = max

Uk−1∈Pk−1(x)
Jk−1(x,Uk−1),

thus Vk−1 is the value function.

Let now the theorem hold for i = j + 1, . . . , k− 1. We would like to
prove that it holds for i = j, . . . , k−1 as well. Let Vj , Vj+1,. . . , Vk satisfy
DPE, x ∈ Xj . From the induction assumption it follows that Vj+1,. . . ,Vk
are the value functions for the corresponding problems. It should be
proved that Vj is the value function for Dj . Suppose the contrary, i. e.
Vj is not the maximal value of the objective function for Dj(x). Then,

35



DYNAMIC PROGRAMMING

there exists an admissible control Ūj such that Jj(x, Ūj) > Vj(x). This
means

Vj(x) < Jj(x, Ūj)
= f0

j (x, ūj) + Jj+1(fj(x, ūj), Ūj+1)

≤ f0
j (x, ūj) + Vj+1(fj(x, ūj))

≤ max
uj∈Γj(x)

[f0
j (x, uj) + Vj+1(fj(x, uj))],

the inequality in the third row having been obtained by the use of the
induction assumption. The resulting inequality contradicts Vj , Vj+1, . . .
to satisfy DPE, hence Vj is the value function.

The dynamic programming equation is a recurrent relation. Begin-
ning with the condition for Vk, DPE provides a possibility to compute
consecutively the value function Vi for all i = k − 1, ..., 0. The following
example serves as an illustration.

Example 2.1. By the dynamic programming method we find the value
function for the problem:

maximize
1∑

i=0

(2xiui − u2
i − 2x2

i )

subject to xi+1 = xi + ui, i = 0, 1,

x0 = a,

where a is given.
Because this is a free endpoint problem, V2(x) = 0 for all x.

For j = 1, from DPE we obtain

V1(x) = max
u

(2xu− u2 − 2x2) = −x2,

where in the last equality we have used the fact that for each fixed x
the function 2xu − u2 − 2x2 is concave in u and achieves its maximum
at u = x. We denote this control value by v1(x). By the symbol v1(x)
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we thus denote the solution of DPE for k = 1 and given x. We can then
write v1(x) = u1 = x.

For j = 0 we obtain

V0(x) = max
u

(2xu− u2 − 2x2 + V1(x+ u))

= max
u

(2xu− u2 − 2x2 − (x+ u)2)

= max
u

(−2u2 − 3x2) = −3x2.

Similarly as in the previous case the last equality holds because for every
fixed x the function −2u2−3x2 is concave in u and achieves its maximum
at u = 0, hence v0(x) = 0, for every x.

Because the functions V2(x), V1(x) a V0(x) have been obtained by
solving DPE, by Theorem 2.2 they constitute the value function and
by its definition V0(a) = −3a2 is the maximal value of the objective
function of the problem.

Note that solving this problem with the help of DPE, in additon
to the value function we have obtained also the functions v0(a) = u0 =
0 and v1(x1) = u1 = x1 as solutions of the particular maximization
problems. By these functions we can generate the control Û = {0, a}
and its response X̂ = {a, a, 2a} in such a way that first we determine

v0(a) = 0, and thus x1 = a+ v0(a) = a

and then
v1(a) = a, and thus x2 = a+ v1(a) = 2a.

By evaluating the value of the objective function in this control and its
response we obtain J(a, Û) = (−2a2) + (2a2 − a2 − 2a2) = −3a2. Hence
J(a, Û) = V0(a) and it follows that Û is the optimal control for this
problem.

2.1.3 Principle of Optimality and Feedback Control

In Example 2.1 we have shown that the control generated by the func-
tions vi(x) is optimal for the given problem. Now we show that this
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conclusion is not occasional and that one can generate optimal controls
by the functions solving the maximization problem of DPE in general.
To this end further concepts and auxiliary arguments are needed.

A subset of the set Γj(x) of those u ∈ Γj(x) for which there exists an
optimal control Ûj = {ûj , . . . } with ûj = u, we denote by Γ̂j(x). Note
that due to Assumption 2.1 on the existence of an optimal control, one
has Γ̂j(x) 6= ∅ if Γj(x) 6= ∅.

The following theorem adapts Lemma 2.1 to optimality. Roughly
speaking, it claims that a truncation of an optimal control is optimal
and, in addition, that a concatenation of optimal controls is optimal as
well. The first part of this claim is called Bellman’s optimality principle.

Theorem 2.2. For every j ∈ [0, k − 2] and x ∈ Xj one has: Ûj =
{ûj , Ûj+1} is an optimal control for the problem Dj(x) if and only if Ûj+1

is an optimal control for the problem Dj+1(fj(x, ûj)) and ûj ∈ Γ̂j(x).

Proof: First, we prove Bellman’s optimality principle, where the op-
timality of Ûj+1 will be proved by contradiction. Suppose Ûj+1 is not
optimal for the problem Dj+1(fj(x, ûj)). Then, there exists an admissi-
ble control Ūj+1 for the problem Dj+1(fj(x, ûj)) such that

Jj+1(fj(x, ûj), Ūj+1) > Jj+1(fj(x, ûj), Ûj+1).

We define another control for the problem Dj(x) by Ūj = {ûj , Ūj+1}. By
Lemma 2.1, this control is admissible for Dj(x) and one has

Jj(x, Ūj) = f0
j (x, ûj) + Jj+1(fj(x, ûj), Ūj+1)

> f0
j (x, ûj) + Jj+1(fj(x, ûj), Ûj+1)

= Jj(x, Ûj),

which contradicts the optimality of Ûj . The relation ûj ∈ Γ̂j(x) is obvi-
ous.

Now, we prove the reverse implication. From the assumption ûj ∈
Γ̂j(x) it follows that there exists Ūj = {ūj , Ūj+1}, an optimal control

38



PROBLEMS WITH FIXED TERMINAL TIME

for the problem Dj(x), such that ūj = ûj . From the already proved
Bellman’s principle it follows that Ūj+1 is optimal for Dj+1(fj(x, ûj)).
That is, for this problem we have two optimal controls Ūj+1 and Ûj+1

and, therefore,

Jj(x, Ûj) = f0
j (x, ûj) + Jj+1(fj(x, ûj), Ûj+1)

= f0
j (x, ûj) + Jj+1(fj(x, ûj), Ūj+1)

= Jj(x, Ūj),

which proves the optimality of Ûj .

Corollary 2.2. For every j ∈ [0, k − 1] and x̂j ∈ Xj one has:
(a) If Ûj is an optimal control for the problem Dj(x̂j) and X̂j is its

response, then ûi ∈ Γ̂i(x̂i) for all i = j, . . . , k − 1.
(b) Conversely, if for a control Ûj and its response X̂j one has ûi ∈

Γ̂i(x̂i) for all i = j, . . . , k − 1, then Ûj, X̂j are optimal for the problem
Dj(x̂j).

Proof: Conclusion (a) is an immediate consequence of Bellman’s opti-
mality princple. Conclusion (b) will be proved by induction from behind.

For i = k−1 conclusion (b) holds trivially. Suppose that it holds for
i = j+1, . . . , k−1. We prove validity of (b) for i = j, . . . , k−1. Suppose
that X̂j , Ûj satisfy the assumptions of (b), i.e., for X̂j, Ûj one has ûi ∈
Γ̂i(x̂i), i = j, . . . , k − 1. It hence follows that Ûj+1 = {ûj+1, . . . , ûk−1},
X̂j+1 = {x̂j+1, . . . , x̂k−1} satisfy the assumptions of (b) for j + 1. Thus,
by the induction assumption Ûj+1 is an optimal control for the problem
Dj+1(x̂j+1) and, since ûj ∈ Γ̂j(x̂j), by the previous theorem the concate-
nation Ûj = {ûj , Ûj+1} is optimal for Dj(x). Claim (b) is proved.

From the corollary it follows that if vi are arbitrary selections from
Γ̂i , i.e., arbitrary functions vi such that vi(x) ∈ Γ̂i(x), i = 0, . . . , k − 1,
then an optimal control for the problem D0(x0) can be generated by the
functions vi via the formulas

ui = vi(xi),
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recurrently from the given x0, using the state equation. In other words,
optimal responses solve the difference equation

xi+1 = fi(xi, vi(xi)), i = 0, . . . , k − 1.

Definition 2.2. Denote X̃i = {x ∈ Xi : Γi(x) 6= ∅}. For every i ∈
[0, k − 1] define the function vi : X̃i → Ui which associates with each
x ∈ X̃i an element from the set Γ̂i(x). Then, the sequence of functions
v = {v0, . . . , vk−1} is called optimal feedback control (or, alternatively,
optimal closed-loop control). In case of need to distinguish, the optimal
control in the previous sense (defined in subsection 1.2 by the help of
sequence of points ui) is called optimal open-loop control.

The name feedback is justified by the circumstance that vi deter-
mines how the input of the system should react to its current state to
keep it in the optimal regime. The value of optimal control in a given
time instant is a function of the state of the system in that instant only.
In other words, to determine the value of optimal control, the informa-
tion about its current state is sufficient. No other knowledge of the past,
not even of the initial state is needed.

Optimal feedback is the ultimate goal of the solution of the optimal
control problem. Compared to open-loop control it has the advantage
to be able to react to deviations of the process from its optimal regime.
More precisely, in case the system deviates from its optimal regime be-
cause of external effects, the closed-loop control will remain to be optimal
for the new deviated initial state (see Figure 2.1).

The following theorem provides a hint how to compute the optimal feed-
back control. It confirms the empirical experience from Example 2.1, by
which the functions which solve DPE are closed-loop optimal control.
In addition it claims that each optimal feedback control solves DPE.

Theorem 2.3. Let V be the value functions for the system of problems
D and let Vk satisfy (2.19). Let for each j ∈ [0, k − 1] one has vj:
X̃j 3 x 7→ Γj(x). Then, v is the optimal feedback control if and only the
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System
xi+1 = fi(xi, ui)

Feedback control
ui = vi(xi)

u x

Figure 2.1: The optimal feedback control scheme

following relations hold:

Vj(x) = f0
j (x, vj(x)) + Vj+1(fj(x, vj(x))), (2.20)

for j = 0, . . . , k − 1 and x ∈ X̃j.

Proof: First, we prove “ only if ”. Let v be an optimal feedback control
and let j ∈ [0, k − 1] and x ∈ X̃j . By definition 2.2, vj(x) ∈ Γ̂j(x), and
thus, there exists an optimal control Ûj = (vj(x), Ûj+1) for the problem
Dj(x). From the optimality principle it follows that Ûj+1 is optimal for
Dj+1(fj(x, vj(x)). From the definition of the value function, from the
optimality of Ûj and Ûj+1, as well as from (2.13) we obtain

Vj(x) = Jj(x, Ûj) = f0
j (x, vj(x)) + Jj+1(fj(x, vj(x)), Ûj+1)

= f0
j (x, vj(x)) + Vj+1(fj(x, vj(x))),

which is (2.20) we claimed.

Now we prove the reverse implication, i.e., the “if ”part. Let j ∈
[0, k − 1] and x ∈ X̃j and let vj(x) satisfy (2.20). From the definition
of the value function it follows that there exists an optimal control Ûj+1

for the problem Dj+1(fj(x, vj(x))) satisfying

Vj+1(fj(x, vj(x))) = Jj+1(fj(x, vj(x)), Ûj+1).
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The control Ûj = (vj(x), Ûj+1) is admissible for Dj(x) by Lemma 2.1.
Obviously,

Vj(x) = f0
j (x, vj(x)) + Vj+1(fj(x, vj(x)))

= f0
j (x, vj(x)) + Jj+1(fj(x, vj(x)), Ûj+1) = Jj(x, Ûj),

from which it follows that Ûj is an optimal control and hence vj(x) ∈
Γ̂j(x) is an optimal feedback control.

Combining Theorem 2.1 and Theorem 2.3 we obtain

Theorem 2.4. The function V is the value function and v is an optimal
feedback control for the system of problems D if and only if the following
relations hold:

Vj(x) = f0
j (x, vj(x)) + Vj+1(fj(x, vj(x))) (2.21)

= max
u∈Γj(x)

[f0
j (x, u) + Vj+1(fj(x, u))], (2.22)

(2.23)

for j = 0, . . . , k − 1, x ∈ X̃j and

Vk(x) =

{
0, for x ∈ C,

−∞, for x /∈ C. (2.24)

2.1.4 Notes on the Dynamic Programming Equation

Remark 2.1. DPE has been developed for the standard maximum prob-
lem (2.1)–(2.6). However, if the problem to be solved by DPE naturally
leads to minimum instead of maximum, there is no need to transform it
formally to a maximization one by replacing the objective function by
its negative. Indeed, in a straightforward way one can verify that DPE
is the same for the minimum problem, the only difference being that
max in it is replaced by min. The value function is naturally defined as
the minimum of the objective function where finite and ∞ where not.
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Remark 2.2. Since DPE is a sufficient condition for optimality makes
us sure that the solution obtained from it is indeed optimal.

Remark 2.3. In case Xi, Ui are finite sets, computation by DPE could
be illustrated by a flow chart as follows:

Read k, x0, C
For j = 0, . . . , k − 1 read Xj , Uj , fj(x, u), f

0
j (x, u)

if x ∈ C then Vk(x) := 0
if x /∈ C then Vk(x) := −∞

For j = k − 1, . . . , 0 do
For x ∈ Xj do

For u ∈ Uj do
f0
j := f0

j (x, u)
fj := fj(x, u)
gj(u) := f 0

j + Vj+1(fj)
Vj(x) := max

u∈Uj

gj(u)

vj(x) ∈ arg max
u∈Uj

gj(u)

Set xj := x0

For j = 0, . . . , k − 1 do
vj := vj(xj)
write j, vj, xj
xj+1 := fj(xj , vj)

Remark 2.4. Assume that the numbers of elements of the sets Xi, Ui
are p, q, respectively, and that the target set C is a singleton. Would we
search for the optimal control simply by the exhaustive search method,
the number of computations of the functions f 0

i , fi would be of order
qk. For the recurrent computation by the scheme of Remark 2.3 kpq
computations are needed. For larger k this means a considerable re-
duction. Let us note, though, that this reduction is paid off by higher
memory requirements. While in the case of the exhaustive search we
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need to store merely the last best possibility, in the case of the Bell-
man equation we have to store vj(x) for all x and j, i.e., kp values.
Reduction of the number of operations is more substantial in the case
of problems with states represented by vectors with continuous compo-
nents. Indeed, if we discretize each of the n components of the state
vector into N values, we obtain q = Nn which can be large already for
small n. The volume of computations grows with n so rapidly that even
with the help of dynamic programming it cannot be mastered by highly
powerful computing technology.

Remark 2.5. When computing Vj in a discretized problem with con-
tinuous nature of state, one frequently needs the value Vj+1 in a point
not included in the table. Then, one has either to interpolate the values
Vj+1 or round off fj(x, u). When solving continuous problems by dis-
cretization, in general we obtain merely an approximate solution of the
original problem. By refining the discretization grid we can make the
solution more precise at the cost of higher requirements on memory and
computing time.

Remark 2.6. In case of a problem with fixed time and discount factor,
where f 0

i (xi, ui) = βiFi(xi, ui), it is natural to imbed it into a family of
problems D̃j(x) in which we consider the objective functions of current

value (in time j): J̃j =
∑k−1

i=j β
i−jFi(xi, ui). J̃j = β−jJj . The function

J̃j generates the current value function Ṽj , for which one obviously has
Ṽj = β−jVj . By substituting these relations to DPE for the problem with
discount factor we obtain an equation for the current value function Ṽ
in the following form:

Ṽj(x) = max
u∈Γj(x)

[Fj(x, u) + βṼj+1(fj(x, u))], j = 0, . . . , k − 1, (2.25)

Ṽk(x) =

{
0, for x ∈ C,

−∞, for x /∈ C. (2.26)

Note that in case of no danger of confusion we denote the current value
function by the same symbol as the value function in its original meaning
(so-called present value function).
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2.1.5 Problem Solving

The dynamic programming equation provides a possibility to compute
recurrently the optimal feedback and the value function. We show it on
several examples.

Example 2.2. Optimal allocation of resources (solution of the
problem from Example 1.1). The problem described in Example 1.1
will be solved for k = 2 and b = 0.7, c = 0.4, g = 2, h = 2.5. By
rearranging the expressions in the difference equation and the objective
function we obtain the problem

maximize

1∑

i=0

[−0.5uixi + 2.5xi]

subject to xi+1 = 0.3uixi + 0.4xi, i = 0, 1,

ui ∈ [0, 1],

x0 = a > 0.

First, we examine the data of the problem. It follows from them that
for each i the responses to admissible controls satisfy xi > 0. Therefore,
it suffices to compute the value function for x > 0.

Because this is a free endpoint problem, V2(x) = 0 for all x.

For j = 1 and arbitrary x > 0 we obtain

V1(x) = max
u1∈[0,1]

[−0.5u1x+ 2.5x] = 2.5x,

since maximum of a decreasing (because of x > 0) linear function is
achieved in the left endpoint u1 = 0 of the interval U = [0, 1]. This
means that v1(x) = 0 for all x.
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For j = 0 and x = a we obtain

V0(a) = max
u0∈[0,1]

[f0
0 (a, u0) + V1(f0(a, u0))]

= max
u0∈[0,1]

[−0.5u0a+ 2.5a + 2.5(0.3u0a+ 0.4a)]

= max
u0∈[0,1]

[−0.5u0a+ 2.5a + 0.75u0a+ a]

= max
u0∈[0,1]

[+0.25u0a+ 3.5a] = 3.75a,

the maximum being achieved at v0(a) = u0 = 1. Therefore, Û = {1, 0};
X̂ = {a, 0.7a, 0.28a} and the maximal value of the objective function
is 3.75a.

The optimal control of the considered system during the first two
years is thus given by the following rule: one has to invest all the avail-
able funds into oil drills during the first year and into the purchase of
real estates during the second one.

Example 2.3. Optimal consumption(solution of the problem from
Example 1.2 for b = 0). As this is an autonomous problem with dis-
count factor, for its solution we employ the modification of DPE for such
problems of (2.25) and (2.26). Denote α = 1 + r and β = 1

1+δ . For zero
value of the terminal point (b = 0) we then obtain the problem

maximize

k−1∑

i=0

βi lnui

subject to xi+1 = αxi − ui, i = 0, . . . , k − 1,

x0 = a,

xk = 0.

For this problem, the relations (2.25) and (2.26) have the form

Vi(x) = max
u

[ln u+ βVi+1(αx− u)], i = 0, . . . , k − 1,
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where

Vk(x) =

{
0, if x = 0,

−∞, if x 6= 0.

For i = k − 1 we have

Vk−1(x) = max
u

[lnu+ βVk(αx− u)],

maximum being achieved at u = αx because of the definition of Vk.
Therefore,

Vk−1(x) = lnαx = lnx+ lnα,

vk−1(x) = αx.

For i = k − 2 we have

Vk−2(x) = max
u

[ln u+βVk−1(αx−u)] = max
u

[lnu+β ln(αx−u)+β lnα].

The function being concave, its maximum is achieved in the point

u =
αx

1 + β
. Therefore

Vk−2(x) = ln
αx

1 + β
+ β ln

αβx

1 + β
+ β lnα

= (1 + β) ln x+ (1 + β) ln
α

1 + β
+ β ln(αβ),

vk−2(x) =
αx

1 + β
.

For i = k − 3 we have

Vk−3(x) = max
u

[ln u+ βVk−2(αx− u)]

= max
u

[

lnu+ β(1 + β) ln(αx− u)

+β(1 + β) ln
α

1 + β
+ β2 ln(αβ)

]

.
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Maximum is achieved at u =
αx

1 + β + β2
, hence

Vk−3(x) = ln
αx

1 + β + β2
+ (β + β2) ln

α(β + β2)x

1 + β + β2

+(β + β2) ln
α

1 + β
+ β2 ln(αβ)

= (1 + β + β2) ln x+ (1 + β + β2) ln
α

1 + β + β2

+(β + 2β2) ln(αβ),

vk−3(x) =
αx

1 + β + β2
.

From the above argument one can conclude that the value function and
the optimal feedback will for β < 1 be of the form

Vk−i(x) =
1 − βi

1 − β

(

lnx+ ln
α(1 − β)

1 − βi

)

(2.27)

+
(
β + 2β2 + · · · + (i− 1)βi−1

)
ln(αβ).

vk−i(x) =
αx

1 + β + · · · + βi−1
=
αx(1 − β)

1 − βi
. (2.28)

This can be easily proved by induction (see Problem 2.4).

For the above two problems it was possible to compute the opti-
mal value of the objective function and the optimal feedback from the
dynamic programming equation in a closed from. Because this is fre-
quently not possible, other approaches to the use of DPE have to be
developed.

A method of direct computation of the value function and the op-
timal feedback for problems with a finite number of state and control
values we explain on Example 1.5 on the optimal maintenance of a ma-
chine. We have discussed this problem already in the previous chapter.
We have proposed a method of its solution which in essence employed
the dynamic programming principle. Now, we show how to record the
steps of the computation by equation (2.18) in a tabular way.
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Example 2.4. Optimal maintenance of a machine (solution of
the problem). First, note that this is a free endpoint problem with no
constraints on control or state whatsoever. It follows that Vk(x) = 0
for all x and that for i = 0, . . . , k − 1 one has Γi(x) = {C, N} for all x.
Further, for all i = 1, . . . , k − 1, the admissible values of x are integers
from 1 to i. Because in this problem, for each i, the variables xi and
ui can achieve a finite number of values only, for each of their possible
values we can compute the possible values of fi and f0

i and recurrently
from i = k − 1 to i = 0 also the values Vi(xi) a vi(xi). These values we
record in Table 2.1. Note that in Table 2.1 we display only the values
x from 1 to 3, because – as one can verify by direct computation – for
larger values of x the functions Vi and vi do not vary. Having completed
the table, we can read from it the optimal value of the objective function
and reconstruct the (open-loop) optimal control as well as its response.
The optimal value of the objective function for the initial value a = x0

we can find in the column Vi(x) for the values i = 0 a x = a. Proceeding
consecutively from the end of the table upwards we can find the optimal
control(s) and their responses.1

For simplicity we solve the problem for k = 5 and a = 0. In such
case we obtain the optimal value of the objective function V0(0) = 100
and three optimal controls:

U1 = {N,C,N,C,N}, X1 = {0, 1, 1, 2, 1, 2}
U2 = {N,N,C,C,N}, X2 = {0, 1, 2, 1, 1, 2}
U3 = {N,N,C,N,C}, X3 = {0, 1, 2, 1, 2, 1}.

The values for the first of these optimal controls are highlighted in Table
2.1 by frames.

1Note that in general there may be more of them.
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Table 2.1: Solution of Example 2.4.

i x u f0
i (x, u) fi(x, u) f 0

i + Vi+1(fi) Vi(x) vi(x)

5 0

1
C

N

30
20

1

2

30 + 0 = 30
20 + 0 = 20

20 N

4 2
C
N

30
40

1
3

30 + 0 = 30
40 + 0 = 40

30 C

3
C
N

30
60

1
4

30 + 0 = 30
60 + 0 = 60

30 C

1
C
N

30
20

1
2

30 + 20 = 50
20 + 30 = 50

50 N,C

3 2
C
N

30
40

1
3

30 + 20 = 50
40 + 30 = 70

50 C

3
C
N

30
60

1
4

30 + 20 = 50
60 + 30 = 90

50 C

1
C

N

30
20

1

2

30 + 50 = 80
20 + 50 = 70

70 N

2 2
C
N

30
40

1
3

30 + 50 = 80
40 + 50 = 90

80 C

3
C
N

30
60

1
4

30 + 50 = 80
60 + 50 = 110

80 C

1
C
N

30
20

1
2

30 + 70 = 100
20 + 80 = 100

100 N, C

1 2
C
N

30
40

1
3

30 + 70 = 100
40 + 80 = 120

100 C

3
C
N

30
60

1
4

30 + 70 = 100
60 + 80 = 140

100 C

0 0
C

N

30
0

1

1

30 + 100 = 130
0 + 100 = 100

100 N
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The following example is a problem with a finite number of state and
control values as well. Therefore, we employ for its solution the tabular
approach. However, unlike the previous example, it is a fixed endpoint
problem with control constraints which results to non-admissibility of
some of the control values as a consequence.

Example 2.5. Container transportation (solution of Example 1.3).
First note that the possible values of state xi for this problem are non-
negative integers bounded by the total number of containers received by
the railway station from the 0-th day until the (i − 1)-th one. Due to
the condition x5 = 0 and the constraint xi ≥ 0, the sets Γi(x) will be
empty for some values of i and x ∈ Xi, hence Vi(x) = ∞. To save space
we will not display such values xi in the table. Consecutively, we will
fill in the table from k = 5 to k = 0. We see that the minimal value
of the objective function is 400. Then, in reverse order upwards from
the bottom, beginning with the predetermined value x0 = 0 we find the
optimal value U = {1, 2, 2, 2, 1} and its response X = {0, 0, 1, 0, 0, 0}.
The corresponding values in Table 2.2 are highlighted by framing.

Recalling the problem of optimal consumption from Example 1.2 we
show how one can employ dynamic programming to solve approximately
problems with state or control variables of continuous nature. Two
possible approaches are described in the two examples below. A third
approach is the subject of Problem 2.9.

Example 2.6. Optimal consumption (tabular solution). In this
example we replace continuous variables by discrete ones in such a way
that the values of the state variable are integers only. We solve the
problem for r = 0.5, k = 3, δ = 0, x0 = 3 and x3 = 2.
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Table 2.2: Solution of Example 2.5.

i x u f0
i (x, u) fi(x, u) f 0

i + Vi+1(fi) Vi(x) vi(x)

5 0 0

4 0
0

1

50
70

1

0

50 + ∞ = ∞
70 + 0 = 70

70 1

1
0
1
2

100
120
70

2
1
0

100 + ∞ = ∞
120 + ∞ = ∞
70 + 0 = 70

70 2

3 0

0
1

2

100
120
70

2
1

0

100 + ∞ = ∞
120 + 70 = 190
170 + 70 = 140

140 2

1
0
1
2

150
170
120

3
2
1

150 + ∞ = ∞
170 + ∞ = ∞
120 + 70 = 190

190 2

2 0
0
1

50
70

1
0

50 + 190 = 240
70 + 140 = 210

210 1

1

0
1

2

100
120
70

2
1

0

100 + ∞ = ∞
120 + 190 = 310
70 + 140 = 210

210 2

2
0
1
2

150
170
120

3
2
1

150 + ∞ = ∞
170 + ∞ = ∞

120 + 190 = 310
310 2

1 0

0
1

2

150
170
120

3
2

1

150 + ∞ = ∞
170 + 310 = 480
120 + 210 = 330

330 2

1
0
1
2

200
220
170

4
3

2

200 + ∞ = ∞
220 + ∞ = ∞

170 + 310 = 480
480 2

0 0
0

1

50
70

1

0

50 + 480 = 530
70 + 330 = 400

400 1
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Thus, we obtain the problem

maximize

2∑

i=0

lnui

subject to xi+1 = 1.5xi − ui, i = 0, 1, 2,

x0 = 3, x3 = 2,

ui ≥ 0, xi ∈ N.

The solution is found in Table 2.3.

Table 2.3: Solution of Example 2.6.

i x u f0
i fi f0

i + Vi+1(fi) Vi vi

3 2 0

2 2 1 ln 1 2 0+0=0 0 1

3 2.5 ln 2.5 2 0+ln 2.5=ln 2.5 ln 2.5 2.5

4 4 ln 4 2 0+ln 4=ln 4 ln 4 4

5 5.5 ln 5.5 2 0+ln 5.5=ln 5.5 ln 5.5 5.5

1 2 1 ln 1 2 0+0=0 0 1

3

0.5

1.5
2.5

ln 0.5
ln 1.5
ln 2.5

4

3
2

ln 0.5 + ln 4 = ln 2
ln 1.5 + ln 2.5 = ln 3.75

ln 2.5 + 0 = ln 2.5
ln 3.75 1.5

4

1
2
3
4

ln 1
ln 2
ln 3
ln 4

5
4
3
2

0 + ln 5.5 = ln 5.5
ln 2 + ln 4 = ln 8

ln 3 + ln 2.5 = ln 7.5
ln 4 + 0 = ln 4

ln 8 2

0 3

0.5

1.5
2.5

ln 0.5
ln 1.5
ln 2.5

4

3
2

ln 0.5 + ln 8 = ln 4
ln 1.5 + ln 3.75 = ln 5.625

ln 2.5 + 0 = ln 2.5
ln 5.625 1.5

We see that the optimal value of the objective function is V0(3) =
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ln 5.625, the optimal control and its response being U = {1.5, 1.5, 2.5},
X = {3, 3, 3, 2} respectively.

Example 2.7. Optimal consumption (solution by computer). Now,
we replace the continuous (state and control) variables by discrete ones
by an equidistant grid. In such case it may happen that we need the
value Vi+1 in such a grid point x in which it was not computed. Then, for
each x we choose the closest value x̃, Vi+1(x) ∼ Vi+1(x̃). We demonstrate
the solution procedure for r = 0.2, k = 21, δ = 0, x1 = 3 and x21 = 0.
The problem then is

maximize
20∑

i=1

lnui

subject to xi+1 = 1.2xi − ui, i = 1, . . . , 20,

x1 = 3,

x21 = 0.

For the solution we use the MATLAB program.2

k=20; N=50; x_steps=N; u_steps=N; x_max=25; u_max=7;

x=0:(x_max/x_steps):x_max; u=0:(u_max/u_steps):u_max;

V=zeros(k+1,x_steps+1); v=zeros(k+1,x_steps+1); vopt=zeros(k+1,1);

%Computation of the value function and the optimal feedback

V(:,:)=-inf;

V(k+1,1)=0; %only x_k=0 is feasible

for i=k:-1:1

for j=1:(x_steps+1)

for m=1:(u_steps+1)

F=1.2*x(j)-u(m);

if (F>=0) & (F<=x_max)

F=round(F*x_steps/x_max)+1;

2The program is in MATLAB 6.5.
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if log(u(m))+V(i+1,F)>V(i,j)

% log() is natural logarithm

V(i,j)=log(u(m))+V(i+1,F);

v(i,j)=m;

end

end

end

end

end

%Computation of the optimal open-loop control

j=round(3*(x_steps/x_max))+1; xopt(1)=x(j); for i=1:k

vopt(i)=u(v(i,j));

F=1.2*x(j)-u(v(i,j));

xopt(i+1)=F;

j=round(F*x_steps/x_max)+1;

end

Note that in addition to the parameter N determining the discretiza-
tion fineness of the state and control variables one also has to chose
the constraint for the maximal value of the state variable (x max), al-
though this constraint does not appear in the original formulation of
the problem. This value is chosen sufficiently large in order not to affect
the results. On Figure 2.2 one can compare the resulting shapes of the
state and control variable for various values of the paramater N . In this
figure also the exact solution computed by the formula (2.28) for β = 1
is shown.

2.1.6 Exercises

Exercise 2.1. Prove: if U = {u0, . . . , uj , . . . , uk−1} is an optimal control
for the problem D0(x0), then Uj = {uj , . . . , uk−1} is an optimal control
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Figure 2.2: Approximative solutions of Example 2.7 by MATLAB (time
development of the optimal control (left) and optimal response (right)).

for the problem Dj(xj(x0,U)) for every j ∈ [0, k − 1] and thus uj ∈
Γ̂ (xj(x0,U)).

Exercise 2.2. Let Û = {û0, . . . , ûj , . . . , ûk−1} be an optimal control
for the problem D0(x0), let j ∈ [0, k − 1] and let Ūj = {ūj , . . . , ūk−1}
be an optimal control for Dj(xj(x0, Û)) possibly different to Ûj =
{ûj , . . . , ûk−1}. Prove that then Ū := {û0, . . . , ûj−1, ūj , . . . , ūk−1} is an
optimal control for the problem D0(x0) as well.

Exercise 2.3. (a) Derive the DPE for the problem with the ob-
jective function dependent on the terminal state, i.e., J(x0,U) =
∑k−1

i=0 f
0
i (xi, ui) + φ(xk).

(b) Derive the DPE for the discounted problem

J =

k−1∑

i=0

βiFi(xi, ui) + βkφ(xk)

with the objective function depending on the terminal state.

Exercise 2.4. Using mathematical induction prove (2.27) and (2.28).
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Exercise 2.5. By the dynamic programming method solve the problem

min

1∑

i=0

f0
i (xi, ui),

xi+1 = xi + ui, i = 0, 1, (k = 2),

x0 = 1,

ui ∈ [−3, 1],

where f 0
0 (x, u) = x2 − 0, 5u2 − 2u− 1, 5 and f 0

1 (x, u) = x2 + u2 + 4u+3.

Exercise 2.6. By the dynamic programming method solve the problem

max

2∑

i=0

x2
i + 2ui

xi+1 = xi − ui, i = 0, 1, 2,

x0 = 1,

ui ∈ [−1, 1],

x3 free.

Exercise 2.7. In Example 2.5 we dealt with the container transporta-
tion problem, where we required x5 = 0. Now solve the problem without
this requirement, i. e., as a free endpoint problem.

Exercise 2.8. The optimal machine maintenance problem was solved
in Example 2.4 for k = 5 and a = 0 by Table 2.1. Now solve the problem
for (a) k = 4 and (b) k = 6. Is it possible to employ Table 2.1? If yes,
why and how?

Exercise 2.9. The optimal consumption problem was solved in Exam-
ple 2.6 for r = 0.5, δ = 0, k = 3, x0 = 3, x3 = 3 by the Table 2.3.
(a) What is the solution of this problem in the case of the initial con-
dition (i) x0 = 2, (ii) x0 = 4? Report only the result, i.e. the optimal
control, its response and the optimal value of the objective function.
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(b) Solve this problem for δ = 1. Use DPE for the discounted problem
represented by (2.25) and (2.26). Compare and interprete the solutions
for δ = 0 and δ = 1.

Exercise 2.10. Write down a modification of the solution from Exam-
ple 2.7, where the value Vi+1(x) in a point x not in the table is deter-
mined by linear interpolation. Compare the results with the results of
Example 2.7.

Exercise 2.11. By DPE solve the transport operator problem from Ex-
ercise 1.7. Use the following formulation: (a1, . . . , a5) = (10, 3, 7, 2, 5),

min
5∑

i=1

[(xi + ai − ui)20 + (ui − 4)+30], where z+ =

{
z, z ≥ 0,
0, z < 0,

,

xi+1 = xi + ai − ui, i = 1, . . . , 5,

x1 = 0, x6 = 0,

ui ∈ {0, . . . , 12}, xi ≥ 0.

Exercise 2.12. Solve the optimal car replacement problem from Ex-
ercise 1.11 for the initial states (i) x0 = 0, (ii) x0 = 1, (iii) x0 = 2 if
k = 10 for values of the functions ψ a ϕ in Table 2.4.

Table 2.4: Values of ψ and ϕ in Exercise 2.12

x 0 1 2 3 4 5

ψ(x) 50 43 37 32 28 24

ϕ(x) 2 2 4 3 5

Exercise 2.13. Solve the general repair problem of Exercise 1.12 using
DPE a) by the table procedure b) analytically.
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Exercise 2.14. D’Artagnan. Formulate the following problem as an
optimal control one and solve it by dynamic programming:
D’Artagnan hurries on his horse from Paris to London to deliver a con-
fidential message from the queen to Duke of Buckingham as soon as
possible. On the way to Calais there are 3 stations where he can change
the horse. The distances between the stations (as well as between Paris
and the first station and between the last station and Calais) are 50,
30, 40, 50 km beginning from Paris. The speed of the horse decreases
with passed distance as follows: the k-th 10 kilometers the horse makes
in (30 + k) minutes. The change of the horse takes 13 minutes. De-
cide at which stations D’Artagnan should change his horse in order to
reach Calais in the shortest possible time.

Exercise 2.15. Solve the problem of optimal scheduling of orange
purchase orders from Exercise 1.14.

Exercise 2.16. In the problem of optimal resource allocation from
Example 1.1 choose k = 2 and find a necessary and sufficient condition
for the parameters g, h, b and c so that û0 = 0, û1 = 0 is the only
optimal solution. Interpret this condition economically.

Exercise 2.17. Using DPE find the optimal solution of the following
problem:

max

3∑

i=0

x2
i − u2

i

xi+1 = xi + ui, i = 0, . . . , 3,

ui ∈ [−1, 1],

x0 = 0.

Exercise 2.18. Solve the previous problem with the additional con-
straint x4 = 0.
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Exercise 2.19. Management of a harbor. The harbor unloads
freight cars. The schedule of the numbers of freight cars which arrive
during the coming year is known in advance. The harbor is obliged by
a contract to secure unload the cargo and transport it by a boat to a
given destination. In case the cargo will not be transported in the day
of its arrival in the harbor the latter has to pay a contracted penalty of
100 per car and day. The boat has a capacity of 25 cars, the cost of one
(return) trip being 2000 independently of the volume of the load. At
the end of the last day of the year the harbor has to be empty. Write a
Matlab code allowing to find the optimal control for this problem with
help of DPE and answer the following questions:

a) What are the minimal costs of the harbor for transport and penal-
ties for the whole year?

b) The harbor has the possibility to rent a boat with capacity 30 cars
for 20 000 EUR a year. Is it worth to do this?

c) A new manager does not allow cargo exceeding 10 cars to stay
in the harbor overnight. What will be the consequence of this
regulation on the harbor in terms of economic costs ?

2.2 Autonomous Problems with Free Terminal

Time. Infinite Horizon Problems

The dynamic programming equation has been derived for the standard
problem (2.1)–(2.6), in general a non-autonomous fixed time problem
defined on an interval [0, k] with k fixed. For this problem, on the
intervals [j, k] we have introduced subproblems Dj(x) and for them we
have defined functions Vj(x), vj(x).

In this section we will first deal with the special features of the au-
tonomous problem. Then, we extend the validity of DPE to both the
autonomous and the non-autonomous free time problems as well as for
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infinite horizon problem. To this end we assume that the data enter-
ing the formulation of the problem (2.1)–(2.6), i.e., the functions fi, f

0
i

and the sets Ui, Xi will be defined for all i ∈ [0,∞) and in the case of
the autonomous problem will not depend on i. For every k ∈ [0,∞)
we can first formulate for this data problems with fixed time defined on
the intervals [0, k] and then their subproblems to be denoted by Dj,k,
j ∈ [0, k]; the corresponding value function we will denote by Vj,k and
the optimal feedback control by vj,k.

2.2.1 Autonomous Problems

For j < k call Dj,k autonomous problem of optimal transition from x to
C on the interval [j, k]. That is, Dj,k is the problem

maximize Jj,k(x,Uj,k) :=

k−1∑

i=j

f0(xi, ui), (2.29)

subject to xi+1 = f(xi, ui), i = j, . . . , k − 1, (2.30)

xi ∈ X, i = j, . . . , k − 1, (2.31)

ui ∈ U, i = j, . . . , k − 1, (2.32)

xj = x, x is fixed in X, (2.33)

xk ∈ C. (2.34)

Choose an arbitrary integer h ≥ −j. By a shift of the time variable
i → i + h for each i = j, . . . , k − 1 in the problem formulation one
obtains from Dj,k(x) the problem Dj+h,k+h(x). It is obvious that if

Ūj,k = {ūj , . . . , ūk−1}

is admissible for Dj,k(x), then

Ũj+h,k+h = {ũj+h, . . . , ũk+h−1}, where ũi+h = ūi,

is admissible for Dj+h,k+h(x) and

Jj+h,k+h(x, Ũj+h,k+h) = Jj,k(x, Ūj,k).
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Now, it follows immediately that

Vj+h,k+h = Vj,k, vj+h,k+h = vj,k,

which means that the functions Vj,k, vj,k depend only on the difference
between k and j.

2.2.2 Free Terminal Time Problems

Free terminal time problems are problems in which k is not given in
advance. In such problems one optimizes also with respect to k. As
controls one considers finite sequences of type {u0, . . . , ui, . . . , uk}, where
ui ∈ Ui for each i = 0, ..., k − 1. We define value functions and optimal
feedback controls also for such problems, however, since k is no longer
the problem parameter, it disappears from the denotation of V and
v. By arguments similar to those by which we derived the fixed time
DPE one can derive the free time DPE, albeit merely as a necessary
condition of optimality. In addition, we do not know for which k should
Vk(x) be defined. Therefore, for non-autonomous free time problems
the practical use of the resulting recurrent relation is limited. Would
we like to solve a non-autonomous free time problem by the dynamic
programming method, we have to solve the corresponding fixed time
problem on [0, k] for each fixed k and select among the solutions the one
yielding the maximal value of the objective function.

In case the free time problem is autonomous, neither the value func-
tion V nor the optimal feedback v depend on j. Due to this circum-
stance, the recurrent equation turns into the functional equation

V (x) = f 0(x, v(x)) + V (f(x, v(x))) = max
u∈Γ (x)

[f0(x, u) + V (f(x, u))].

(2.35)
Because this equation is no more a recurrent relation, it does not provide
a tool to compute V . Moreover, (2.35) is a necessary condition only, its
sufficiency does not hold in general.
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2.2.3 Infinite Horizon Problems

A similar difficulty is encountered in infinite horizon autonomous prob-
lems. This is how optimal control problems, most frequently of economic
nature, are called if k = ∞. As controls we consider in such problems in-
finite sequences of type {u0, . . . , ui, . . . }, ui ∈ Ui, the objective function
being J :=

∑∞
i=0 f

0
i (xi, ui). In addition to the conditions, an admissible

control should satisfy in fixed time problems, convergence of the infinite
series in the definition of J is required.

Almost as a rule, infinite horizon problems of economic nature are
autonomous with discount factor (see definition in Remark 1.7). That
is, they are of the form

maximize J :=

∞∑

i=0

βiF (xi, ui),

subject to xi+1 = f(xi, ui), i = 0, 1, . . . ,

xi ∈ X, i = 0, 1, . . . ,

ui ∈ U, i = 0, 1, . . . ,

x0 = x, x is fixed from X,

lim
i→∞

xi ∈ C,

where β < 1 is the discount factor. In order to secure convergence of
the infinite series in the objective function it is now sufficient to assume
F to be bounded.

Similarly as in Remark 2.6 we can imbed this problem into a family
of problems D̃j(x) with initial condition xj = x, for which we consider
the current value objective function

J̃j :=

∞∑

i=j

βi−jF (xi, ui).

The objective function J̃j is in correspondence with the current value
function Ṽj for which the DPE (2.25) holds for i = 0, 1, ..., albeit merely
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as a necessary condition of optimality. Since the problem is autonomous
with discount factor, by a procedure similar to that of Subsection 2.2.1
one can prove that Ṽj(x) = Ṽj+h(x), and, therefore, the function Ṽj does
not depend on j. If we denote this function by Ṽ , equation (2.25) for it
becomes

Ṽ (x) = max
u∈Γ(x)

[F (x, u) + βṼ (f(x, u))]. (2.36)

2.2.4 Solution Methods

The equation (2.36) is a functional equation, i.e. an equation in which
the unknown is a function. Such equation is in general difficult to solve,
in our case the solution is even more difficult because of the need to
maximize. We now introduce two techniques for the solution of the
functional equation (2.36) from which the first one is being used more
frequently.

(a) Approximations in the space of value functions

(i) Choose an initial iteration of V , i.e., choose V (x) for every
x ∈ X.

(ii) For the given iteration of V , by the formula

v(x) := argmax
u

[F (x, u) + βV (f(x, u)]

determine the values of v in every x ∈ X
(iii) For the given V and v determine the values of the new itera-

tion V in every x ∈ X by the formulas

V (1)(x) := [F (x, v(x)) + βV (f(x, v(x)))],

V (x) := V (1)(x).

(iv) Repeat (ii) and (iii).

(b) Approximations in the space of closed-loop controls
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(i) Choose an initial iteration v, i.e., choose v(x), for every x ∈
X.

(ii) For the given iteration v determine V as a solution of the
functional equation

V (x) = F (x, v(x)) + βV (f(x, v(x))), x ∈ X.

(iii) Determine the values of the next iteration of the function v
in every x ∈ X by the formula

v(x) := arg max
u

[F (x, u) + βV (f(x, u))].

(iv) Repeat (ii) and (iii).

Note that in general there is no guarantee for any of the two tech-
niques to converge or, the limit to be the solution of (2.36) and the actual
value function of the problem. However, there are classes of problems
for which the method can be fully justified (see Exercises 2.23 and 2.24).
The solution methods for (2.36) are extensively discussed in the books
[19] and [11].

We illustrate the method of approximations in the value functions
space on the optimal consumption problem of Example 1.2. In addition,
on this example we explain also the idea of the method of undetermined
coefficients.

Example 2.8. Let us solve the infinite horizon optimal consumption
problem

maximize

∞∑

i=0

βi lnui

subject to xi+1 = αxi − ui, i = 0, 1, . . . ,

x0 = a > 0,

lim
k→∞

xk ≥ 0.
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I: Approximations in the space of value functions. If we choose

V (0)(x) =

{
0, ak x ≥ 0,

−∞, ak x < 0,

then we can compute V (1)(x), V (2)(x), . . . and v(1)(x), v(2)(x), . . . simi-
larly as Vk−1(x), Vk−2(x), . . . and vk−1(x), vk−2(x), . . . in Example 2.3,
albeit instead of (2.18) we employ the equation for autonomous problems
with discount factor (2.36). That is, in this case we obtain

v(i)(x) =
αx

1 + β + · · · + βi−1
,

V (i)(x) = (1 + β + · · · + βi−1) lnx

+(1 + β + · · · + βi−1) ln
α

1 + β + · · · + βi−1

+(β + 2β2 + · · · + (i− 1)βi−1) ln(αβ),

hence

v(x) = lim
i→∞

v(i)(x) = α(1 − β)x (2.37)

V (x) = lim
i→∞

V (i)(x) (2.38)

=
1

1 − β
lnx+

1

1 − β
ln(α(1 − β)) +

β

(1 − β)2
lnαβ. (2.39)

II: Method of undetermined coefficients. The above procedure is
rather cumbersome, because it requires several iterations of computa-
tion of the functions V (i) and v(i), an estimate of the general form of
them, a proof that this form is adequate for all i = 1, 2, . . . and, finally,
computation of the limit of the iterations for i→ ∞. However, the pro-
cedure can be simplified if, after several iterations of the computations
of V (i) and v(i) we observe that the value functions V (i) are of the form
V (i)(x) = ci lnx + di. This observation allows us to assume that V (x)
will be of the form

V (x) = c ln x+ d, (2.40)
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0 2 4 6 8 10
−120

−100

−80

−60

−40

−20

0

20

 i = 1

i = 10

i = 20

i = 1000

Figure 2.3: Sequence of functions V (i) for α = 0.8 and β = 0.9 in
Example 2.8.

as well. Therefore, we will try to find constants c, d such that

c lnx+ d = max
u

[lnu+ β(c ln(αx− u) + d)] . (2.41)

holds. ¿From the first order condition for maximum we obtain

u =
αx

1 + βc
. (2.42)

Substituting into (2.41) we obtain

c lnx+ d = ln
αx

1 + βc
+ β

[

c ln

(

αx− αx

1 + βc

)

+ d

]

= (1 + βc) ln x+ ln
α

1 + βc
+ βc ln

αβc

1 + βc
+ βd.

This equality has to hold for all x, hence

c =
1

1 − β
, (2.43)

d =
1

1 − β

(

ln(α(1 − β)) +
β

1 − β
ln(αβ)

)

. (2.44)
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If we substitute (2.43) and (2.44) into (2.40) and (2.42) we obtain the
same form of V (x) and v(x) = u as in (2.37) and (2.39).

Note that when solving the problem we did not take into account
the limit inequality for the terminal state. However, it is easy to verify
that for the obtained solution it is satisfied. Indeed, from the form of
the closed-loop optimal control it follows

xi+1 = αβxi.

Due to the assumptions α > 0 and β ∈ (0, 1), for all x0 = a > 0 all the
values xi will be positive.

Remark 2.7. In this case we assumed the form of the value function
V (x). The procedure of the method of undetermined coefficients could
be based alternatively on the assumption on the form of the optimal
feedback control v(x). After several iterations of the computation of
this function one can observe that the functions v(i)(x) have the form
v(i)(x) = Cix. Therefore, one can try to find the function v(x) in the
form v(x) = Cx (cf. Exercise 2.20).

2.2.5 Exercises

Exercise 2.20. Solve the problem of Example 2.8 using the method of
undetermined coefficients applied to the feedback control. Start with the
assumption that the optimal feedback control is of the form v(x) = Cx
(cf. Remark 2.7). Hint: First derive the differential equation for V (x)
as the first order condition for the maximization of the function on the
right-hand side of (2.36). It might seem that this leads to merely one
unknown constant (C) and therefore this procedure is simpler compared
to the method used in Example 2.8 with two unknown constants (c
and d). This is however not true – the second constant arises as the
integration one when solving the differential equation for the function
V .
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Exercise 2.21. Solve the infinite horizon problem of optimal consump-
tion with the Cobb-Douglas production function in the form

max

∞∑

i=0

βi lnui

xi+1 = xαi − ui, i = 0, . . . , k − 1,

x0 = a,

lim
k→∞

xk ≥ 0.

Use the method of undetermined coefficients: assume either the form of
the value function (V (x) = c ln x+d) or the form of the optimal feedback
control (v(x) = Cxα).

Exercise 2.22. Solve the optimal control problem

min
∞∑

i=0

x2
i + u2

i

xi+1 = αxi − ui, i = 0, . . . , k − 1,

x0 = 1

using the method of undetermined coefficients. Assume that the value
function is of the form V (x) = ax2, where a ≥ 0.

Exercise 2.23. Prove that if the problem in Section 2.2.3 contains nei-
ther state nor terminal state constraints and 0 ≤ F (x, u) ≤ γ, then the
sequence of functions V (k) generated by the method of approximation
in the space of value functions according to the formula

V (0)(x) = 0,

V (k)(x) = max
u∈U

[F (x, u) + βV (k−1)(f(x, u))]

is convergent. Hint: First use mathematical induction to prove that for

all x and k one has V (k)(x) ≤ 1−βk

1−β γ. Then, using mathematical induc-

tion again, prove that V (k+1)(x) ≥ V (k)(x) and finally use the property
that any non-decreasing sequence bounded from above converges.
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Exercise 2.24. Prove that if X = C = R
n, U is a compact subset

of R
m, the functions f, F are continuous and F is bounded, then the

method of approximations in the space of value functions described in
Subsection 2.2.4 converges to the solution of (2.36).
Hint: Show that the relation V 7→ T V defined by the formula T V (x) =
maxu[F (x, u) + βV (f(x, u)] is a contraction on X in the space of con-
tinuous bounded functions. Hence, we can use the Banach fixed-point
theorem for contraction mappings. The proof can be carried out in three
steps.
Step 1. Prove that if V is continuous then T V is continuous as
well. In addition, use the notation F (x, v(x)) + βV (f(x, v(x))) :=
maxu[F (x, u) + βV (f(x, u))], and apply the inequality

T V (x1) − T V (x2) = F (x1, v(x1)) + βV (f(x1, v(x1)))

−F (x2, v(x2)) − βV (f(x2, v(x2)))

≤ F (x1, v(x1)) + βV (f(x1, v(x1)))

−F (x2, v(x1)) − βV (f(x2, v(x1))),

as well as the fact that interchange of indices yields the analogous in-
equality for T V (x2)−T V (x1). The proof of continuity can be completed
by using continuity of the functions V , F and f and compactness of U .
Step 2. Prove that if V is bounded then T V is bounded as well. Use
that F is bounded.
Step 3. Prove that T V is a contraction mapping. Denoting

F (x, vi(x)) + βVif(x, vi(x)) := max
u∈U

[F (x, u) + βVi(f(x, u))], i = 1, 2,

use the fact that the functions V1(x), V2(x) which are continuous on X
satisfy

T V1(x) − T V2(x)

= F (x, v1(x)) + βV1(f(x, v1(x))) − F (x, v2(x)) − βV2(f(x, v2(x)))

≤ F (x, v1(x)) + βV1(f(x, v1(x))) − F (x, v1(x)) − βV2(f(x, v1(x)))

= β(V1(f(x, v1(x)) − V2(f(x, v1(x))),
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and interchange of indices yields

T V2(x) − T V1(x) ≤ β(V2(f(x, v2(x)) − V1(f(x, v2(x))).

2.3 The Linear-Quadratic Problem

The dynamic programming equation allows us to compute the optimal
feedback control and value function recurrently from the end. It rarely
leads to a closed-form solution, however. One of the exceptions is the
following linear-quadratic problem without constrains. This problem
might appear to be artificial but it has an important role as a local
approximation of a general problem in a neighborhood of its time inde-
pendent “steady state” solution.

2.3.1 The Riccati Difference Equation for Fixed Terminal

Time Problems

Consider the following optimal control problem

minimize

k−1∑

i=0

(xTi Qixi + uTi Riui)

subject to xi+1 = Aixi +Biui, i = 0, . . . , k − 1,

x0 = a,

where xi ∈ R
n, ui ∈ R

m. Furthermore, a is a given vector, Ai, Bi, Qi, Ri
are given matrices of appropriate types. In addition, Qi is symmetric
positive semidefinite (Qi ≥ 0) and Ri is symmetric positive definite
(Ri > 0). Hence, this problem is a non-autonomous fixed-time problem
with a free terminal state and without constraints on control and state
variables. This problem is called linear-quadratic problem and is denoted
by LQ.

71



DYNAMIC PROGRAMMING

Applying the dynamic programming equation to this problem we
obtain Vk(x) = 0 for all x. Furthermore, for k − 1 one has

Vk−1(x) = min
u

[xTQk−1x+ uTRk−1u]

= xTQk−1x+ min
u

[uTRk−1u] = xTQk−1x,

because Rk−1 > 0. This in addition implies vk−1(x) = 0.
We can see that for j = k − 1, Vk−1 is a positive semidefinite

quadratic form. Hence, one could conclude that this is also true for
j < k − 1. This claim can be proved by mathematical induction. In
addition, we simultaneously prove that vj is a linear function of x.

Assume that Vj+1(x) = xTWj+1x, where Wj+1 is a positive semidef-
inite matrix. Furthermore, assume that the solution has the form
Vj(x) = xTWjx. We obtain

Vj(x) = xTWjx

= min
u

[xTQjx+ uTRju+ (Ajx+Bju)
TWj+1(Ajx+Bju)]

= xTQjx+ xTATj Wj+1Ajx+ min
u

[uT (Rj +BT
j Wj+1Bj)u

+uTBT
j Wj+1Ajx+ xTATj Wj+1Bju].

Denote the minimized function in the previous equality by g, i.e.

g(u) := [uT (Rj +BT
j Wj+1Bj)u+ uTBT

j Wj+1Ajx+ xTATj Wj+1Bju].

The gradient ∇ug and the Hessian ∇2
ug of the function g are as follows:

∇ug = 2(Rj +BT
j Wj+1Bj)u+ 2BT

j Wj+1Ajx,

∇2
ug = 2(Rj +BT

j Wj+1Bj).

From Wj+1 ≥ 0 one obtains BT
j Wj+1Bj ≥ 0, hence Rj + BT

j Wj+1Bj >
0. This implies that g is a strictly convex function and it attains its
minimum at the point satisfying ∇ug(u) = 0, i.e.

u = −(Rj +BT
j Wj+1Bj)

−1BT
j Wj+1Ajx.
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Hence
vj(x) = Hjx, (2.45)

where
Hj = −(Rj +BT

j Wj+1Bj)
−1BT

j Wj+1Aj . (2.46)

Substituting (2.45) and (2.46) into the equality for Vj(x) stated above
yields

xTWjx = xT [Qj +ATj Wj+1Aj +HT
j (Rj +BT

j Wj+1Bj)Hj

+HT
j B

T
j Wj+1Aj +ATj Wj+1BjHj ]x

= xT [Qj +ATj Wj+1Aj

−ATj Wj+1Bj(Rj +BT
j Wj+1Bj)

−1BT
j Wj+1Aj ]x.

Hence

Wj = Qj+A
T
j [Wj+1−Wj+1Bj(Rj+B

T
j Wj+1Bj)

−1BT
j Wj+1]Aj . (2.47)

This implies that Vj(x) = xTWjx and vj(x) = Hjx. It can be easily seen
from (2.47) that Wj is a symmetric matrix. The function Vj(x) is a value
function for the LQ problem, where the objective function has only non-
negative values. Hence, xTWjx = Vj(x) ≥ 0 for all x ∈ R

n, therefore Wj

is a positive semidefinite matrix. We have proved the following theorem

Theorem 2.5. Vj(x) is the value function and vj(x) is the optimal
feedback control to LQ problem if and only if

Vj(x) = xTWjx, j = 0, . . . , k − 1, (2.48)

vj(x) = Hjx, j = 0, . . . , k − 1, (2.49)

where Wj, j = 0, . . . , k − 1 is a solution to (2.47) with Wk = 0 and Hj,
j = 0, . . . , k − 1, is given by (2.46).

Remark 2.8. Note that the proof of Theorem 2.5 is based on the
method of undetermined coefficients. The solution to the dynamic
programming equation was assumed to be in a positive semidefinite
quadratic form.
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2.3.2 The Riccati Equation for Infinite Horizon Problems

Autonomous infinite horizon LQ problem is the following problem:

minimize
∞∑

i=0

(xTi Qxi + uTi Rui)

subject to xi+1 = Axi +Bui, i = 0, 1, . . . ,

x0 = a,

where R, Q are symmetric matrices, R > 0, Q ≥ 0, U =
R
m, X = R

n, C = R
n. The dynamic programming equation for such

problems represents only a necessary optimality condition. The value
function V (x) and the optimal feedback control v(x) do not depend on
i and satisfy the functional equation

V (x) = xTQx+ vT (x)Rv(x) + V (Ax+Bv(x))

= min
u

[xTQx+ uTRu+ V (Ax+Bu)].

One can assume that the solution to this equation has the form V (x) =
xTWx, where W ≥ 0 is a solution to so-called Riccati matrix equation

W = Q+AT [W −WB(R+BTWB)−1BTW ]A. (2.50)

The equation (2.50) can be solved analytically only in some simple cases.
Usually it is necessary to use an appropriate iterative method, e.g.

W (k+1) = Q+AT [W (k) −W (k)B(R+BTW (k)B)−1BTW (k)]A,

where W (0) = 0. Based on some specific assumptions, it can be proved
that this method yields W such that W = limk→∞W (k).

In general,the equation (2.50) might or might not have a positive
semidefinite solution. Conditions for existence as well as for determining
the number of these solutions are known. Their formulation, however,
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would require the introduction of some specific concepts which are be-
yond the scope of this book. An interested reader can find more details
in [14].

The application of this theory to LQ problems can be illustrated in
the following example.

Example 2.9. Solve the following optimal control problem

minimize

k−1∑

i=0

[u2
i + x2

i ]

subject to xi+1 = xi − ui, i = 0, . . . , k − 1,

x0 = 1.

Find the value function and the optimal feedback control for (a) k = 5
and (b) k = ∞.

(a) Solution for k = 5. The problem is in the LQ form with A = 1,
B = −1, R = 1 and Q = 1. By using formulas (2.47) and (2.46), we
obtain the following recurrence equations

Wi =
1 + 2Wi+1

1 +Wi+1
, Hi =

Wi+1

1 +Wi+1
,

from which, starting from W5 = 0, we obtain the values of Wi,Hi from
i = 4 to i = 0 as summarized in Table 2.5.

Table 2.5: Values of Wi,Hi in Example 2.9

i 4 3 2 1 0

Wi 1 3
2

8
5

21
13

55
34

Hi 0 1
2

3
5

8
13

21
34

Substitution of these values into (2.48) and (2.49) gives the form of Vi(x)
and vi(x) as displayed in Table 2.6.
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Table 2.6: Functions Vi(x) and vi(x) in Example 2.9

i 4 3 2 1 0

Vi(x) x2 3
2x

2 8
5x

2 21
13x

2 55
34x

2

vi(x) 0 1
2x

3
5x

8
13x

21
34x

The optimal (open-loop) control and its response for the initial value
x0 = 1 calculated by using vi(x) is given in Table 2.7.

Table 2.7: Optimal control and its response in Example 2.9

i 0 1 2 3 4 5

xi 1 13
34

5
34

2
34

1
34

1
34

vi(x)
21
34x

8
13x

3
2x

1
2x 0

ui
21
34

8
34

3
34

1
34 0

xi − ui
13
34

5
34

2
34

1
34

1
34

The solution is:

Û = {u0, u1, u2, u3, u4} =

{
21

34
,

8

34
,

3

34
,

1

34
, 0

}

,

X̂ = {x0, x1, x2, x3, x4, x5} =

{

1,
13

34
,

5

34
,

2

34
,

1

34
,

1

34

}

.

(b) Solution for k = ∞. In this case, we use (2.50), (2.46) and (2.45).
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After substituting to (2.50), we obtain the Riccati equation in the form

W =
1 + 2W

1 +W
,

with a positive solution W = 1+
√

5
2 and hence

H =
W

1 +W
=

1 +
√

5

3 +
√

5
, v(x) =

1 +
√

5

3 +
√

5
x =

√
5 − 1

2
x.

The optimal response can be obtained by solving the equation

xi+1 = xi − ui = xi −
√

5

2
xi +

1

2
xi =

(

3

2
−

√
5

2

)

xi.

2.3.3 Exercises

Exercise 2.25. Replace the objective function in the LQ problem
analysed in Subsection 2.3.1 by the objective function with a discount
factor

J =

k−1∑

i=0

βi[xTi Qixi + uTi Riui].

Prove that in this case, the recurrence formula for Hj and Wj has the
following form:

Hj = −β(Rj + βBT
j Wj+1Bj)

−1BT
j Wj+1Aj. (2.51)

Wj = Qj + βATj [Wj+1 − βWj+1Bj(Rj + βBT
j Wj+1Bj)

−1BT
j Wj+1]Aj .

(2.52)

Help: use equalities (2.25) and (2.26).
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Exercise 2.26. Solve the following optimal control problem:

min
k−1∑

i=0

[(ui)
2 + (xi − ui)

2],

xi+1 = xi − ui, i = 0, . . . , k − 1,

x0 = a.

Derive the value function and optimal feedback control for (a) k = 5,
(b) k = ∞. Help: use the substitution ũi = ui − 1

2xi.

Exercise 2.27. Assume that households would like to maintain their
consumption (ct) as stable as possible with minimal investments (it)
into assets (at), in spite of instability of their incomes (yt) modelled by
a second order stationary autoregressive process:

min
ct

∞∑

t=0

βt
[
(ct − b)2 + γi2t

]
,

at+1 = at + it,

ct + it = rat + yt,

yt+1 = ρ1yt + ρ2yt−1,

a0, y0, y−1 are given,

where b > 0, γ > 0, r > 0 and β ∈ (0, 1) are given constants. Formulate
this problem in the form of a linear-quadratic problem and write the
corresponding Riccati equation.

2.4 Other Optimization Problems

The idea of embedding the optimization problem to a system of prob-
lems, allowing a recurrent calculation of the optimal control, has wide
applications. It can be applied not only to problems in standard form
which have been discussed so far, but also to other types of optimal
control problems.
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2.4.1 Optimal Control Problems with State Constraints

The method of dynamic programming can be applied also to opti-
mal control problems with constraints of the type φi(xi, ui) = 0 or
φi(xi, ui) ≤ 0. Whereas these constraints may cause difficulties in other
methods, in this case they do not pose any major complications. They
are simply added to other maximization constraints in each stage of the
recurrent process, i.e. they become part of the conditions determining
the set Γi(x). We illustrate this approach in the following example,
which is interesting also because both the state and the control variable
are two-dimensional.

Example 2.10. Bottleneck problem. Consider a k-stage produc-
tion process, the amount of available resource in the i-th stage being
denoted by xi. This amount of resources is split into three parts. The
first part ui is used to augment resource, the part vi is used to increase
the production capacity ci and the remaining part is left as the input
to the production process itself. These amounts have to satisfy the con-
dition ui ≤ ci. The aim is to maximize the total amount of resource
available to the production process, given that the growth of xi, ci sat-
isfies the following equalities: xi+1 = (1+α)ui, ci+1 = ci+βvi, where
α, β > 0. We obtain the following optimal control problem:

maximize

k−1∑

i=0

(xi − ui − vi) (2.53)

subject to xi+1 = (1 + α)ui, i = 0, . . . , k − 1, (2.54)

ci+1 = ci + βvi, (2.55)

x0 = x̂0 > 0, (2.56)

c0 = ĉ0 > 0, (2.57)

ui ≥ 0, vi ≥ 0 i = 0, . . . , k − 1, (2.58)

ui + vi ≤ xi, i = 0, . . . , k − 1, (2.59)

ui ≤ ci, i = 0, . . . , k − 1. (2.60)

79



DYNAMIC PROGRAMMING

In this problem, both the state and the control variables are two-
dimensional: The control variable has components ui and vi and the
state variable has components xi and ci. Besides “pure” constraints on
control variables (2.58) encompassed in the standard scheme we have
here also “mixed” constraints (2.59) and (2.60) tying together state and
control variables. These constraints become binding in case of low val-
ues of state variables, when they narrow the set of admissible values of
control variables. This property is also expressed in the name of this
problem.

The dynamic programming equation for this autonomous problem
has the following form:

Vi(x, c) = max
(u,v)∈Γ (x,c)

[x− u− v + Vi+1((1 + α)u, c + βv)],

where i = 0, . . . , k − 1 and

Γ (x, c) = {(u, v) : u ≥ 0, v ≥ 0, u+ v ≤ x, u ≤ c}.

Since this is a problem with free terminal state, we have

Vk(x, c) = 0, for all x, c.

For i = k − 1 we obtain

Vk−1(x, c) = max
(u,v)∈Γ (x,c)

[x− u− v] = x,

where the maximum is attained at u = 0 and v = 0. This implies that in
this stage the control variables expressed in the form of optimal feedback
control are uk−1(x, c) = 0, vk−1(x, c) = 0 for each (x, c).
For i = k − 2 one has

Vk−2(x, c) = max
(u,v)∈Γ (x,c)

[x− u− v + Vk−1 ((1 + α)u, c + βv)]

= max
(u,v)∈Γ (x,c)

[x− u− v + (1 + α)u] = max
(u,v)∈Γ (x,c)

[x+ αu− v].
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It is obvious that the constrained maximum is attained at v = 0 and
at the highest possible value of u which still satisfies the constraint
0 ≤ u ≤ x and 0 ≤ u ≤ c. It means that u = min{x, c}, hence

Vk−2(x, c) = x+ αmin{x, c}.

The optimal feedback control is vk−2(x, c) = 0 and uk−2(x, c) =
min{x, c}.
For i = k − 3 we have

Vk−3(x, c) = max
(u,v)∈Γ (x,c)

[x− u− v + Vk−1 ((1 + α)u, c + βv)]

= max
(u,v)∈Γ (x,c)

[x− u− v + (1 + α)u+ αmin{(1 + α)u, c + βv}]

= max
(u,v)∈Γ (x,c)

[x+ αu− v + αmin{(1 + α)u, c + βv}].

By solving this maximization problem we would obtain again the solu-
tion in the form of optimal feedback control. We could continue further
analogously until i = 0.

We can see that including additional constraints in the formula-
tion of the problem does not pose any theoretical problems and the
problem can be solved by means of the dynamic programming equation.
Too many constraints could, however, cause practical difficulties, mainly
when the problem is solved analytically. In our case, the analytical solu-
tion for i = k−3 is more difficult. Nevertheless, it would be still possible
to continue further and derive V0(x, c). It is obvious that in this example
it would be more effective to solve this problem for larger values of k as a
linear programming problem using e.g. the simplex method (due to the
linearity of the objective function and the constraints on the variables
ui, vi, xi, ci), instead of trying to solve it analytically using the dynamic
programming equation.
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2.4.2 Optimal Control Problems with Other Types of Ob-

jective Functions

So far we have dealt with problems where the objective function was
a sum of the income in individual stages, i.e. the Lagrange objective
function (according to the terminology in Remark 1.6). In this section
we show that the dynamic programming equation can be derived not
only for Mayer and Bolza objective functions but also for certain other
types of functions that exhibit similar separability of variables.

(a) Objective function depending on terminal state.

Consider the problem which, unlike the standard problem, has the ob-
jective function in the Bolza form, i.e.

J :=

k−1∑

i=0

f0
i (xi, ui) + φ(xk),

where φ is a given function. For such a problem, the dynamic program-
ming equation can be easily derived:

Vi(x) = max
u∈Γi(x)

[f0
i (x, u) + Vi+1(fi(x, u)], i = 0, . . . , k − 1, (2.61)

Vk(x) =

{
φ(x), if x ∈ C,
−∞ if x /∈ C.

(2.62)

As the Mayer objective function is a special case of the Bolza one with
f0
i = 0 for all i, the corresponding dynamic programming equation to

problems in Mayer form is given by (2.61) and (2.62) with f 0
i = 0.

(b) Multiplicative type of objective function.

Example 2.11. Maximal reliability of a device. Assume that
we have a device consisting from k serially connected blocks. In order
to function properly, this device requires that each block works without
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errors. The reliability of an individual block can be increased by connect-
ing additional components in parallel. Denote by ϕi(u) the probability
of the proper function of the i-th block if it contains u components con-
nected in parallel. The price of a component of the i-th block is denoted
by ci. The aim is to choose the number of components in each block
maximizing the probability of correct functioning of the whole device
while the total value of these components does not exceed a given value
m.

We put x1 = 0 and for i = 2, . . . , k + 1 we denote by xi the total
price of components from the first block to the (i− 1)-th block and for
i = 1, . . . , k we denote by ui the number of components in the i-th block.
Then, this problem can be formulated as an optimal control problem in
the following form:

max
k∏

i=1

ϕi(ui),

xi+1 = xi + ciui, i = 1, . . . , k,

x1 = 0,

xk+1 ≤ m.

This problem differs from the standard form only in the objective func-
tion, which is multiplicative. It can be easily proved that the value
function for this problem satisfies the following recurrence formula:

Vi(x) = max
u∈N

[ϕi(u)Vi+1(x+ ciu)], i = 1, . . . , k − 1, (2.63)

Vk(x) =

{
1, if x ≤ m,

−∞, if x > m,
(2.64)

where N is the set of all natural numbers. The equalities (2.63)–(2.64)
correspond to the dynamic programming equation. Note that alterna-
tively, this problem could also be rewritten in the standard form by
taking logarithm of the objective function.
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(c) Objective function is the minimal state value function.

Problem of setting an appropriate countercyclical policy for the national
economy can be formulated as maximizing the minimum (annual) na-
tional income over k years. Such a problem can then lead to the optimal
control problem of the following type:

maximize min{x1, . . . , xk}, (2.65)

subject to xi+1 = fi(xi, ui), i = 0, . . . , k − 1,

x0 = a,

ui ∈ Ui,

xi ∈ Xi,

xk ∈ C.

For this problem we can derive the following recurrence formula:

Vi(x) = max
u∈Γi(x)

min{fi(x, u), Vi+1(fi(x, u)}, i = 0, . . . , k − 1, (2.66)

Vk(x) =

{
∞, if x ∈ C,
−∞, if x /∈ C,

(2.67)

which correponds to the dynamic programming equation.

2.4.3 Problems in Other Fields of Optimization

Many problems of other fields of optimization can also be formulated
as optimal control problems and solved by the method of dynamic pro-
gramming.

(a) Some problems of linear and nonlinear programming

Example 2.12. Transportation problem. Consider the trans-
portation problem which is a well-known linear programming problem,
in the case of two producers. Assume that the producers produce p1 resp.
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p2 units of a good which is then transported to n customers, purchasing
q1, . . . , qn units of good, where p1 + p2 = q1 + · · · + qn. Furthermore,
assume that cij denotes the transportation cost of one unit of good
from the i-th producer to the j-th customer. We need to determine
the amount of the good which should be transported from individual
producers to individual customers with the aim to minimize the total
transportation costs.

When denoting by xji , j = 1, 2, the total amount of the good which
is transported from the j-th producer to customers number 1 to (i− 1)
and by ui the relative part of delivery which the i-th customers receives
from the first producer, we obtain the problem

minimize J =

n∑

i=1

qi[c1iui + c2i(1 − ui)]

subject to x1
i+1 = x1

i + qiui, i = 1, . . . , n,

x2
i+1 = x2

i + qi(1 − ui), i = 1, . . . , n,

x1
1 = 0, x2

1 = 0,

ui ∈ [0, 1],

x1
n = p1, x2

n = p2.

This is a non-autonomous optimal control problem with two-dimensional
state variable with a fixed terminal time, fixed terminal state and with
a constraint on the control variable. In principle, this problem could be
solved by dynamic programming. Yet, standard solution methods based
on linear programming appear to be much more efficient in this linear
case. It cannot be excluded, though, that for some class of nonlinear
programming problems which lack a general efficient solution method
the dynamic programming approach would lead to a more efficient one.
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(b) Integer programming problems

In many of the examples and problems formulated in this book, the
control as well as the state variables are discrete or even integers. We
have seen that when these discrete variables are bounded, this fact does
not complicate the calculation and the problems might by effectively
solved by dynamic programming. An important representative of integer
programming (or combinatorial optimization) which can be rewritten in
the form of an optimal control problem, is so-called knapsack problem.

Example 2.13. Knapsack problem. Suppose that an elderly mer-
chant wants to go to market to sell some goods, but she is able to carry
not more than W kilograms in her knapsack. There are k types of goods.
The number of items of the i-th type i = 0, . . . , is ai, each of which has
a value of ci and weight Wi. How many items (denoted by Ui) of in-
dividual types of goods should she put into her knapsack in order to
maximize the total value of all items? The aim is therefore to maximize
∑k−1

i=0 uici, where
∑k−1

i=0 uiwi ≤W , 0 ≤ ui ≤ ai and ui are integers.
In order to formulate this problem as a standard optimal control

problem, we introduce a new state variable xi which expresses the re-
maining unused weight in the knapsack after determining the number of
items for the first i types of goods, i.e. xi+1 = xi− uiwi, where x0 = W
and xk ≥ 0 (cf. Example 1.4 and Exercise 1.4). The formulation of the
problem is

maximize

k−1∑

i=0

uici

subject to xi+1 = xi − uiwi, i = 0, . . . , k − 1,

x0 = W,

ui ∈ {0, . . . , ai}, i = 0, . . . , k − 1,

xk ≥ 0.
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We have obtained a non-autonomous problem with constraints on the
control variable and terminal state. The problem is non-autonomous
because the sets of constrains on the control variable Ui = {0, . . . , ai}
depend on i.

(c) Some graph theory problems

The method of dynamic programming can be successfully employed to
address many problems which are originally not formulated in the form
of optimal control ones. A typical example of such a problem is e.g.
the shortest path problem or the travelling salesman problem. Such a
problem is solved either by dynamic programming or by other methods,
e.g. by integer programming or branch and bound. Although meth-
ods based on the principle of dynamic programming applied to these
problems require neither complicated terminology nor formulation as an
optimal control problem, by their very nature these are optimal con-
trol problems as well. We will demonstrate this on the shortest path
problem.

Example 2.14. The shortest path problem. Consider a network of
paths where nodes M1, . . . ,MN represent cities. Denote by d(Mi,Mj) =
dij the direct distance from city Mi to city Mj . The aim is to find the
shortest path from city M ∈ {M1, . . . ,MN} to city MN .

Let us formulate this problem as an optimal control one. We use
the following notation:
i - identification number of a city where i = 0, . . . , k,
xi - our position at time i, where xi ∈ {M1, . . . ,MN},
ui - control variable which represents our decision to move from city xi
to city xi+1, i.e., ui ∈ {M1, . . . ,MN} \ {xi}.
We obtain the following optimal control problem:
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minimize

k−1∑

i=0

d(xi, ui)

subject to xi+1 = ui, i = 1, . . . , k − 1, k is given,

x1 = M,

ui ∈ {M1, . . . ,MN} \ {xi},
xk = MN .

The conditions imply that it is an autonomous problem with free termi-
nal time. For such problems, the dynamic programming equation is only
a necessary optimality condition. In this case it is a functional equation,
not a recurrence formula, as we have demonstrated in Section 2.2. The
value function for the given problem satisfies the functional equation

V (x) = min
u∈{M1,...,MN}\{x}

[d(x, u) + V (u)].

To solve this equation, we can use the method of approximations in
the space of value functions described in Section 2.2. According to this
method,

V (0)(x) =

{
0, if x = MN ,
∞, if x 6= MN ,

and for j ≥ 1

V (j)(x) =

{
minu∈{M1,...,MN}\{x}[d(x, u) + V (j−1)(x)], if x 6= MN ,

0, if x = MN .

In addition, note that V (j)(x) represents the minimal length of the path
from x to MN , which does not pass through more than j nodes. Hence,
it is obvious that the procedure can be stopped after N steps (i.e. there
will be no changes in V in the next steps).

The use of this algorithm will be illustrated on the example of the
shortest path in the network of Figure 2.4.
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Figure 2.4: Shortest path problem

As this is an acyclic oriented graph, it is sufficient in stage j to
only deal with nodes from which there is a direct path to nodes with an
assigned finite value V (j−1) in the stage j − 1.
For j = 0 we have

V (0)(F ) = 0,

V (0)(A) = V (0)(B) = V (0)(C) = V (0)(D) = V (0)(E) = ∞.

For j = 1 we have

V (1)(D) = d(D,F ) + V (0)(F ) = 5, i.e. v(1)(D) = F,

V (1)(E) = d(E,F ) + V (0)(F ) = 3, i.e. v(1)(E) = F,

V (1)(A) = V (1)(B) = V (1)(C) = ∞, V (1)(F ) = 0.

For j = 2 we obtain

V (2)(B) = min(d(B,D) + V (1)(D), d(B,C) + V (1)(C)) = 12,

i.e. v(2)(B) = D,

V (2)(C) = min(d(C,D) + V (1)(D), d(C,E) + V (1)(E)) = 5,

i.e. v(2)(C) = E,
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V (2)(E) = min(d(E,D) + V (1)(D), d(E,F ) + V (1)(F )) = 3,

i.e. v(2)(E) = F,

V (2)(A) = ∞, V (2)(D) = 5, V (2)(F ) = 0.

For j = 3 one has

V (3)(A) = min(d(A,B) + V (2)(B), d(A,C) + V (2)(C)) = 10,

i.e. v(3)(B) = C,

V (3)(C) = min(d(C,D) + V (2)(D), d(C,E) + V (2)(E)) = 5,

i.e. v(3)(C) = E,

V (3)(D) = 5, V (3)(E) = 3, V (3)(F ) = 0.

For j = 4 we have

V (4)(A) = min(d(A,B) + V (3)(B), d(A,C) + V (3)(C)) = 9,

i.e. v(4)(A) = B,

V (4)(B) = 7, V (4)(C) = 5, V (4)(D) = 5,

V (4)(E) = 3, V (4)(F ) = 0.

The optimal solution is thus the path A→ B → C → E → F .

Remark 2.9. This example based on the oriented acyclic graph has
been presented only to simplify the explanation of the algoritm. This
algorithm, however, works well for undirected graph which may contain
cycles as well. In this case, it has to be modified in order to review all the
nodes in each stage, and the distance between two unconnected nodes
is set as infinite. After this modification, the algorithm again converges
in N steps.

2.4.4 Exercises

Exercise 2.28. Derive the dynamic programming equation for the
transportation problem in Example 2.12.
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Exercise 2.29. Prove that the recurrence formula (2.63)–(2.64) corre-
sponds to the dynamic programming equation for the problem of maxi-
mal reliability of a device formulated in Example 2.11.

Exercise 2.30. Assume that in the problem of maximal reliability of
a device formulated in Example 2.11, the probability is a linear function
of the number of components in one block connected in parallel (i.e.
φ(u) = αu, where α > 0) and the unit prices of components in each
block are the same (i.e. c0 = · · · = ck−1). By solving the problem using
the dynamic programming equation given in (2.63)–(2.64) show that
the number of components in each block is the same and its value is m

kc
(given that this is an integer).

Exercise 2.31. Consider the following modification of Example 2.11:
we minimize the total price of the device while maintaining the reliabil-
ity of its proper function at least on some given level. Formulate this
modification as an optimal control problem.

Exercise 2.32. Prove that the recurrence formula (2.66)–(2.67) corre-
sponds to the dynamic programming equation for Problem (2.65). De-
rive the dynamic programming equation for the modification of this
problem with the objective function J := min{x0, x1, . . . , xk}.

2.5 Stochastic Problems

In many problems the system is exposed to random external effects,
whose exact values are not known in advance. Such problems are called
stochastic problems and will be the subject of our interest in this sub-
chapter. We will see that the dynamic programming equation is an
effective tool for solving such problems.
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2.5.1 Formulation of the Stochastic Optimal Control

Problem

Example 2.15. Trading radishes. A merchant buys radishes from a
farmer for the price n per bundle and sells them to customers for p > n
pre bundle. Daily demands are random, independent of previous days
and their probability distributions are known by experience. If some
radishes are not sold until the end of the day, they can be sold on the
next day but with a loss of s per bundle (for example, representing the
storage costs or price decrease due to their deteriorated quality). Let us
use the following notation:
xi - the carry-over from the previous day,
ui - the number of bundles bought at day i,
zi - the demand at day i.
Hence the amount of bundles that remained unsold at the end of day i
is

f(xi, ui, zi) :=

{
xi + ui − zi, if xi + ui ≥ zi,

0, if xi + ui < zi
(2.68)

and the net daily profit is

f0(xi, ui, zi) :=

{
pzi − nui − s(xi + ui − zi), if xi + ui ≥ zi,

p(xi + ui) − nui, if xi + ui < zi.
(2.69)

Therefore, the total profit of the merchant for the entire planning period
comprising k days is

J =

k−1∑

i=0

f0(xi, ui, zi).

It depends not only on the values of the state variables xi and the control
variables ui, but also on the values of realizations of the random variables
zi which are not known to the merchant in advance. Hence it makes no
sense to solve the problem of choosing the values of control variables
ui, i = 0, . . . , k − 1 which maximize J without taking into account the
realizations of random variables zi, i = 0, . . . , k − 1. The total profit
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is in fact a function of these random variables, and thus it does not
represent a deterministic number. The distribution of random variables
zi is, however, known. Hence, we can calculate the expected value of J
for each possible set of values of the control variable ui, i = 0, . . . , k− 1.
We can therefore formulate the following problem:

maximize E
k−1∑

i=0

f0(xi, ui, zi) (2.70)

subject to xi+1 = f(xi, ui, zi), i = 0, . . . , k − 1, (2.71)

x0 = 0, (2.72)

where the function f 0 in (2.70) is given by (2.69) and the function f is
(2.71) given by (2.68).

In general, similarly to the deterministic case, we have a k-stage
decision process. The state variable xi ∈ Xi describes the state of the
system at the beginning of the i-th stage, i = 0, . . . , k− 1, and the value
of the control variable ui ∈ Ui has an influence on the behaviour of the
system in the i-th stage.

At each stage, the system is exposed to the impact of the random
variable zi ∈ Zi whose value (realization) at the time of choosing the
control ui is not known. We assume that the random variables zi are
mutually independent over time and we only know their probability
distribution. At the end of the i-th stage, the values xi and ui and
the realization of the random variable zi unambiguously determine the
value xi+1 = fi(xi, ui, zi) as well as the profit f 0

i (xi, ui, zi) in the i-th
stage, where fi and f0

i are given functions. At the beginning, the initial
value of the state variable x0 equals to the given value a. Unlike in the
deterministic case, we now assume that the terminal state is always free
and that the constraints xi ∈ Xi are not binding, i.e. for each xi ∈ Xi,
ui ∈ Ui and zi ∈ Zi, one has xi+1 = fi(xi, ui, zi) ∈ Xi+1.

Since the total profit over all k stages depends on the random vari-
ables zi which we do not know at the time of taking decisions about ui,
the aim is to maximize the expected value of the profit over k stages
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with respect to the random variables zi, i = 0, . . . , k − 1. Hence we
obtain the following problem

maximize E

k−1∑

i=0

f0
i (xi, ui, zi) (2.73)

subject to xi+1 = fi(xi, ui, zi), i = 0, . . . , k − 1, (2.74)

x0 = a, (2.75)

ui ∈ Ui, i = 0, . . . , k − 1, (2.76)

zi ∈ Zi, i = 0, . . . , k − 1. (2.77)

In order to formulate (2.73)–(2.77) as a proper optimal control prob-
lem, we have to add the definition of the set of admissible controls. As
we will see, there are several possibilities.

First we will proceed analogously to the deterministic case: By a
control, we will mean a sequence of control variables U = {u0, . . . , uk−1},
where ui ∈ Ui for each i = 0, . . . , k− 1. This kind of control is called an
open-loop control 3. The sequence of realizations of the random variables
will be denoted by Z = {z0, . . . , zk−1}. By a response to the control
U and the realization of the random variable Z for the given initial
state (2.75) we understand the sequence X = {x0, . . . , xk}, where for
particular i, xi = xi(U ,Z) solve (2.74) and (2.75) with the given U and
Z. Since there are no constraints on the state variables and the terminal
state, each control U = {u0, . . . , uk−1}, where ui ∈ Ui, is admissible.
Let us denote the class of admissible controls by P. The value of the
objective function in (2.73) can be understood as the value dependent
on the choice of the control U and on the realization Z = {z0, . . . , zk−1}.
Hence, it will be denoted by

J(U ,Z) :=
k−1∑

i=0

f0
i (xi(U ,Z), ui, zi).

3When it is obvious from the context that we deal with an open-loop control, it
will be simply called control.
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Now we can formulate the problem of choosing a control from all admis-
sible controls U that makes the expected value of the objective function
J(U ,Z) attain its maximum value with respect to the multidimensional
random variable Z. This control is called optimal control. The problem
can be formulated as follows:

max
U∈P

EJ(U ,Z). (2.78)

The definition of optimality in the class of open-loop controls is
natural, if we intend to find a control which is chosen at the beginning
of the process while excluding the possibility of any further adjustments
to this control based on information which will become available only
later. Recalling Example 2.15, this would mean that the merchant has
committed himself to some volumes of daily purchases determined a
priori. In the real situation, however, it is common that he has the
possibility to choose the purchased volume in individual days based on
then already known volume of the carry-over from the previous day.
This means that he chooses the control in the i-th stage in the form of
an feedback control ui = vi(xi). Intuitively we feel that the possibility
to use the feedback control is more favourable for the merchant.

The control will be defined as the sequence of feedback controls.
In the theory of stochastic dynamic programming, such a control is
called policy. An admissible policy for (2.73)–(2.77) is the sequence V =
(v0, . . . , vk−1), where vi : Xi → Ui for all i = 0, ..., k − 1. It is obvious
that for a given policy V = (v0, . . . , vk−1) and a given realization of the
random variable Z = {z0, . . . , zk−1}, the value of the objective function
is uniquely determined

J(V,Z) :=
k−1∑

i=0

f0
i (xi, vi(xi), zi), where

xi+1 = fi(xi, vi(xi), zi), i = 0, . . . , k − 1,

x0 = a.

It makes sense to define an optimal policy as an admissible policy which
maximizes EJ(V,Z). Denoting the class of all admissible policies by S,
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this problem can be formulated as follows:

max
V∈S

EJ(V,Z). (2.79)

When choosing a control in the policy form, we thus take into account
that the evolution of the system over time can be continuously observed.

However, information available in the j-th stage may include
not only the immediate state xj, but also the realizations of ran-
dom variables z0, . . . , zj−1. If this enhanced information is used
to determine the control uj, it means that it is determined as a
function wj based on complete information known in the stage j,
i.e. uj = wj(x0, . . . , xj , u0, . . . uj−1, z0, . . . zj−1). In this frame-
work, the open-loop control is represented by constant functions
wj , and the policy is represented by functions wj independent on
x0, . . . , xj−1, u0, . . . uj−1, z0, . . . zj−1. Analogously to the previous case,
let us denote the respective sequences of the functions wj by W =
(w0, . . . , wk−1) and the set of all admissible sequences by T . This prob-
lem is formally written as follows:

max
W∈T

EJ(W,Z). (2.80)

The following theorem formulates in its first part the Markovian
property of this problem. This means that the expected value of the ob-
jective function does not increase when taking into account, besides the
information on the current state, other information known at the deci-
sion time. In addition, the second part of this theorem states that use of
the information about the value of the current state at the decision time
might increase the expected value of the objective function compared to
its value obtained if such information is not taken into account.

Theorem 2.6. Problems (2.78), (2.79) and (2.80) relate with (2.73)–
(2.77) as follows:

max
W∈T

EJ(W,Z) = max
V∈S

EJ(V,Z) ≥ max
U∈P

EJ(U ,Z). (2.81)
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Proof: The classes of admissible controls for the particular problems
satisfy inclusions T ⊃ S ⊃ P. Hence

max
W∈T

EJ(W,Z) ≥ max
V∈S

EJ(V,Z) ≥ max
U∈P

EJ(U ,Z).

It remains to prove that the first non-strict inequality holds as an
equality. This is implied by the fact that by the choice of the con-
trol uj at time j, we can affect the objective function J(W, Z) terms
f0
i (xi, ui, zi) merely for i ≥ j. These terms do not depend on any

variables known at time j except xj. Hence, when choosing the op-
timal value uj we do not lose any relevant information by restrict-
ing ourselves to functions uj = vj(xj) which do not depend on values
x0, . . . , xj−1, u0, . . . uj−1, z0, . . . zj−1.

Remark 2.10. The non-strict inequality in (2.81) is not entirely satis-
factory, because it actually only says that the optimal policy is not worse
than the optimal open-loop control. It does not however claim that it is
better. In general, a better result cannot be expected. Indeed, a deter-
ministic system is a special case of a stochastic one where both types of
control lead to the same result, as it is clear from the following remark.
We can however expect that the optimal policy yields a better result if
the system is random in a non-trivial way. This non-triviality, however,
cannot be easily formulated. Therefore, at the end of the following sec-
tion we only present a simple artificial example where the optimal policy
indeed leads to a better result.

Remark 2.11. If the problem (2.73)–(2.77) is deterministic, the in-
equality in Theorem 2.6 is satisfied as an equality, i.e.

max
V∈S

J(V) = max
U∈P

J(U). (2.82)

The proof is implied by the inequality (2.81) and by the fact that for each
admissible policy there exists an admissible open-loop control yielding
the same value of the objective function as this admissible policy for
the given problem (with the given initial state). Note that the term
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“policy” can be naturally extended to the case of general deterministic
problems (with constraints on state variables and on the terminal state)
and Property (2.82) remains valid for these problem as well (cf. Exercise
2.33).4

Remark 2.12. The stochastic version of the optimal control problem
is often more realistic than the deterministic one. The calculation of its
solution is, however, more difficult. In addition, the scope of its appli-
cation is limited only to the cases when the probabilistic distribution of
random variables zi is known.

In the following subsection we show that the optimal policy can be
obtained by the method of dynamic programming.

2.5.2 The Dynamic Programming Equation

For any j ∈ {0, . . . , k − 1} and x ∈ Xj , we use the following notation:
Zj = {zj , . . . , zk−1}, Vj = {vj , . . . , vk−1} and

Jj(x,Vj ,Zj) :=
k−1∑

i=j

f0
i (xi, vi(xi), zi),

where xi+1 = fi(xi, vi(xi), zi), i = j, . . . , k − 1,

xj = x.

By Dj(x) we will denote the problem

maximize EJj(x,Vj ,Zj).

This definition requires several more detailed comments:

4In the deterministic case an open-loop control was called simply control and a
policy was called closed-loop or feedback control (see Subsection 2.1.3). Moreover,
from Corollary 2.2 it follows that the optimal closed-loop control generates the optimal
open-loop one for the given initial state x0 and, consequently, the response of the two
controls is the same.
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Remark 2.13. It is clear from the context that the expected value of
the objective function Jj for the problem Dj(x) is calculated with respect
to Zj. Since we will often calculate the expected value of the expression
with respect to different segments of the sequence of random variables
Z = {z0, . . . , zk−1}, we introduce the following notation: We denote by
Ei,j , where 0 ≤ i ≤ j ≤ k− 1 the expected value calculated with respect
to the subsequence {zi, . . . , zj} of the random variable Z. In case that
i = j, we replace Ei,i by Ei.

Remark 2.14. The maximization is carried out over all admissible
policies. Since the problem contains neither any constraints on the
control ui ∈ Ui nor any other constraints, any sequence of functions
vi : Xi → Ui, where i = j, . . . , k − 1, represents an admissible policy.

Remark 2.15. It is sufficient that the functions vi are defined only for
those xj ∈ Xj , which can be obtained by a realization of the response to
the initial state together with the previous segment of the policy. More
precisely, let us denote by Xj(x0, v0, . . . , vj−1) the set of all possible
values of the response in the stage j to the segment of the policy V and
the initial state x0. Hence it is sufficient to have the function vj defined
only on the set Xj(x0, v0, . . . , vj−1).

For simplification, we introduce the following assumption:

Assumption 2.2. For each j ∈ [0, k − 1] there exists an optimal policy
Vj to the problem Dj(x), where x ∈ Xj. Hence there exists V̂j such that

max
Vj

Ej,k−1Jj(x,Vj ,Zj) = Ej,k−1Jj(x, V̂j ,Zj)

for each x ∈ Xj.

This assumption allows us to define the value function as follows:

Definition 2.3. For each j ∈ [0, k − 1] we define Vj : Xj → R as

Vj(x) = max
Vj

Ej,k−1Jj(x,Vj ,Zj).
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The function Vj is called the value function for the set of problems
Dj := {Dj(x) : x ∈ Xj}. In addition, the sequence of functions
V = {V0, . . . , Vk−1} is called the value function for the set of problems
D.

In the subsection 4.4 Elements of Probability Theory the definition
of the expected value is limited to discrete random variables only. This
restriction is kept in this subchapter as well, mainly for two reasons. The
first one is purely technical – the definition of the expected value for a
discrete random variable does not require any further assumptions on the
data. The second reason is principal: Using a discrete random variable
Z allows us to obtain equally strong results as in the deterministic case.

Assumption 2.3. The sets Zi are finite,5 and hence Zj is a discrete
multidimensional random variable.

Theorem 2.7. Assume that Problem (2.79) satisfies Assumptions 2.2
and 2.3.
(i) If V̂ = (v̂0, . . . , v̂k−1) is the optimal policy and V = (V0, . . . , Vk−1) is
the value function, then the functions Vj, v̂j, j = 0, . . . , k−1, satisfy for
each x and j = 0, . . . , k − 1 the dynamic programming equation

Vj(x) = max
u∈Ui

Ej
(
f0
j (x, u, zj) + Vj+1(fj(x, u, zj)

)

=Ej
(
f0
j (x, v̂j(x), zj) + Vj+1(fj(x, v̂j(x), zj)

)
, (2.83)

Vk(x) = 0, for each x. (2.84)

(ii) On the other hand, if for each x and j = 0, . . . , k − 1 the functions
v̂j and Vj satisfy (2.83) and (2.84), then V = (V0, . . . , Vk−1) is the value
function and V̂ = (v̂0, . . . , v̂k−1) is the optimal policy.

The proof of this theorem is analogous to the proof of Theorem 2.1
in the deterministic case (see Section 2.5.3).

5This assumption can be relaxed to countability of Zi. Then absolute convergence
of all series defining the corresponding expected values has to be assumed, though.
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Remark 2.16. Let us note that the theory becomes more complicated
in the case of a continuous random variable. This is due to necessity of
additional constrains which have to be applied to the original problem
in order to ensure the existence of the expected values in both the ob-
jective function as well as in the value function (included in the dynamic
programming equation). Moreover, in the case of a continuous random
variable, Theorem 2.7 may not hold without additional constraints. The
reason is that the principle of optimality which is used to prove the sec-
ond equality in part (i) (the equality (2.83)) may not hold.

Example 2.16. The optimality principle may not hold in the case
of continuous random variables. We illustrate this claim on a problem
from the collection of counterexamples [7]:

maximize E

k−1∑

i=0

ui (2.85)

subject to xi+1 = zi, i = 0, . . . , k − 1, (2.86)

x0 = 0, (2.87)

ui ∈ {0, 1}, i = 0, . . . , k − 1, (2.88)

zi ∈ [0, 1], i = 0, . . . , k − 1, (2.89)

where we assume that the random variables zi are identically distributed
on [0, 1], hence the random variable as well as the state variable have
a continuous character. This implies that any change of the policy on
a measure zero set has no effect on the expected value. Indeed, let us
define

vi(x) = 1, for each x and i = 0, . . . , k − 1, (2.90)

ṽ1(x) =

{
0, if x = 0,
1, if x 6= 0.

(2.91)

It is obvious that both strategies V = {v0, v1, v2, . . . , vk−1} and Ṽ =
{v0, ṽ1, v2, . . . , vk−1} are optimal, yet Ṽ does not satisfy the optimality
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principle, because the sub-policy Ṽ1 = {ṽ1, v2, . . . , vk−1} which is a sub-
set of Ṽ is not an optimal policy for the sub-problem D1(x1) if x1 = 0.

2.5.3 Proof of Theorem 2.7

Before proceeding to the actual proof of this theorem, we derive some
useful auxiliary results and lemmas. Let us denote

Ij(xj ,Vj) := Ej,k−1Jj(xj ,Vj ,Zj). (2.92)

Lemma 2.2. Denoting an admissible policy for Dj(xj) by Vj =
{vj ,Vj+1}, we have

Ij(xj ,Vj) = Ej[f
0
j (xj , vj(xj), zj)+Ij+1(fj(xj, vj(xj), zj),Vj+1)]. (2.93)

Proof: We can rewrite Ij(xj ,Vj) as follows:

Ij(xj ,Vj) = Ej,k−1Jj(xj,Vj ,Zj)
= EjEj+1,k−1[f

0(xj , vj(xj), zj) + Jj+1(fj,Vj+1,Zj+1)]

= Ej[f
0(xj , vj(xj), zj) +Ej+1,k−1Jj+1(fj,Vj+1,Zj+1)]

= Ej[f
0
j (xj , vj(xj), zj) + Ij+1(fj,Vj+1)],

where fj = fj(xj , vj(xj), zj). We have used the law of iterated expec-
tations for a multidimensional random variable as well as the fact that
f0(xj, vj(xj), zj) does not depend on zj+1, . . . , zk−1.

Theorem 2.8. Optimality principle. For each j = 0, . . . , k − 1, the
following statement is true: If Vj = (vj ,Vj+1) is an optimal policy for
Dj(xj) and xj+1 ∈ Xj+1(xj , vj) (i.e. xj+1 = fj(xj , vj(xj), zj) for some
zj ∈ Zj), then Vj+1 is an optimal policy for Problem Dj+1(xj+1).

Proof: We prove that theorem by contradiction. Assume that the the-
orem does not hold for some j. This means that there exists an optimal
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policy V̂j = (v̂j , V̂j+1) for Dj(xj) and x̂j+1 ∈ Xj+1(xj , v̂j) such that V̂j+1

is not an optimal policy for Problem Dj+1(x̂j+1).

Assumption 2.2 implies that there exists an optimal policy V̄j+1 for
Problem Dj+1. Hence

Ij+1(xj+1, V̄j+1) ≥ Ij+1(xj+1, V̂j+1), for all xj+1 (2.94)

and since V̂j+1 is not an optimal policy for Problem Dj+1(x̂j+1), in-
equality (2.94) holds as a strict inequality at xj+1 = x̂j+1. Hence

Ij+1(x̂j+1, V̄j+1) > Ij+1(x̂j+1, V̂j+1). (2.95)

Let us now consider a new control

V̄j := {v̂j , V̄j+1}

and calculate

Ij(xj, V̄j) = Ej [f
0
j (xj , v̂j(xj), zj) + Ij+1(xj+1, V̄j+1)]

> Ej [f
0
j (xj , v̂j(xj), zj) + Ij+1(xj+1, V̂j+1)]

= Ij(xj, V̂j), (2.96)

where xj+1 = fj(xj, v̂j(xj), zj). We have used (2.93) in the first and
last equality. In addition, the strict inequality is implied by the strict
inequality in (2.95), non-strict equally oriented inequality (2.94) as well
as by the fact that Zi is a countable set. The inequality (2.96) is in
contradiction with the optimality of V̂j which proves the theorem.

Now we proceed with the proof of Theorem 2.7 itself.

Proof of Theorem 2.7: We begin with the proof of the first equality
in item (i). The definition of V implies

Vk−1(x) = max
Vk−1

Ek−1Jk−1(x,Vk−1) = max
uk−1∈Uk−1

Ek−1f
0
k−1(x, uk−1),

(2.97)
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because Vk−1 = {vk−1} and because the maximization with respect to all
admissible functions vk−1 at the state x is analogous to the maximization
with respect to all uk−1 ∈ Uk−1.

Analogously we obtain for j = 0, . . . , k − 2

Vj(x) = max
Vj

Ej,k−1Jj(x,Vj ,Zj) = max
Vj

Ij(x,Vj)

= max
Vj

Ej [f
0
j (x, vj(x), zj) + Ij+1(fj(x, vj(x), zj),Vj+1)]

= max
uj∈Uj

max
Vj+1

Ej[f
0
j (x, uj , zj) + Ij+1(fj(xj , uj , zj),Vj+1)]

= max
uj∈Uj

max
Vj+1

[Ejf
0
j (x, uj , zj) +EjIj+1(fj(xj, uj , zj),Vj+1)]

= max
uj∈Uj

[Ejf
0
j (x, uj , zj) + max

Vj+1

EjIj+1(fj(x, uj , zj),Vj+1)]

= max
uj∈Uj

[Ejf
0
j (x, uj , zj) +Ej max

Vj+1

Ij+1(fj(x, uj , zj),Vj+1)]

= max
uj∈Uj

Ej [f
0
j (x, uj , zj) + Vj+1(fj(x, uj , zj))]. (2.98)

The first equality is the definition of V , the second one is the equation
(2.92), the third one is (2.93), the fourth one is implied by the fact that
if Vj is an admissible policy for Problem Dj(x), then vj(x) ∈ Uj and
Vj+1 is an admissible policy for the problem Dj+1. The next equality
uses the additive property of the expected value and the next one uses
the fact that the first term does not depend on Vj+1. The sixth equality
is explained below in more details. The last equality uses again the
additive property of the expected value and the definition of V .

It remains to prove the sixth equality in (2.98), i.e. that

max
Vj+1

EjIj+1(fj(xj , uj , zj),Vj+1) = Ej max
Vj+1

Ij+1(fj(xj , uj , zj),Vj+1).

Since we have

Ij+1(fj(xj , uj , zj),Vj+1) ≤ max
Vj+1

Ij+1(fj(xj , uj , zj),Vj+1),
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for all xj+1 and Vj+1, hence also

EjIj+1(fj(xj , uj , zj),Vj+1) ≤ Ej max
Vj+1

Ij+1(fj(xj , uj , zj),Vj+1),

for all Vj+1 and hence also for

max
Vj+1

EjIj+1(fj(xj , uj , zj),Vj+1) ≤ Ej max
Vj+1

Ij+1(fj(x, uj , zj),Vj+1).

Now we will prove the opposite inequality. Obviously for all Vj+1 one
has

max
Vj+1

EjIj+1(fj(x, uj , zj),Vj+1) ≥ EjIj+1(fj(x, uj , zj),Vj+1),

and hence also Vj+1 = V̂j+1, where V̂j+1 is an optimal policy (due to
Assumption 2.2), which maximizes Ij+1 for each xj+1. Therefore we
obtain

max
Vj+1

EjIj+1(fj(x, uj , zj),Vj+1) ≥ EjIj+1(fj(x, uj , zj), V̂j+1)

= Ej max
Vj+1

Ij+1(fj(x, uj , zj),Vj+1).

Hence we have fully justified the particular steps of the derivation of
(2.98). If we define Vk(x) = 0, then we can merge equalities (2.97) and
(2.98) which proves the first equality in (2.83). The second equality in
(2.83) is implied by the optimality principle and by Lemma 2.2:

Vj(x) = max
Vj

Ej,k−1Jj(x,Vj ,Zj) = max
Vj

Ij(x,Vj) = Ij(x, V̂j)

= Ej [f
0
j (x, v̂j(x), zj) + Ij+1(fj(x, v̂j(x), zj), V̂j+1)]

= Ej [f
0
j (x, v̂j(x), zj) + Vj+1(fj(x, v̂j(x), zj))].

Part (i) is proved. We now prove part (ii) by mathematical induc-
tion. Obviously, the theorem holds for j = k − 1: Indeed, if Vk−1 and
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v̂k−1 satisfy (2.83) and (2.84), then

Vk−1(x) = max
u∈Uk−1

Ek−1f
0
k−1(x, u) = Ek−1f

0
k−1(x, v̂k−1(x))

= max
Vk−1

Ek−1Jk−1(x,Vk−1) = Ek−1Jk−1(x, V̂k−1),

and hence v̂k−1(x) = u is an optimal feedback control and Vk−1 is the
value function. Assume now that the theorem holds for i = j+1, . . . , k−
1. We aim to prove that it holds also for i = j, . . . , k − 1.

Assume that Vj, Vj+1,. . . , Vk satisfy the dynamic programming
equation, x ∈ Xj . The induction hypothesis implies that Vj+1,. . . ,Vk
are value functions for the respective problems. We need to prove that
Vj is a value function for Problem Dj . Assume the contradiction, i.e.
that Vj is not the maximal value of the objective function for Dj(x).
Then there exists a policy V̄j such that

Ej,k−1Jj(x, V̄j ,Zj) > Vj(x).

It means that

Vj(x) < Ej,k−1Jj(x, V̄j ,Zj) = Ij(x, V̄j)
= Ej [f

0
j (x, v̄j(x)) + Ij+1(fj(x, v̄j(x), zj)), V̄j+1)]

≤ Ej [f
0
j (x, v̄j(x)) + Vj+1(fj(x, v̄j(x)))]

≤ max
uj∈Uj

Ej [f
0
j (x, uj) + Vj+1(fj(x, uj))],

where the first non-strict inequality is obtained using the induction hy-
pothesis. Hence we have a contradiction with the assumption that Vj,
Vj+1,. . . , satisfy the dynamic programming equation. Therefore, Vj is a
value function.

Assume now that the functions v̂j, v̂j+1, . . . , v̂k−1 satisfy the dy-
namic programming equation. Then V̂j+1 = (v̂j+1, . . . v̂k−1) is an op-
timal policy, due to the induction hypothesis. We need to prove that
V̂j = (v̂j , V̂j+1) is an optimal policy. One has

Ij(V̂j) = Ej[f
0
j (x, v̂j(x)) + Ij+1(fj(x, v̂j(x), zj), V̂j+1)]

= Ej[f
0
j (x, v̂j(x)) + Vj+1(fj(x, v̂j(x)))] = Vj(x), (2.99)
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where we have used equality (2.93), the fact that V̂j+1 is an optimal pol-
icy and Vj+1 is a value function and finally that v̂j satisfies the dynamic
programming equation. Since Vj is a value function, (2.99) proves the
optimality of the policy V̂j.

2.5.4 Problem Solving

Example 2.17. Example where minV EJ(V,Z) < minU EJ(U ,Z).
The formulation of the problem is as follows:

minimize E

[
1∑

i=0

(xi − ui + zi)
2

]

subject to xi+1 = xi − ui + zi, i = 0, 1,

x0 = 0,

zi =

{
1, with probability 1/2,
0, with probability 1/2,

i = 0, 1.

We will solve this problem in two versions: We find both (a) the program
control as well as (b) the optimal feedback control.

(a) Let us calculate the value of the objective function for the pro-
gram control. Obviously

J(U ,Z) = (x0 − u0 + z0)
2 + (x1 − u1 + z1)

2

= (−u0 + z0)
2 + (−u0 + z0 − u1 + z1)

2

= (2u2
0 + 2u0u1 + u2

1) + (−4u0z0 + 2z2
0 − 2z0u1)

+ (−2u0z1 − 2u1z1 + z2
1) + 2z0z1.

From the probability distribution of the random variables z0 and z1 one
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obtains

EJ(U ,Z) = 2u2
0 + 2u0u1 + u2

1 +
1

4
0

︸ ︷︷ ︸

z0=0,z1=0

+
1

4
(−2u0 − 2u1 + 1)
︸ ︷︷ ︸

z0=0,z1=1

+
1

4
(−4u0 + 2 − 2u1)
︸ ︷︷ ︸

z0=1,z1=0

+
1

4
(−4u0 + 2 − 2u1 − 2u0 − 2u1 + 1 + 2)
︸ ︷︷ ︸

z0=1,z1=1

= 2u2
0 + 2u0u1 + u2

1 − 3u0 − 2u1 + 2.

Minimum of this convex function is attained at a point (û0, û1) in which

∂EJ

∂u0
=
∂EJ

∂u1
= 0,

i.e.

4û0 + 2û1 − 3 = 0,

2û0 + 2û1 − 2 = 0,

which implies û0 = 1
2 , û1 = 1

2 and EJ(Û ,Z) = 3
4 .

(b) Now we use the dynamic programming equation to calculate the
value function. We have V2(x) = 0 for any x. Furthermore,

V1(x) = min
u
Ez1

[
(x− u+ z1)

2 + 0
]

= min
u

[
1

2
(x− u)2
︸ ︷︷ ︸

z1=0

+
1

2
(x− u+ 1)2
︸ ︷︷ ︸

z1=1

]

= x2 + x+
1

2
+ min

u

[

u− 2x+ 1

2

]2

− (2x+ 1)2

4

= x2 + x+
1

2
− (2x+ 1)2

4
=

1

4
,
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where the minimum is attained at u = 1
2+x. Hence we have v1(x) = 1

2+x
and V1(x) = 1

4 for any x. Using the formula for V1, one obtains

V0(x) = min
u
Ez0

[
(x− u+ z0)

2 + V1(x− u+ z0)
]

= min
u
Ez0

[

(x− u+ z0)
2 +

1

4

]

=
1

4
+ min

u

[
1

2
(x− u)2
︸ ︷︷ ︸

z0=0

+
1

2
(x− u+ 1)2
︸ ︷︷ ︸

z0=1

]

.

The term in the brackets is the same as the one in the previous case and
hence again v0(x) = 1

2 + x, but V0(x) = 1
4 + 1

4 = 1
2 , for any x. Therefore

one has

min
V
EJ(V,Z) = V0(x) =

1

2
<

3

4
= min

U
EJ(U ,Z),

which is a strict inequality in this case.

Example 2.18. Trading radishes (solution to the problem formu-
lated in Example 2.15). The problem will be solved numerically using
MATLAB. We suppose that the unit purchase price is n = 0.50 EUR,
unit selling price is p = 0.70 EUR and the loss due to sales delayed to
the next day after delivering radishes is s = 0.10 EUR or s = 0.30 EUR,
respectively. The daily demand for radishes is uniformly distributed
on the interval [0.30]. Unlike in the original formulation of this prob-
lem, we assume that the merchant cannot store more than 100 bundles
of radishes overnight. However, it is only a technical assumption that
facilitates the search for a solution, which should not affect the result.
Furthermore, we assume that the merchant wants to sell radishes during
the period of 20 days. We can formulate the problem as follows:

maximize J = E

19∑

i=0

0.7 min(xi + ui; zi) − 0.5ui − 0.1xi

subject to xi+1 = min(max(xi + ui − zi; 0); 100), i = 0, ..., 19,

x0 = 0.
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Since the highest possible demand is 30 bundles of radishes, clearly the
merchant will not order more than 30 bundles in any day. The problem
can then be solved using MATLAB as follows (solution for s = 0.3):

k=20; xmax=100; umax=30; z=0:1:30;

V=zeros(k+1,xmax+1); v=zeros(k+1,xmax+1);

V(:,:)=-inf; V(k+1,:)=0;

for i=k:-1:1

for x=0:xmax

for u=0:umax

f=min(max(x+u-z,0),xmax);

f0=0.7*min(x+u,z)-0.5*u-0.3*x;

if 1/31*sum(f0+V(i+1,f+1))>V(i,x+1)

V(i,x+1)=1/31*sum(f0+V(i+1,f+1));

v(i,x+1)=u;

end

end

end

end

Note that in this case, the variables f and f0 are 31-dimensional vectors,
based on the dimension of the vector z. The optimal feedback control
is stored in the matrix v. Its values for each day are in the particular
values of the state variable shown in Figure 2.5.
Notice that the number of purchased bundles of radishes decreases with
the increasing number of bundles carried-over from the previous day. In
addition, the volume of purchases are smaller when the overnight storage
loss is higher. At the end of the planning horizon, the purchases volumes
decrease because they may not be sold at all.

When changing the distribution of the random variables zi (i =
0, . . . , k − 1), the value of the optimal feedback control can be changed,
even in the case when the expected value of variables zi remains un-
changed. Figure 2.6 compares three different distributions of zi:

• discrete uniform distribution on the interval [0, 30],
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Figure 2.5: Optimal feedback control for the particular stages and values
of the state variable in case s = 0.1 (left-hand side) and s = 0.3 (right-
hand side).

• normal distribution with expected value 15 and standard deviation
5,

• zi attains a deterministic value 15 (i.e. its standard deviation is
zero).

By Figure 2.6 the change depends on the parameter s (the loss due
to the carry-over to the next day). In case zi = 15, the merchant always
orders precisely as many bundles of radishes as required to maintain
their number at 15 (including unsold bundles from the previous day).
If s is small, the number of ordered bundles increases with standard
deviation of the distribution of the random variable zi. The reason is
that the likelihood of higher demand increases in this case as well, and
the losses in case of low demand are relatively small. Conversely, if s is
large, the number of ordered bundles decreases with increasing standard
deviation.

The MATLAB program reflects the change in the demand distri-
bution mainly via the variable z, which is generated using the inverse
cumulative distribution function applied to a uniformly distributed vec-
tor. In this case, however, the value will not be integer, therefore the
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Figure 2.6: Optimal feedback control at time i = 10 for different distri-
butions of the random variable zi in the case s = 0.1 (right-hand side)
and s = 0.3 (left-hand side), resp.

calculation of the new value of the state variable requires rounding off or
interpolation. Hence, in order to obtain an accuracy comparable to the
case of uniform distribution, partitioning of both the state and control
variables has to be refined.

Decrease of the optimal feedback control at times i = 18 and i = 19
indicated in Figure 2.5 is implied by the fact that the radishes which
remained unsold at the end of the sale period do not generate any profits.
Hence, we can change the formulation of the problem by assuming that
these bundles can be repurchased for their residual value EUR 0.15 pre
bundle. The objective function has the form

J = E

(
19∑

i=0

0.7 min(xi + ui; zi) − 0.5ui − 0.1xi + 0.15x20

)

.

As indicated by Figure 2.7, the decrease in orders during the last days
is less significant in this case. The solution is obtained by replacing the
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command V(k+1,:)=0; by the command V(k+1,:)=0:0.15:(0.15*xmax);.
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Figure 2.7: Optimal feedback control at stages from 15 to 19 and s = 0.3
in the case that the repurchase price of unsold radishes is zero (left-hand
side) or EUR 15 (right-hand side), resp.

A possible extension of this problem would also be to consider dif-
ferent distributions of the demands in particular days. In this case, it
would be reasonable to expect that, unlike in the autonomous case, the
optimal feedback control would not stay unchanged for a fixed value of
the state variable at different stages.

Example 2.19. Gambler’s problem. A gambler received an offer
to take part in the following game: At the beginning of the game, he
receives 3 chips. Then three betting rounds follow where he can bet any
amount of chips which he currently has at his disposal. The probability
of a win is 2/3. In case of win, he gets back his stake plus an addi-
tional amount equal to his stake. Otherwise, he loses his stake and gets
nothing. If he succeeds to have at least 5 chips after passing these three
rounds, he gets EUR p, otherwise gets nothing. What is his optimal
betting policy?

This problem can be formulated in the form of a stochastic optimal
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control problem as follows:

maximize J = E ph(x3 − 5)

subject to xi+1 = xi + ziui, i = 0, 1, 2,

x0 = 3, 0 ≤ ui ≤ xi, where

h(x) =

{
1, if x ≥ 0,
0, if x < 0

and

zi =

{

1 with probability 2
3 ,

−1 with probability 1
3 .

The dynamic programming equation for this problem is

Vj(x) = max
u≥0, u≤x, u∈N

EVj+1(x+ zju), i = 0, 1, 2,

V3(x) = p h(x− 5).

The solution for p = 1 is presented in Table 2.4. The optimal policy is
illustrated on Chart 2.8.
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Table 2.8: Solution to the Example 2.19.

i x u f0
i + Vi+1(Fi) Vi(x) vi(x)

3 ≤ 4 0

≥ 5 1

2 0 0 2
3V3(0 + 0) + 1

3V3(0 − 0) = 0 0 0

1
0

1

2
3V3(1 + 0) + 1

3V3(1 − 0) = 0
2
3V3(1 + 1) + 1

3V3(1 − 1) = 0
0 0,1

2

0

1

2

2
3V3(2 + 0) + 1

3V3(2 − 0) = 0
2
3V3(2 + 1) + 1

3V3(2 − 1) = 0
2
3V3(2 + 2) + 1

3V3(2 − 2) = 0

0 0,1,2

3

0

1

2

3

2
3V3(3 + 0) + 1

3V3(3 − 0) = 0
2
3V3(3 + 1) + 1

3V3(3 − 1) = 0
2
3V3(3 + 2) + 1

3V3(3 − 2) = 2
3

2
3V3(3 + 3) + 1

3V3(3 − 3) = 2
3

2
3 2,3

4

0

1

2

3

4

2
3V3(4 + 0) + 1

3V3(4 − 0) = 0
2
3V3(4 + 1) + 1

3V3(4 − 1) = 2
3

2
3V3(4 + 2) + 1

3V3(4 − 2) = 2
3

2
3V3(4 + 3) + 1

3V3(4 − 3) = 2
3

2
3V3(4 + 4) + 1

3V3(4 − 4) = 2
3

2
3 1,2,3,4

5

0

1

2

3

4

5

2
3V3(5 + 0) + 1

3V3(5 − 0) = 1
2
3V3(5 + 1) + 1

3V3(5 − 1) = 2
3

2
3V3(5 + 2) + 1

3V3(5 − 2) = 2
3

2
3V3(5 + 3) + 1

3V3(5 − 3) = 2
3

2
3V3(5 + 4) + 1

3V3(5 − 4) = 2
3

2
3V3(5 + 5) + 1

3V3(5 − 5) = 3
2

1 0
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i x u f0
i + Vi+1(Fi) Vi(x) vi(x)

1 0 0 2
3V2(0 + 0) + 1

3V2(0 − 0) = 0 0 0

1
0

1

2
3V2(1 + 0) + 1

3V2(1 − 0) = 0
2
3V2(1 + 1) + 1

3V2(1 − 1) = 0
0 0,1

2

0

1

2

2
3V2(2 + 0) + 1

3V2(2 − 0) = 0
2
3V2(2 + 1) + 1

3V2(2 − 1) = 4
9

2
3V2(2 + 2) + 1

3V2(2 − 2) = 4
9

4
9 1,2

3

0

1

2

3

2
3V2(3 + 0) + 1

3V2(3 − 0) = 2
3

2
3V2(3 + 1) + 1

3V2(3 − 1) = 4
9

2
3V2(3 + 2) + 1

3V2(3 − 2) = 2
3

2
3V2(3 + 3) + 1

3V2(3 − 3) = 2
3

2
3 0,2,3

4

0

1

2

3

4

2
3V2(4 + 0) + 1

3V2(4 − 0) = 2
3

2
3V2(4 + 1) + 1

3V2(4 − 1) = 8
9

2
3V2(4 + 2) + 1

3V2(4 − 2) = 2
3

2
3V2(4 + 3) + 1

3V2(4 − 3) = 2
3

2
3V2(4 + 4) + 1

3V2(4 − 4) = 2
3

8
9 1

5

0

1

2

3

4

5

2
3V2(5 + 0) + 1

3V2(5 − 0) = 1
2
3V2(5 + 1) + 1

3V2(5 − 1) = 2
3

2
3V2(5 + 2) + 1

3V2(5 − 2) = 2
3

2
3V2(5 + 3) + 1

3V2(5 − 3) = 2
3

2
3V2(5 + 4) + 1

3V2(5 − 4) = 2
3

2
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2
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3

2
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2
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27

2
3V1(3 + 2) + 1

3V1(3 − 2) = 2
3

2
3V1(3 + 3) + 1

3V1(3 − 3) = 2
3

20
27 1
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chips: 4 stake: 1
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chips: 3 stake: 2, 3

chips: 3 stake: 2, 3

chips: 1 stake: 0, 1

chips: 4 stake: 1, 2, 3, 4

chips: 0 stake: 0

Figure 2.8: Optimal policy in the Example 2.19.

Example 2.20. Optimal selling time of shares. Assume that
we possess shares of a certain firm and their total amount is x0 > 0.
Assume further that the price of the shares follows a stochastic process
given by

xi+1 = axi + b+ zi, i = 0, . . . , k − 1,

where a ∈ (0, 1), b > 0 and zi are independent, identically distributed
discrete random variables with mean 0. These shares have to be sold in
a single transaction at least before the k-th day. The cash obtained can
be deposited in a bank account with a daily interest rate r. The aim is
to maximize the amount of wealth on the k-th day.

This problem can be formulated as an optimal control problem in
the following form:

maximize E[xk]

subject to xi+1 = f(xi, yi, ui, zi), i = 0, . . . , k − 1,

yi+1 = yi − ui, i = 0, . . . , k − 1,

x0 given,
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y0 = 1, yi ≥ 0, i = 0, . . . , k − 1,

ui ∈ {0, 1}, i = 0, . . . , k − 1,

where

f(x, y, u, z) =

{
ax+ b+ z, if y = 1 and u = 0,
(1 + r)x, otherwise.

The state variable yi indicates whether we still possess the shares at the
beginning of the i-th day (yi = 1), or whether they have been already
sold off (yi = 0). The control variable ui indicates whether the shares
were sold during the i-th day (ui = 1) or not (ui = 0). The constraint
on the non-negativity of the variable yi together with the state equation
ensure that the shares cannot be sold (ui = 0) once we do not own them
(yi = 0).

We demonstrate that for each day i = 0, . . . , k − 1 there exists a
threshold ci for the price of shares indicating whether it is optimal to
sell the shares (if their price is above this threshold) or to retain them (if
it is below this threshold). We also show that these thresholds represent
a decreasing sequence.

The dynamic programming equation for this problem has the fol-
lowing form:

Vj(x, y) = max
{u∈{0,1}|y−u≥0}

E
[
Vj+1(f(x, y, u, zj), y − u)

]
,

where Vk(x, y) = x. Obviously, for each j = 1, . . . , k − 1 one has

Vj(x, 0) = Vj+1((1 + r)x, 0),

because for y = 0 we have f(x, 0, u, zj) = (1 + r)x. Using the boundary
condition for Vk we obtain

Vj(x, 0) = (1 + r)k−jx and vj(x, 0) = 0.
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On the other hand, for y = 1 the dynamic programming equation is

Vj(x, 1) = max
u∈{0,1}

{
E[Vj+1((1 + r)x, 0)]
︸ ︷︷ ︸

u=1

, E[Vj+1(ax+ b+ zj , 1)]
︸ ︷︷ ︸

u=0

}

= max
{
(1 + r)k−jx,E[Vj+1(ax+ b+ zj , 1)]

}
.

Using the notation Ṽj(x) = (1 + r)−(k−j)Vj(x), the last equation multi-
plied by (1 + r)−(k−j) can be rewritten to

Ṽj(x, 1) = max

{

x,
1

1 + r
E[Ṽj+1(ax+ b+ zj , 1)]

}

.

For j = k − 1 we have

Ṽk−1(x, 1) = max {x, hk−1(x)} , where hk−1(x) =
ax+ b

1 + r

and we have used that Vk(x, y) = x. Given that a
1+r < 1, this yields

Ṽk−1(x, 1) =

{
x, if x ≥ ck−1,

hk−1(x), if x ≤ ck−1,

and

vk−1(x, 1) =

{
1, if x ≥ ck−1,
0, if x ≤ ck−1,

where

ck−1 =
b

1 + r − a
.

Furthermore, for j = k − 2 one has

Ṽk−2(x, 1) = max

{

x,
1

1 + r
E

[

max

{

ax+ b+ zk−2,
a(ax+ b+ zk−2) + b

1 + r

}]}

= max

{

x,E

[

max

{
ax+ b+ zk−2

1 + r
,
a2x+ a(b+ zk−2) + b

(1 + r)2

}]}

= max{x, hk−2(x)}
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where

hk−2(x) = E

[

max

{
ax+ b+ zk−2

1 + r
,
a2x+ a(b+ zk−2) + b

(1 + r)2

}]

.

Given the assumptions on the random variable zk−2, this can be rewrit-
ten as

hk−2(x) =
1

N

N∑

n=0

max

{
ax+ b+ zk−2

1 + r
,
a2x+ a(b+ zk−2) + b

(1 + r)2

}

.

Note that each of the summands is a maximum of two linear functions

with derivatives
a

1 + r
and

a2

(1 + r)2
, respectively. Consequently, each

summand is an increasing, convex, piecewise linear function with deriva-

tive equal to
a

1 + r
< 1 for sufficiently large x. Obviously, this is also

true for their sum. Hence, there exists a ck−2 such that

Ṽk−2(x, 1) =

{
x, if x ≥ ck−2,

hk−2(x), if x ≤ ck−2,

and

vk−2(x, 1) =

{
1, if x ≥ ck−2,
0, if x ≤ ck−2.

Using mathematical induction, it can be proved that

Ṽj(x, 1) = max{x, hj(x)}, (2.100)

where again hj(x) is an increasing, convex, piecewise linear function

with derivative equal to
a

1 + r
< 1 for sufficiently large x. Hence there

exists a cj such that

Ṽj(x, 1) =

{
x, if x > cj ,

hj(x), if x < cj .
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In addition, convexity of Ṽj(x, 1) implies that this cj is unique. The
optimal policy for the j-th day is therefore

sell the shares (vj(x, 1) = 1), if x > cj ,
retain the shares (vj(x, 1) = 0), if x < cj .

Note that the state equation in this example does not represent a
standard model of the dynamics of equity prices. On the other hand,
the approach presented in this example can be applied in quantitative
finance when pricing American options (i.e. options which can be exer-
cised before their expiration date) by means of dynamic programming.

Example 2.21. Optimal consumption as a stochastic problem.
The optimal consumption problem on infinite time horizon will now
be extended by considering stochastic disturbances to the production
function (for example production or technological shocks):

maximize
∞∑

i=0

βi lnui

subject to xi+1 = ezi αxi − ui, i = 0, 1, . . . ,

x0 = a,

lim
k→∞

xk ≥ 0,

where zi are independent and identically distributed discrete random
variables with mean 0. Assume that the value zi is known at stage i.6

The dynamic programming equation for this problem has the fol-
lowing form:

V (x) = max
u

[lnu+ βEV (ez αx− u)].

It is easy to verify that the functions

v(x) = (1 − β) ezαx

6It is a very simplified example representing the class of models which are typically
called as real business cycle models.
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and

V (x) =
1

1 − β
lnx+

1

1 − β
ln(α(1 − β)) +

β

(1 − β)2
lnαβ +

1

1 − β
z

satisfy the dynamic programming equation. Substituting the optimal
feedback control into the state equation yields

xi+1 = ezi αβxi,

i.e.

lnxi+1 = ln(αβ) + lnxi + zi.

We can see that lnxi follows a first order autoregressive process. This
process is albeit non-stationary, because the value of the coefficient cor-
responding to lnxi is one (i.e. the process has a unit root). It means that
any shocks have a persistent impact on capital as well as consumption.
This non-stationarity is caused by the linearity of the production func-
tion. The Cobb-Douglas production function would yield a stationary
autoregressive process.

2.5.5 Exercises

Exercise 2.33. Modify the definition of admissible policies from
this subchapter for the case of a deterministic problem with constraints
(2.1)–(2.6) and prove (2.82) for this problem.

Exercise 2.34. Assume that you have a EUR (a > 0) you want to bet.
In case of win, your profit is equal to the stake, otherwise you lose your
stake. The probability of a win is 3

4 . The stake need not be integer but
the value of the stake cannot exceed your current wealth. The number
of rounds is k. The objective is to maximize the expected utility from
your final wealth. Your utility function is U(x) =

√
x.

a) Formulate this problem as a stochastic optimal control problem.
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b) By means of mathematical induction prove that the value function
has the form Vi(x) = ci

√
x. Using this result, show that your

optimal policy in all stages is to bet 4
5 of the money that you have

at your disposal at that time.

Exercise 2.35. Assets and liquidity management in a bank. A
commercial bank has to solve the following problem at the beginning of
each week: Money from clients can be invested either in assets with lower
liquidity (with a maturity of one week) but higher yield (4 %), or can
be deposited in the central bank, where it is anytime immediately at the
bank’s disposal, but the yield is only 3 %. If these funds are available to
the bank at the time of a demand for a new loan, they can be granted as a
loan to a client with the interest rate of 7 %. This is however dependent
on the current demand for loans which is random. If the loan is not
granted immediately to the client when demanded due to an insufficient
amount of liquid funds, the client goes to another bank. Based on the
prediction of cash flows, the bank expects the inflow of EUR 1 million
regularly on a weekly basis. This problem can be formulated as follows:

minE

[
3∑

i=0

0.01(xi + ui + 1 − zi)
+ + 0.03(xi + ui + 1 − zi)

−
]

,

xi+1 = xi + ui + 1 − zi, i = 0, 1, 2,

x0 = 0,

zi =







1,5 with probability 1/3,
1,0 with probability 1/3,
0,5 with probability 1/3,

where xi denotes the current amount of liquid funds deposited within
the central bank at the beginning of the i-th week, ui represents the
increase of these funds during the i-th week and zi denotes the demand
for loans in the i-th week. The objective function represents the oppor-
tunity costs. Find the optimal policy using the dynamic programming
equation.
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Exercise 2.36. Choice of a pension fund. A pension saver is de-
ciding, whether he should invest his money to a conservative fund or to
a dynamic fund. The yield of the conservative fund is 5% p.a. without
any risk. In the dynamic fund, the yield is 15% p.a. with probability
1/2 and zero with probability 1/2. The saver wants to maximize the ex-
pected utility from his investment in two-year horizon, where the utility
function of consumption c is −e−c. This problem can be formulated as
follows:

maxE
[

− e−y2−z2
]

,

yi+1 = 1.05(yi + zi)ui, i = 0, 1,

zi+1 = ri(yi + zi)(1 − ui), i = 0, 1,

ui ∈ [0, 1],

y0 + z0 = a > 0,

ri =

{
1.15 with probability 1/2,
1.00 with probability 1/2.

where the amount of money invested in the conservative and dynamic
fund is denoted by y and z, respectively. Find the optimal policy. Show
that under certain conditions, this optimal policy follows the rule: ”In
the first period, invest everything in the dynamic fund. If its yield is
0%, keep the money in this fund during the second period as well. If
the yield is 15%, do not take more risk and put all the money in the
conservative fund.” Use that by introducing a new variable xi = yi + zi,
the problem can be transformed in the form:

maxE
[

− e−x2

]

,

xi+1 = 1.05xiui + rixi(1 − ui), i = 0, 1,

ui ∈ [0, 1],

x0 = a > 0,

ri =

{
1.15 with probability 1/2,
1.00 with probability 1/2.
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Exercise 2.37. Consider the following modification of Exercise 2.36:

maxE[ln x2],

xi+1 = 1.05xiui + rixi(1 − ui), i = 0, 1,

ui ∈ [0, 1],

x0 = a > 0,

ri =

{
1.15 with probability 1/2,
1.00 with probability 1/2.

Decide what portion of the money should be optimally invested in the
conservative fund (i.e. the fund yielding 5%) at the beginning of the
second period. Does the result depend on the yield in the first period?

Exercise 2.38. Solve the following problem using the dynamic pro-
gramming equation:

maxE

[

x2
3 +

2∑

i=1

(x2
i + u2

i )

]

,

xi+1 = xi + ui + zi, i = 1, 2,

ui ∈ {−1, 0, 1},
x1 = 1,

for xi > 0 : zi =







−1 with probability 1/2,
0 with probability 1/2,
1 with probability 0,

for xi = 0 : zi =







−1 with probability 1/2,
0 with probability 0,
1 with probability 1/2,

for xi < 0 : zi =







−1 with probability 0,
0 with probability 1/2,
1 with probability 1/2.

125



DYNAMIC PROGRAMMING

Exercise 2.39. The stochastic linear-quadratic problem on a finite
time horizon has the following form:

minimize E

[
k−1∑

i=0

βi (xTi Qixi + uTi Riui)

]

,

subject to xi+1 = Axi +Bui + zi, i = 0, . . . , k − 1,

where xi ∈ R
n, ui ∈ R

m, Qi and Ri are n × n and m × m symmetric
matrices, respectively and Ri > 0, Qi ≥ 0. In addition, Ai and Bi are
n × n and n × m matrices, respectively and zi ∈ R

n are independent
vectors of discrete random variables identically distributed with mean 0
and covariance matrix Σ. Prove that the optimal feedback control and
the value function for this problem have the following form:

vi(xi) = −β(Ri + βBT
i Wi+1Bi)

−1BT
i Wi+1Aixi

Vi(xi) = xTi Wixi + di.

In addition, Wk = 0 and for i = k − 1, ..., 0 one has

Wi = Qi + βATi [Wi+1 − βWi+1Bi(Ri + βBT
i Wi+1Bi)

−1BT
i Wi+1]Ai,

di =
β

1 − β
E(zTi Wi+1zi) =

β

1 − β
tr(Wi+1Σ),

where tr denotes the trace of a matrix.
Note that despite the stochastic nature of this problem, the opti-

mal feedback control is independent of Σ and it is the same as in the
case of the respective deterministic linear-quadratic problem. This in-
dependence of the optimal feedback control on Σ is called equivalence
principle. The underlying assumption is that the objective function is
quadratic and convex in both variables, the state equation is linear and
stochastic variables are independent over time. For more general types
of such problems the equivalence principle might not hold, though.
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Chapter 3

Maximum Principle for Discrete

Problems

The farther backward you can look,
the farther forward you can see.

Winston Churchill.

In this chapter, we will discuss an alternative approach for solving opti-
mal control problems. It will be called variational for several reasons.

The essential feature of this approach consists in the control opti-
mality test. It verifies whether small variations of the tested control
do not lead to an increase in the objective function, which is of course
a necessary optimality condition. A charm of this approach is that by
carefully exhausting of all possibilities we obtain enough conditions for
determining optimal control in the sense that the number of optimiza-
tion parameters equals the number of conditions.

The first-order optimization conditions in many fields of optimiza-
tion could be considered as prototypes for such conditions. Such are e.g.
the zero value of partial derivation of functions of several variables in
the free extreme problem, the Lagrange conditions for the constrained
extreme, or the Kuhn-Tucker conditions in nonlinear programming. In
infinite dimensional case they correspond to the variational conditions,
from which we adopt the term.
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MAXIMUM PRINCIPLE

The above analogy suggests that the approach uses finer tools of
mathematical analysis than before. For example, it is necessary that
functions entering the problems are differentiable and hence defined on
open subsets of vector spaces. Therefore, we restrict ourselves to the
problem in which both the control and the state variables are from Eu-
clidean spaces.

In such a way a wide class of optimal control problems with a fi-
nite number of time steps can be reduced to nonlinear programming
problems. Necessary conditions for them are then actually only tran-
scriptions of the Kuhn-Tucker conditions to a form reflecting the features
of the recurrent nature of optimal control problems.

So, why are we talking about the maximum principle? The reason is
historical. The continuous optimal control problem preceded its discrete
version. There, the Pontrjagin maximum principle was derived as a
basic variational optimality condition. Discrete problems then took over
some components, such as the Hamilton function or adjoint variables.
These concepts have proved useful and illustrative despite the fact that a
complete analogy of Pontrjagin maximum principle in the discrete theory
does not apply. The reason is that continuous time allows variations of
arbitrarily small duration. In discrete time this is not possible.

At the first sight it is not clear that the variation approach is as-
sociated with dynamic programming which we have discussed so far.
We will show, however, that there is a relation, and many objects and
concepts from one theory have a natural interpretation in the other.

3.1 Notations and Formulation of the Problem

For reasons mentioned in the introduction to this chapter we will work
in Euclidean spaces: the n-dimensional space will be denoted as R

n. Its
elements, n-dimensional vectors, will be understood as column vectors.
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NOTATIONS AND FORMULATION OF THE PROBLEM

That is, for x ∈ R
n,

x =






x1

...
xn




 = (x1, . . . , xn)T ,

where T as superscript of a matrix or a vector is the symbol of transpo-
sition. Note that components of vectors will be marked by superscripts,
since the subscripts are reserved for time stages.

Similarly, the functions will be defined on several dimensional Eu-
clidean spaces with values either in the one-dimensional or the multidi-
mensional Euclidean space. If f : R

n → R
m, then f = (f 1, . . . , fm)T .

If such a function is continuously differentiable of r-th order, we write
f ∈ Cr. Under the matrix of its first derivatives we understand

∂f

∂x
=






∂f1

∂x1 . . . ∂f1

∂xn

...
...

∂fm

∂x1 . . . ∂f
m

∂xn




 .

The problem which we addressed in this chapter narrows the standard
problem (1.9)–(1.14) in several ways. In particular, we require that
x ∈ R

n and u ∈ R
m - it is for this approach necessary. Also, certain

assumptions on the sets Ui and C are needed - we assume that they are
given by inequalities or equalities. Finally, we assume that the problem
has no constraints on state variables. This assumption is not necessary
but greatly simplifies the derivation of necessary conditions of optimality.
So, we consider the problem

maximize J :=
k−1∑

i=0

f0
i (xi, ui) (3.1)

subject to xi+1 = fi(xi, ui), i = 0, . . . , k − 1, (3.2)

x0 = a, (3.3)

xk ∈ C = {x : g(x) = 0}, (3.4)

ui ∈ Ui = {u : pi(u) ≤ 0}, i = 0, . . . , k − 1, (3.5)
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MAXIMUM PRINCIPLE

where fi : R
n × R

m → R
n, f0

i : R
n × R

m → R, pi : R
m → R

mi , i =
0, . . . , k − 1 a g : R

n → R
l are continuously differentiable functions.

The letter l stands for the number of the components of constraint g
and the letter mi for the number of components of the constraint pi, for
i = 0, . . . , k − 1.

Since the problem (3.1)–(3.5) is a special case of the standard prob-
lem treated in the first two chapters, the terminology as well as the
results derived there for problems with fixed terminal time apply. Due
to the continuous nature of the variables the problem (3.1)–(3.5) can be
seen as a nonlinear programming problem and formulated as a standard
nonlinear programming problem (see section 4.1.1) in two ways.

1. way: We start directly from the description of the problem (3.1)–
(3.5) and as the (multidimensional) optimization variable we chose both
the vectors ui, i = 0, . . . , k − 1, and the vectors xi, i = 1, . . . , k. These
vectors together form a vector z ∈ Rkm+kn. Writing the problem as a
standard non-linear programming one we obtain the problem

maximize J(z) :=

k−1∑

i=0

f0
i (xi, ui) (3.6)

subject to fi(xi, ui) − xi+1 = 0, i = 0, . . . , k − 1, (3.7)

g(xk) = 0, (3.8)

pi(ui) ≤ 0, i = 0, . . . , k − 1, (3.9)

where x0 = a.

2. way: We take into account the nature of the optimal control problem
and as the (multidimensional) optimization variable we chose the vectors
ui, i = 0, . . . , k − 1 only. Then the control U = {u0, . . . , uk−1} is con-
sidered not as a sequence, but as a km-dimensional vector. The values
xi, i = 1, . . . , k of the response of the control U will be considered as de-
pendent variables determined by the functions xi = xi(u0, . . . , ui−1) de-
fined by (3.2) and (3.3). The dependence of xi on the part (u0, . . . , ui−1)
of the control U will be written as xi(U) for all i. So, we obtain a non-
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linear programming problem in the space R
km

maximize J(U) :=

k−1∑

i=0

f0
i (xi(U), ui) (3.10)

subject to pi(ui) ≤ 0, i = 0, . . . , k − 1, (3.11)

g(xk(U)) = 0, (3.12)

where xi(U), i = 1, . . . , k, is the solution of the difference equation (3.2)
with initial condition (3.3) for the control U .

Two alternative ways of transcription of (3.1)–(3.5) yield two differ-
ent nonlinear programming problems of different dimensions. The for-
mer yields the problem (3.6)–(3.9) of high dimension, but simple struc-
ture. The latter yields the problem (3.10)–(3.12) of lower dimension but
a more complex structure due to the composite functions f 0

i (xi(U), ui)
and g(xk(U)). To both of these problems we will apply Theorem 4.2
from Appendix in the next subsection. To do this the following con-
straint qualification has to be imposed on the functions defining the
problem.

Definition 3.1. Let for each i = 0, . . . , k − 1 the vectors

∂pji
∂ui

(ûi), j ∈ Ii(ûi)

be linearly independent. Then we say that problem (3.1)–(3.5) satisfies
the constraint qualification (PR) along the control Û . Here by Ii(ûi) we
understand the index set of all those j ∈ {1, . . . ,mi}, for which the j-th
component of the constraint pi at the point ûi is binding, i.e. pji (ûi) = 0.

Remark 3.1. It is not necessary that the functions fi, f
0
i etc. are

defined on the whole space. This assumption is made only to simplify
the formulation, it is sufficient that the functions fi, f

0
i etc. are defined

on some sufficiently large open domain.
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Remark 3.2. Sometimes it is convenient to reformulate the problem
into the so-called geometric form. We extend the state space to R

n+1 by
adding the zero component x0, denote x̃ = (x0, x) and in the extended
state space we consider the system

x̃i+1 = f̃i(xi, ui),

where

f̃i(xi, ui) = (f0
i (xi, ui), fi(xi, ui)),

with the initial state

ã = (0, a)

and the target set

C̃ = R × C = {(x0, x) : x0 ∈ R, x ∈ C}.

Since

x0
k =

k−1∑

i=0

f0
i (xi, ui),

we can equivalently reformulate this problem into the problem of maxi-
mization of x0

k subject to the constraints for the extended system. Hence,
the variable x0

i can be interpreted as a measure of the accumulated val-
ues of the objective function.

3.2 A Necessary Condition of Optimality

The main objective of this chapter is to derive necessary optimality con-
ditions for problem (3.1)–(3.5). For the derivation we use the corollary
of the John theorem in nonlinear programming formulated and proved
as Theorem 4.2 in the Appendix. Theorem 4.2 can be applied to the
problem (3.6)–(3.9) or to the problem (3.10)–(3.12). In both the cases
we obtain the same result but the interpretations of the so-called adjoint
variable are different (see Remarks 3.10 and 3.11).
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A NECESSARY CONDITION OF OPTIMALITY

3.2.1 Derivation and Formulation of Necessary Condi-

tions

In this subsection we will start from the nonlinear programming problem
of form (3.6)–(3.9). This means that we choose the maximum of the
objective function with respect to both ui, i = 0, . . . , k − 1 and xi, i =
1, . . . , k considered as independent variables. Conditions (3.7) and (3.8)
are the equality constraints and (3.9) represents inequality constraints.
The Lagrange function corresponding to (3.6)–(3.9) has the form (see
(4.3)):

L = ψ0
k−1∑

i=0

f0
i (xi, ui) +

k−1∑

i=0

ψTi+1(fi(xi, ui) − xi+1) + χT g(xk)

+

k−1∑

i=0

λTi pi(ui),

where ψ0 ∈ R, ψ0 ≥ 0, is the multiplier of the objective function, ψi+1 ∈
R
n, i = 0, . . . , k − 1, are multipliers of the equality constraints in (3.7),

χ ∈ R
l is the multiplier of the terminal state equality constraint (3.8) and

λi ∈ R
mi , λi ≤ 0, i = 0, . . . , k − 1, are the multipliers of the inequality

constraints in (3.9) defining the sets Ui. The corresponding derivatives
of the Lagrange function are of the form:

∂L

∂xi
= ψ0 ∂f

0
i

∂xi
(xi, ui) + ψTi+1

∂fi
∂xi

(xi, ui) − ψTi , i = 1, ..., k − 1, (3.13)

∂L

∂xk
= χT

∂g

∂xk
(xk) − ψTk , (3.14)

∂L

∂ui
= ψ0 ∂f

0
i

∂ui
(xi, ui) + ψTi+1

∂fi
∂ui

(xi, ui) + λTi
∂pi
∂ui

(ui), (3.15)

where i = 0, . . . , k − 1. Note the special structure of (3.13) and (3.14).
Indeed, equaling (3.13) and (3.14) to zero and applying the transposition
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operation we obtain

ψi = ψ0 ∂f
0
i
T

∂xi
(xi, ui) +

∂fTi
∂xi

(xi, ui)ψi+1, i = 1, . . . , k − 1, (3.16)

ψk =
∂gT

∂xk
(xk)χ. (3.17)

The equation (3.16) represents a backward difference equation with ter-
minal condition (3.17). It allows to compute ψi, i = k, ..., 1 (for given
ui, xi, ψ

0, χ) recurrently starting from ψk. The equation (3.16) is called
adjoint, (3.17) is called transversality condition, and the multipliers ψi
adjoint variables.

Theorem 3.1. Necessary optimality conditions of variational
type. Let Û = {û0, . . . , ûk−1} be an optimal control for problem (3.1)–
(3.5) and let X̂ = {x̂0, . . . , x̂k} be its response. Let the constraint qualifi-
cation (PR) be satisfied along the control Û . Then there exists a number
ψ0 ≥ 0, a vector χ ∈ R

l and vectors λi ∈ R
mi for i = 0, . . . , k − 1

such that (ψ0, χ) 6= (0, 0)1 and for each i = 0, . . . , k − 1 the variational
condition

ψ0 ∂f
0
i

∂ui
(x̂i, ûi) + ψTi+1

∂fi
∂ui

(x̂i, ûi) + λTi
∂pi
∂ui

(ûi) = 0 (3.18)

and the complementarity condition

λTi pi(ûi) = 0 where λi ≤ 0, (3.19)

hold. Here the vectors ψi+1 ∈ R
n, i = k − 1, . . . , 0, entering (3.18), sat-

isfiy the adjoint equation (3.16) and the transversality condition (3.17)

1By (ψ0, χ) 6= (0, 0) we understand that the number ψ0 and the vector χ do not
vanish simultaneously, i.e. either ψ0 or at least one component of the vector χ does
not vanish.
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for given Û , X̂ and ψ0, χ, i.e. it holds

ψi =
∂f0

i
T

∂xi
(x̂i, ûi)ψ

0 +
∂fTi
∂xi

(x̂i, ûi)ψi+1, i = 1, . . . , k − 1, (3.20)

ψk =
∂gT

∂xk
(x̂k)χ. (3.21)

Proof: Let the assumptions of the theorem be satisfied. Then, accord-
ing to Theorem 4.2, there exist multipliers ψ0 ∈ R, ψ0 ≥ 0, ψi ∈ R

n,
i = 1, . . . , k and χ ∈ R

l not vanishing simultaneously and multipliers
λi ∈ R

mi , λi ≤ 0, i = 0, . . . , k − 1, such that the relations (3.18)–(3.21)
hold. Note that the variational condition (3.18) corresponds to the con-
dition ∂L

∂ui
= 0 and the condition (3.19) represents the complementarity

condition corresponding to the inequality constraint. Further, as shown
earlier, the adjoint equation (3.20) follows from the condition ∂L

∂xi
= 0

and the transversality condition (3.21) follows from ∂L
∂xk

= 0. It remains

to prove that (ψ0, χ) 6= (0, 0). If ψ0 = 0 and also χ = 0, then it would
follow from (3.21) that ψk = 0, and from the adjoint equation (3.20) we
would deduce that also ψi = 0 for all i = 1, . . . , k. This would be in con-
tradiction with the fact that all these multipliers are not simultaneously
zero.

3.2.2 Notes

Remark 3.3. Sometimes the conditions of Theorem 3.1 are formulated
in terms of the so-called Hamiltonian, which is for i = 0, . . . , k−1 defined
as follows:

Hi(x, u, ψ
0, ψ) = ψ0f0

i (x, u) + ψT fi(x, u). (3.22)

Then, the variational condition (3.18) can be rewritten as

∂Hi

∂ui
(x̂i, ûi, ψ

0, ψi+1) + λTi
∂pi
∂ui

(ûi) = 0, i = 0, . . . , k − 1, (3.23)
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the adjoint equation (3.20) as

ψi =
∂HT

i

∂xi
(x̂i, ûi, ψ

0, ψi+1), i = 1, ..., k − 1 (3.24)

and the state equation (3.2) as

xi+1 =
∂HT

i

∂ψi+1
(x̂i, ûi, ψ

0, ψi+1), i = 0, ..., k − 1. (3.25)

This therminology and notation is motivated by the continuous theory.

Remark 3.4. Theorem 3.1 holds even in the case when there are no
restrictions on control or the terminal state in the problem setting. If
there are no restrictions on the control variable, we set λi = 0, i =
0, ..., k − 1 in the theorem claim. In this case no constraint qualification
is needed. If there is no restriction on the terminal state, we set χ = 0 in
the theorem claim. Then the transversality condition obtains the form
ψk = 0.

Remark 3.5. Theorem 3.1 can be used for the search of optimal control,
because it formally provides enough conditions for its determination
(this property was satisfied by Theorem 4.2, from which the conditions
were deduced). Theorem 3.1 is, however, only a necessary optimality
condition, and hence the conditions can be met also by controls, which
are not optimal. However, if the conditions are satisfied by a unique
control Û , the constraint qualification (PR) is satisfied by any admissible
control and moreover, if we know that an optimal control exists, then Û
is an optimal control.

Remark 3.6. If the sets Ui are compact and if there exists at least one
admissible control, then it can be proved (see Exercise 3.11) that there
exists an optimal control.

Remark 3.7. Note that if Theorem 3.1 is satisfied with multipliers ψ0,
ψi, i = 1, . . . , k, χ and λi, i = 0, . . . , k − 1, then it is also satisfied with
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multipliers cψ0, cψi, i = 1, . . . , k, cχ and cλi, i = 0, . . . , k − 1, where c
is a positive number. It then follows that if we have ψ0 6= 0, which can
often be shown in specific cases, we can put ψ0 = 1. Only in this way
Theorem 3.1 is useful for determining the optimal solutions.

Remark 3.8. In some cases we can conclude ψ0 = 1 already from the
specific type of the functions fi, g, pi. Here are two such cases.

1. The problem has free terminal state, i.e. constraint (3.4) is miss-
ing. Then, Theorem 3.1 holds with χ = 0 by Remark 3.4. From
(ψ0, χ) 6= 0 it then follows ψ0 6= 0, and hence, according to the
preceding remark we can put ψ0 = 1.

2. All functions fi, g, pi are linear in all variables (then even the con-
straint qualification (PR) is not needed). In this case the problem
(3.6)–(3.9) satisfies the constraint qualification conditions for the
Kuhn-Tucker Theorem (see Remark 4.5) and thus ψ0 = 1.

Remark 3.9. It can be easily shown from the transversality condition
(see Exercise 3.5) that if any component of the terminal state is free,
then the corresponding component of the terminal adjoint variable is
zero. And, conversely, if any component of the terminal state is fixed,
then the corresponding component of the terminal adjoint variable is
free.

Remark 3.10. In nonlinear programming the necessary conditions of
optimality are also sufficient for a convex problem. A similar claim holds
for an optimal control problem (3.1)–(3.5), where the functions f 0

i (x, u)
are concave in (x, u), the sets Ui are convex for all i = 0, ..., k − 1 and
the function g(x) is linear. For such a problem the necessary conditions
of the Theorem 3.1 are also sufficient.

Remark 3.11. The same procedure for the derivation of necessary op-
timality conditions can be used to derive the necessary conditions for
the optimal control problems with other kinds of constraints: q(xk) ≤ 0,
or hi(xi, ui) ≤ 0, or hi(xi) ≤ 0, where i = 0, ..., k−1. The corresponding
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necessary conditions include gradients of these constraints multiplied by
non-positive multipliers as well as the corresponding complementarity
conditions.

3.2.3 Alternative Derivation of the Necessary Conditions

In this subsection we present another derivation of the conditions of
Theorem 3.1 which consists of problem embedding, the idea being used
in the second chapter. The benefit of this procedure will be in inter-
esting interpretation of the adjoint variable. Since this procedure will
be applied in a simplified form to a problem without any constraints in
subsection 3.4, we recommend to a less motivated reader to skip this
subsection.

We will start from the problem formulated in the form (3.10)–(3.12)
and apply Theorem 4.2 to it. Clearly, the Lagrange function correspond-
ing to this problem is of the form

L = ψ0J(U) + χT g(xk(U)) +

k−1∑

i=0

λipi(ui),

where ψ0 ≥ 0 is the multiplier of the objective function in (3.10), χ ∈ R
l

is the multiplier of the equality constraint (3.12), and λi ∈ R
mi , λi ≤ 0,

i = 0, ..., k − 1, are the multipliers of the inequality constraints (3.11).

Let Û = {û0, . . . , ûk−1} be an optimal control and let the constraint
qualification (PR) be satisfied along Û . Let

X̂ = {x̂0, x̂1, . . . , x̂k} = {a, x1(Û) . . . , xk(Û)}

be the response to Û . Then by Theorem 4.2 there exist multipliers ψ0 ≥
0, χ and λi ≤ 0 such that (ψ0, χ) 6= (0, 0) and for every i = 0, . . . , k − 1
one has

∂L

∂ui
= ψ0 ∂J

∂ui
(Û) + χT

∂g

∂xk
(x̂k)

∂xk
∂ui

(Û) + λTi
∂pi
∂ui

(ûi) = 0, (3.26)
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and

λTi pi(ûi) = 0. (3.27)

Our goal is to express (3.26) through relations, in which instead of ∂J
∂ui

and ∂xk

∂ui
only the derivations of functions fi, f

0
i and g will occur.

We start with ∂xk

∂ui
and denote by Ui = {ui, . . . , uk−1} the segment

of the control on the interval [i, k]. By Uk we understand an empty
set. Further, for any i = 1, ..., k, the value of the response xk(U) is the
function of its value xi in i-th time moment and of the control segment
Ui ; this function will be denoted as

xk,i(xi,Ui) = xk(U), i = 0, . . . , k − 1.

For i = k define xk,k = xk. From the relation xi+1 = fi(xi, ui) we obtain

xk,i(xi,Ui) = xk,i+1(fi(xi, ui),Ui+1).

It follows

∂xk
∂ui

(Û) =
∂xk,i
∂ui

(x̂i, Ûi) =
∂xk,i+1

∂xi+1
(x̂i+1, Ûi+1)

∂fi
∂ui

(x̂i, ûi), (3.28)

where i = 0, . . . , k − 1. Similarly it holds

∂xk,i
∂xi

(x̂i, Ûi) =
∂xk,i+1

∂xi+1
(x̂i+1, Ûi+1)

∂fi
∂xi

(x̂i, ûi), (3.29)

where i = 1, . . . , k − 1. Obviously
∂xk,k

∂xk
= I, where I is the identity

matrix.

We now derive relations that will help us to find more suitable forms
for ∂J

∂ui
. Define Jk = 0 and for i = 0, . . . , k − 1 denote

Ji(xi,Ui) =

k−1∑

j=i

f0
j (xj , uj),
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where {xi, . . . , xk} is the response to the control Ui and the initial con-
dition xi on interval [i, k]. Obviously

Ji(xi,Ui) = f0
i (xi, ui) + Ji+1(fi(xi, ui),Ui+1).

Since f 0
j (xj , uj) does not depend on ui for j < i, it holds

∂J

∂ui
(Û) =

∂Ji
∂ui

(x̂i, Ûi) =
∂f0

i

∂ui
(x̂i, ûi) +

∂Ji+1

∂ui
(fi(x̂i, ûi), Ûi+1) =

=
∂f0

i

∂ui
(x̂i, ûi) +

∂Ji+1

∂xi+1
(x̂i+1, Ûi+1)

∂fi
∂ui

(x̂i, ûi), (3.30)

where i = 0, . . . , k − 1. Similarly it holds

∂Ji
∂xi

(x̂i, Ûi) =
∂f0

i

∂xi
(x̂i, ûi) +

∂Ji+1

∂xi+1
(x̂i+1, Ûi+1)

∂fi
∂xi

(x̂i, ûi), (3.31)

where i = 1, . . . , k − 1. Obviously ∂Jk

∂xk
= 0.

Substitute (3.28) and (3.30) into (3.26). We obtain (for clarity pur-
poses the arguments of the functions are omitted):

ψ0

(
∂f0

i

∂ui
+
∂Ji+1

∂xi+1

∂fi
∂ui

)

+ χT
∂g

∂xk

(
∂xk,i+1

∂xi+1

∂fi
∂ui

)

+ λTi
∂pi
∂ui

= 0

for each i = 0, . . . , k − 1, which can be rewritten as

ψ0 ∂f
0
i

∂ui
+

(

ψ0 ∂Ji+1

∂xi+1
+ χT

∂g

∂xk

∂xk,i+1

∂xi+1

)
∂fi
∂ui

+ λTi
∂pi
∂ui

= 0 (3.32)

for each i = 0, . . . , k − 1. If we denote the expression in the parenthesis
of (3.32) as

ψTi+1 = ψ0 ∂Ji+1

∂xi+1
+ χT

∂g

∂xk

∂xk,i+1

∂xi+1
, i = 0, . . . , k − 1, (3.33)

we obtain from (3.32) that

ψ0 ∂f
0
i

∂ui
(x̂i, ûi) + ψTi+1

∂fi
∂ui

(x̂i, ûi) + λTi
∂pi
∂ui

(ûi) = 0, i = 0, . . . , k − 1,

(3.34)
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which is in fact the condition (3.18) from Theorem 3.1. From (3.33) it
follows

ψTi = ψ0 ∂Ji
∂xi

+ χT
∂g

∂xk

∂xk,i
∂xi

, i = 1, . . . , k. (3.35)

Since
∂xk,k
∂xk

= I and
∂Jk
∂xk

= 0,

from (3.35) we obtain for i = k that

ψk =
∂gT

∂xk
(x̂k)χ. (3.36)

If we substitute (3.29) and (3.31) onto (3.35), we obtain

ψTi = ψ0

(
∂f0

i

∂xi
+
∂Ji+1

∂xi+1

∂fi
∂xi

)

+ χT
∂g

∂xk

∂xk,i+1

∂xi+1

∂fi
∂xi

= ψ0 ∂f
0
i

∂xi
+

(

ψ0 ∂Ji+1

∂xi+1
+ χT

∂g

∂xk

∂xk,i+1

∂xi+1

)
∂fi
∂xi

= ψ0 ∂f
0
i

∂xi
+ ψTi+1

∂fi
∂xi

, i = 1, . . . , k − 1.

To sum up, the n-dimensional vector ψi satisfies the backward difference
equation

ψi =
∂f0

i
T

∂xi
(x̂i, ûi)ψ

0 +
∂fTi
∂xi

(x̂i, ûi)ψi+1, i = 1, . . . , k − 1 (3.37)

with the terminal condition (3.36), which is the adjoint equation (3.20)
and the transversality condition (3.21) from Theorem 3.1.

Remark 3.12. The benefit of this procedure for the derivation of
necessary conditions optimality formulated in Theorem 3.1 is an in-
teresting interpretation of the adjoint variable ψi given by (3.35).
While in the previous procedure ψi was the Lagrange multiplier cor-
responding to the state equation, this time ψi is the derivation of
ψ0Ji(xi,Ui)+χT g(xk(xi,Ui)) with respect to xi. In addition, this proce-
dure reflects the idea of embedding the problem from the second chapter.
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Remark 3.13. If the problem is without the terminal state constraint,
that means, if there are no equality constraints in the formulation (3.10)–
(3.12), then the constraint qualification (PR) represents the constraint
qualification for the Kuhn–Tucker Theorem as well, and hence ψ0 = 1.
In this case the interpretation of the adjoint variable reads

ψTi =
∂Ji
∂xi

, i = 1, . . . , k.

3.3 Maximum Principle

As mentioned in introduction to this chapter, in the continuous the-
ory, which was studied first, the so-called Pontrjagin maximum prin-
ciple holds under very general conditions. Its discrete version differs
from Theorem 3.1 in that the variational condition (3.18) and the com-
plementarity condition (3.19) are replaced by the following maximum
condition

ψ0f0
i (x̂i, ûi) + ψTi+1fi(x̂i, ûi) = max

ui∈Ui

(ψ0f0
i (x̂i, ui) + ψTi+1fi(x̂i, ui)).

(3.38)

Maximum condition (3.38) is used much more comfortable than
(3.18) and (3.19). Initially, several authors believed that (3.38) holds
even in the discrete case under quite general assumptions. Only later
it was shown that the condition (3.38) holds only subject to additional
assumptions, such as those formulated in this subsection.

Theorem 3.2. Maximum principle. Let the problem (3.1)–(3.5) sat-
isfy the following additional assumptions:

(a) fi are linear in ui, i.e. fi(xi, ui) = ci(xi) + di(xi)ui;

(b) f0
i are concave in ui;

(c) Ui are convex.

Let Û = {û0, . . . , ûk−1} be an optimal control and X̂ = {x̂0, . . . , x̂k} be
its response. Let the constraint qualifications (PR) be satisfied in the
control Û . Then there exists a number ψ0 ≥ 0 and a vector χ ∈ R

l such
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that (ψ0, χ) 6= (0, 0) and for each i = 0, . . . , k−1 the maximum condition
(3.38) holds. The vectors ψi+1 ∈ R

n, i = k − 1, . . . , 0 in (3.38) repre-
sent the solution of the adjoint equation (3.20) and the transverzality
condition (3.21).

Proof: By Theorem 3.1 there exists (ψ0, χ) 6= (0, 0), ψ0 ≥ 0, such
that Û and X̂ satisfy the variational condition (3.18) and the com-
plementarity condition (3.19) for each i = 0, . . . , k − 1. Here ψi+1,
i = 1, . . . , k represent the solution of the adjoint equation (3.20) and
the transversality condition (3.21). The statement of the theorem now
follows from the application of Theorem 4.3 to the pair of conditions
(3.18) and (3.19) at each particular time i ∈ [0, k − 1]. Assump-
tions of Theorem 4.3 hold, since at any fixed x̂i and ψi+1 the function
ui 7→ ψ0f0

i (x̂i, ui) + ψTi+1fi(x̂i, ui) is concave.

The following example shows that in general the maximum principle
does not hold. It also shows how to use Theorem 3.1.

Example 3.1. Maximum principle does not hold in general.
The problem is to

maximize J =

k−1∑

i=0

(u2
i − 2x2

i )

subject to xi+1 = ui, i = 0, . . . , k − 1,

x0 = 0,

ui ∈ [−1, 1], i = 0, . . . , k − 1.

Obviously, fi = ui is linear, Ui = U = [−1, 1] is convex, but the function
f0
i = u2

i − 2x2
i is not concave in ui. Therefore only Theorem 3.1 can be

used. We first describe the set U by inequalities as follows

U = {u : −u ≤ 1, u ≤ 1}.

This description of U satisfies the constraint qualification (PR) in any
admissible solution. Since the terminal state of this problem is free, by
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Remark 3.8 we have ψ0 = 1. The adjoint equation is

ψi = −4x̂i, i = 1, . . . , k − 1,

and the transversality condition is

ψk = 0.

The variational condition (3.18) and complementarity conditions (3.19)
are of the form

2ûi + ψi+1 − λ1
i + λ2

i = 0, λ1
i (−ûi − 1) = 0, λ2

i (ûi − 1) = 0, (3.39)

for each i = 0, . . . , k − 1, where λ1
i ≤ 0 and λ2

i ≤ 0. Note that if
ûi ∈ (−1, 1), then there is no binding constraint and hence the com-
plementarity conditions yield λ1

i = 0 and λ2
i = 0; if ûi = 1, the first

constraint is non-binding, so λ1
i = 0; if ûi = −1, then the second con-

straint is nonactive, hence λ2
i = 0.

For i = k − 1 the condition (3.39) yields

2ûk−1 − λ1
k−1 + λ2

k−1 = 0. (3.40)

Let us analyze possible solutions of this condition.

If ûk−1 ∈ (−1, 1), then λ1
k−1 = λ2

k−1 = 0 and (3.40) holds for ûk−1 = 0.

If ûk−1 = 1, then λ1
k−1 = 0 and (3.40) holds with λ2

k−1 = −2 ≤ 0.

If ûk−1 = −1, then λ2
k−1 = 0 and (3.40) holds with λ1

k−1 = −2 ≤ 0.

Therefore, only the following three possibilities

ûk−1 =







− 1
0
1

can occur at i = k − 1. We now investigate the cases i = 0, . . . , k − 2.
Substituting the adjoint equation into the first condition of (3.39), we
obtain

2ûi − 4x̂i+1 − λ1
i + λ2

i = 0. (3.41)
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By substituting the state equation into (3.41), we have

2ûi − 4ûi − λ1
i + λ2

i = −2ûi − λ1
i + λ2

i = 0, i.e.

2ûi + λ1
i − λ2

i = 0. (3.42)

Let us now analyze each possibility.

If ûi ∈ (−1, 1), then λ1
i = 0 and λ2

i = 0, hence (3.42) holds for ûi = 0.

If ûi = 1, then λ1
i = 0, hence (3.42) does not hold for any λ2

i ≤ 0.

If ûi = −1, then λ2
i = 0, hence (3.42) does not hold for any λ1

i ≤ 0.

Overall, we identified three candidates for the optimal control:

U1 = {0, 0, . . . , 0
︸ ︷︷ ︸

k−1

,−1}, X1 = {0, 0, . . . , 0
︸ ︷︷ ︸

k

,−1}, J = 1,

U2 = {0, 0, . . . , 0
︸ ︷︷ ︸

k−1

, 1}, X2 = {0, 0, . . . , 0
︸ ︷︷ ︸

k

, 1}, J = 1,

U3 = {0, 0, . . . , 0
︸ ︷︷ ︸

k

}, X3 = {0, 0, . . . , 0
︸ ︷︷ ︸

k+1

}, J = 0.

By Remark 3.6 there exists an optimal control for this problem, and
therefore it must be among these candidates. A comparison of the ob-
jective function values shows that optimal are the first two controls.

What would we obtain by applying maximum principle to this prob-
lem? The maximum principle (3.38) reads

(u2
i − 2x̂2

i ) + ψi+1ui → max
ui∈[−1,1]

.

We are looking for the maximum of a strictly convex function restricted
to the closed interval [−1, 1]. The maximum can be achieved only in
the boundary points of the interval, i.e. ui = ±1. That is, if a control
satisfies the maximum principle condition, then it takes only the values
ui = ±1. It follows that the optimal controls U1 and U2 do not satisfy
the maximum principle condition, since they achieve also values other
than ±1.
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3.4 Necessary Conditions for the Problem with-

out Constraints

In this subsection we will discuss the features of the problem without
constraints on control, state variables and the terminal state. For such
problems the conditions of Theorem 3.1 have a particularly simple form
and even their derivation procedure analogous to that of subsection 3.2.3
is quite simple. Simplicity of this problem allows us to understand the
link between the dynamic programming equation and the necessary con-
dition from Theorem 3.1 as well as to economically interpret the adjoint
variable.

3.4.1 Formulation and Derivation of Necessary Condi-

tions

Consider the problem

maximize J =

k−1∑

i=0

f0
i (xi, ui) (3.43)

subject to xi+1 = fi(xi, ui), i = 0, . . . , k − 1, (3.44)

x0 = a, (3.45)

where fi : R
n × R

m → R
n, f0

i : R
n × R

m → R are continuously dif-
ferentiable functions. Obviously, this problem represents a special case
of the problem (3.1)–(3.5), and hence all the results of the preceding
subsections can be applied. Theorem 3.1 takes the following form:

Theorem 3.3. The necessary optimality conditions. Let Û =
{û0, . . . , ûk−1} be an optimal control for the problem (3.43)–(3.45), let
X̂ = {x̂0, . . . , x̂k} be its response. Let the sequence {ψ1, . . . , ψk} be the
solution of the adjoint equation and the transversality condition:

ψi =
∂f0

i
T

∂xi
(x̂i, ûi) +

∂fTi
∂xi

(x̂i, ûi)ψi+1, i = 1, ..., k − 1, (3.46)

ψk = 0. (3.47)
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Then for each i = 0, . . . , k − 1 one has

∂f0
i

∂ui
(x̂i, ûi) + ψTi+1

∂fi
∂ui

(x̂i, ûi) = 0. (3.48)

The theorem can be formally deduced from Theorem 3.1 for χ = 0
and λi = 0 for i = 0, ..., k − 1. Now, however, we provide a direct proof
based on the idea of the proof from subsection 3.2.3. For the problem
(3.43)–(3.45) it is very simple and also allows us to obtain the results
needed for the interpretation of the adjoint variable.

Proof: We start with the problem

maximize J(U) :=

k−1∑

i=0

f0
i (xi(U), ui),

where xi(U), i = 1, . . . , k, is the solution of the difference equation (3.44)
and the initial condition (3.45) for the control U . Let Û = {û0, . . . , ûk−1}
and X̂ = {x̂0, . . . , x̂k} = {x0(Û), . . . , xk(Û)} be the optimal control and
its response. Then, by the necessary conditions for the maximum of the
function J(U) it holds that

∂J

∂ui
(Û) = 0, i = 0, ..., k − 1. (3.49)

Define Jk := 0 and denote

Ji(xi,Ui) :=

k−1∑

j=i

f0
j (xj , uj), i = 0, . . . , k − 1,

where Ui is a segment of the control U on the interval [i, k] and
{xi, . . . , xk} is the response to the control Ui and the initial condition
xi. Obviously

Ji(xi,Ui) = f0
i (xi, ui) + Ji+1(fi(xi, ui),Ui+1).
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Since f 0
j (xj , uj) do not depend on ui for j < i, we obtain from (3.49)

and from the foregoing relation

0 =
∂J

∂ui
(Û) =

∂Ji
∂ui

(x̂i, Ûi)

=
∂f0

i

∂ui
(x̂i, ûi) +

∂Ji+1

∂xi+1
(x̂i+1, Ûi+1)

∂fi
∂ui

(x̂i, ûi), (3.50)

for i = 0, . . . , k − 1. Similarly it holds

∂Ji
∂xi

(x̂i, Ûi) =
∂f0

i

∂xi
(x̂i, ûi) +

∂Ji+1

∂xi+1
(x̂i+1, Ûi+1)

∂fi
∂xi

(x̂i, ûi), (3.51)

for i = 1, . . . , k − 1. Obviously ∂Jk

∂xk
= 0. Denote

∂Ji+1

∂xi+1
(x̂i+1, Ûi+1) = ψTi+1, i = 0, . . . , k − 1, (3.52)

which means that

ψi =
∂Ji
∂xi

(x̂i, Ûi)T , i = 1, . . . , k. (3.53)

If we substitute (3.52) into (3.50), we obtain

∂f0
i

∂ui
(x̂i, ûi) + ψTi+1

∂fi
∂ui

(x̂i, ûi) = 0, i = 0, . . . , k − 1, (3.54)

which is actually condition (3.48) from Theorem 3.3. Since ∂Jk

∂xk
= 0,

from (3.52) for i = k, we obtain

ψk = 0,

which is the transversality condition (3.47). If we substitute (3.52) into
(3.51), we obtain

ψTi =
∂f0

i

∂xi
(x̂i, ûi) + ψTi+1

∂fi
∂xi

(x̂i, ûi), i = 1, . . . , k − 1,

which is the transposition of the adjoint equation (3.46).
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3.4.2 Relation of the Dynamic Programming Equation to

the Necessary Conditions

In the second chapter we discussed the dynamic programming equation,
which, according to Theorem 2.4, represents a necessary and sufficient
optimality condition and for the problem (3.43)–(3.45) it takes the spe-
cial form

Vj(x) = max
u∈Rm

[f0
j (x, u) + Vj+1(fj(x, u))] (3.55)

= f0
j (x, vj(x)) + Vj+1(fj(x, vj(x))), j = 0, . . . , k − 1,

Vk(x) = 0, for all x ∈ R
n. (3.56)

On the other hand, in the previous subsection, the necessary optimality
condition of variational type were formulated for the problem (3.43)–
(3.45) in Theorem 3.3. It is evident that among these, seemingly quite
different formulations, must be some connection. We show that under
certain technical assumptions, it is possible to derive the conditions of
Theorem 3.3 from the dynamic programming equation. This derivation
provides us an additional interpretation of the adjoint variable.

Let Û = {û0, ..., ûk−1}, X̂ = {x̂0, ..., x̂k} be an optimal control and
its response for the problem (3.43)–(3.45). Let Vi(x), vi(x) be the value
function and an optimal feedback control for this problem. Assume
that for each i = 1, ..., k the function Vi(x) is defined and continuously
differentiable in a neighborhood of x̂i. Obviously, for each i = 0, ..., k−1
we have

x̂i+1 = fi(x̂i, ûi), ûi = vi(x̂i)

and by (3.55) we obtain

Vi(x̂i) = max
u

[f0
i (x̂i, u) + Vi+1(fi(x̂i, u))]

= f0
i (x̂i, ûi) + Vi+1(fi(x̂i, ûi)). (3.57)

We can apply the first order necessary optimality condition on the max-
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imization problem contained in (3.57) at the point ui = ûi. We obtain

∂f0
i

∂ui
(x̂i, ûi) +

∂Vi+1

∂xi+1
(x̂i+1)

∂fi
∂ui

(x̂i, ûi) = 0. (3.58)

For each i = 0, ..., k − 1 denote

∂Vi+1

∂xi+1
(x̂i+1) = ψTi+1, (3.59)

which actually means that for each i = 1, ..., k, we have

ψi =
∂V T

i

∂xi
(x̂i). (3.60)

If we substitute (3.59) into (3.58), we obtain the variational condition
(3.48). It remains to show that ψi+1 defined by (3.60) satisfies the
adjoint equation (3.46) and the transversality condition (3.47).

By (3.56) we have Vk(x) = 0 for any x, hence (3.59) yields the
transversality condition (3.47) for i = k − 1, i.e. ψk = 0. We now
choose an arbitrary i ∈ [1, k−1] and consider the dynamic programming
equation in an arbitrary xi and in ûi = vi(x̂i). Since xi is arbitrary and,
therefore, ûi may not maximize (3.57) for x = xi, we have

−Vi(xi) + f0
i (xi, ûi) + Vi+1(fi(xi, ûi)) ≤ 0. (3.61)

By (3.57) in xi = x̂i we have

−Vi(x̂i) + f0
i (x̂i, ûi) + Vi+1(fi(x̂i, ûi)) = 0. (3.62)

Combining (3.61) and (3.62) we obtain

−Vi(x̂i) + f0
i (x̂i, ûi) + Vi+1(fi(x̂i, ûi))

= max
xi

[−Vi(xi) + f0
i (xi, ûi) + Vi+1(fi(xi, ûi))]. (3.63)
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We can apply the first order necessary optimal conditions to the maxi-
mization problem contained in (3.63) at the point xi = x̂i. We obtain

0 = − ∂Vi
∂xi

(x̂i) +
∂f0

i

∂xi
(x̂i, ûi) +

∂Vi+1

∂xi
(fi(x̂i, ûi))

= − ∂Vi
∂xi

(x̂i) +
∂f0

i

∂xi
(x̂i, ûi) +

∂Vi+1

∂xi+1
(x̂i+1)

∂fi
∂xi

(x̂i, ûi). (3.64)

Substituting (3.59) at ψi and ψi+1 into (3.64) we obtain

0 = −ψTi +
∂f0

i

∂xi
(x̂i, ûi) + ψTi+1

∂fi
∂xi

(x̂i, ûi),

which is the transposition of the adjoint equation (3.46).

Remark 3.14. It follows from (3.60) and (3.53) that both the gradients
of the value function Vi(x) as well as the gradients with respect to x of the
objective function Ji(x,Ui) for the problem Di(x), where i = 1, ..., k−1,
are solution of the same difference equation (3.46) and the same initial
condition (3.47). The uniqueness of the solution for (3.46), (3.47) implies
that

∂V T
i

∂xi
(x̂i) =

∂JTi
∂xi

(x̂i, Ûi), i = 1, . . . , k, (3.65)

what is actually an expression of the envelope theorem for problems
Di(x) corresponding to (3.43)–(3.45). The envelope theorem is treated
in more details in subsection 4.2.

3.4.3 Economic Interpretation of the Adjoint Variable

It follows from the proof of Theorem 3.1 that the adjoint variable can be
interpreted as the Lagrange multiplier corresponding to the difference
state equation. On the other hand, in the previous subsection the rela-
tion (3.60) was derived for the adjoint variable, from which it follows that
the adjoint variable is the gradient of the value function (with respect
to the state variable). This relation allows us economically interpret the
optimality conditions in the problems with economic context.
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First, we derive that the adjoint variable has a price dimension. In
fact, if the objective function has a dimension of a certain economic value
(such as utility, profit, revenue, expenses), i.e. dimensionally represents
[J ] = [price].[amount] and the state variable has a dimension of amount
[x] = [amount], then the adjoint variable has a dimension of price, since

[ψ] =

[
∂V

∂x

]

=
[price][amount]

[amount]
= [price].

Using the Taylor theorem we obtain

Vi(x̂i + ∆x) − Vi(x̂i) =
∂Vi
∂x

(x̂i)∆x+ o(∆x) ≈ ψTi ∆x.

If ∆x represents a unit increase of capital, then ψi expresses the linear
part of contribution to the value function, i.e., the marginal value of the
one unit of capital stock at the i-th stage. Each ψi shows how valuable
it is to increase the state variable xi by a small unit, provided that in
the remaining stages we behave optimally. Here ψi is referred to as
shadow price, because it does not represent the market price prevailing
at the capital market, but only a corporate, internal, accounting price,
assessing an additional capital unit.

Note that the maximum condition can be economically interpreted
as well. Actually, Hi is the sum of the profit for the i- th stage and the
value of the capital stock at the end of the i-th stage:

Hi = f0
i + ψTi+1fi = f0

i + ψTi+1xi+1,

that should be maximized at each stage.

3.4.4 The Euler Equation

The Euler, or Euler–Lagrange equation is a necessary optimality condi-
tion for the functional extremum in calculus of variations. Although the
equation was derived by Euler and Lagrange for continuous problems,
the equation name is also used for necessary optimality conditions in
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context of certain discrete optimization problems. In this subsection we
formulate such problems, derive the corresponding Euler equation and
show connections with the discrete optimal control problems.

Consider the problem

maximize
k−1∑

i=0

Gi(xi, xi+1), (3.66)

where x0 = a. (3.67)

Here we assume that Gi : R
n × R

n → R are continuously differentiable
and a ∈ R

n is a given vector. The problem (3.66)–(3.67) will be called
the discrete variational problem, or the discrete problem of calculus of
variations. It is clear that the objective function

J(x1, ..., xk) :=

k−1∑

i=0

Gi(xi, xi+1)

for the discrete variational problem is a function of k n-dimensional vari-
ables, and hence at the point (x̂1, ..., x̂k), where it achieves an extremum,
the following necessary optimality conditions hold:

∂J

∂xi
=
∂Gi−1

∂xi
(x̂i−1, x̂i) +

∂Gi
∂xi

(x̂i, x̂i+1) = 0, i = 1, ..., k − 1, (3.68)

∂J

∂xk
=
∂Gk−1

∂xk
(x̂k−1, x̂k) = 0. (3.69)

In the economic literature equation (3.68) is known as Euler equation for
the problem (3.66)–(3.67). It represents a second order difference equa-
tion which together with the initial condition (3.67) and the condition
(3.69) allows to find candidates for the optimal problem solution.

Note that the discrete variational problem can be converted to the
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discrete optimal control problem

maximize

k−1∑

i=0

Gi(xi, ui) (3.70)

subject to xi+1 = ui, i = 0, ..., k − 1, (3.71)

x0 = a, (3.72)

which represents a problem without control constraints and with a spe-
cial state equation (3.71).

We now show, how the necessary optimality conditions for the op-
timal control problem (3.70)–(3.72) are related to the Euler equation.
Applying Theorem 3.3 to (3.70)–(3.72) and substituting xi+1 = ui we
obtain that the solution ψi, i = 1, ..., k, of the adjoint equation and the
transversality condition

ψi =
∂GTi
∂xi

(x̂i, x̂i+1), (3.73)

ψk = 0, (3.74)

together with the optimal response satisfy

∂Gi
∂xi+1

(x̂i, x̂i+1) + ψTi+1 = 0, i = 0, ..., k − 1.

¿From the last equation we have

ψi = −∂G
T
i−1

∂xi
(x̂i−1, x̂i), i = 1, ..., k. (3.75)

Substituting (3.75) to (3.73) and (3.74) we obtain the Euler equation
(3.68) and the condition (3.69).

Remark 3.15. The fact that the discrete variational problem leads to
an optimal control problem without control constraints is essential for
the problems of calculus of variations. On the other hand, the fact
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that there is no terminal state constraint is not important in this case.
Indeed, even for the variational problems with the additional condition
g(xk) = 0, the Euler equation (3.68) holds, however, the condition (3.69)
is replaced by

∂Gk−1

∂xk
(x̂k−1, x̂k) + χT

∂g

∂xk
(x̂k) = 0.

Remark 3.16. Above, we have shown that every discrete problem of
calculus of variations can be converted to a problem of optimal control.
Conversely, only in special cases it is possible to convert the optimal con-
trol problem without control constraints to a discrete problem of calculus
of variations. For example, if from the equation

xi+1 = fi(xi, ui)

it is possible to express a unique

ui = hi(xi, xi+1),

then the optimal control problem can be replaced by the problem of
calculus of variations with the objective function

Gi(xi, xi+1) = fi(xi, hi(xi, xi+1)).

For this purpose it is usually necessary that dim ui = dim xi and there-
fore this replacement is mainly performed in one dimensional problems.

Remark 3.17. The Euler equation for the problem (3.66)–(3.67) is
sometimes derived from the dynamic programming equation, which, for
this problem, is of the form

Vi(xi) = max
xi+1

[Gi(xi, xi+1) + Vi+1(xi+1)], i = 0, ..., k − 1, (3.76)

Vk(xk) = 0, for all xk. (3.77)

Necessary optimality conditions are applied to the maximization condi-
tion in (3.76) and then the envelope theorem is used in order to eliminate
the gradients of the value function from the resulting expression (see Ex-
cercise 3.14).
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3.5 Infinite Horizon Problems

As mentioned earlier in subsection 2.2.3, in applications we need to
deal with problems with infinite number of stages, i.e. infinite horizon
problems. In this case, the control is not a finite sentence and therefore
the results of nonlinear programming cannot be directly applied. We
show, however, that under certain restrictive assumptions we can derive
conditions from the finite horizon ones which look very similar to those
for the former.

We restrict ourselves to the problem without control constraints

maximize

∞∑

i=0

f0
i (xi, ui) (3.78)

subject to xi+1 = fi(xi, ui), i = 0, 1, . . . , (3.79)

x0 = a, (3.80)

lim
k→∞

xk ∈ C = {x : g(x) = 0}. (3.81)

We assume that the functions f 0
i , fi and g satisfy the same assumptions

as in the problem (3.1)–(3.5). Since the objective function is the infinite
series in (3.78), as mentioned in subsection 2.2.3, for the definition of
admissible control we have to require that the series converges. Thanks
to this requirement the qualities of admissible controls (measured by
the objective function value) can be mutually compared. A necessary
condition for convergence of the series is

lim
i→∞

f0
i (x̂i, ûi) = 0.

Theorem 3.4. Let Û = {û0, û1 . . . } be an optimal control for the prob-
lem (3.78)-(3.81) and let X̂ = {x̂0, x̂1 . . . } be its response. Let the ma-
trix ∂fi

∂xi
(x̂i, ûi) be regular for each i. Then there exists a ψ0 ≥ 0 and a

solution Ψ = {ψ1, ψ2, . . . } of the adjoint equation

ψi =
∂f0

i
T

∂xi
(x̂i, ûi)ψ

0 +
∂fTi
∂xi

(x̂i, ûi)ψi+1, i = 1, 2..., (3.82)
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such that (ψ0, ψ1) 6= 0 and for all i = 0, 1, . . . one has

ψ0 ∂f
0
i

∂ui
(x̂i, ûi) + ψTi+1

∂fi
∂ui

(x̂i, ûi) = 0. (3.83)

Remark 3.18. Note that the necessary conditions formulated in The-
orem 3.4 do not contain any transversality condition. This means that
the validity of Remark 3.5, according to which the necessary optimal-
ity conditions from Theorem 3.1 formally provide enough conditions for
determination of optimal solutions, cannot be extended to the infinity
horizon problem. In fact, if the terminal limit state of the response is
not uniquely determined by the condition (3.81), then the missing con-
ditions for it are not completed by the transversality condition. This
deficiency is sometimes replaced by a requirement of convergence to the
steady-state of the system of state and adjoint equations.

Remark 3.19. Since Theorem 3.4 does not contain the transversality
condition, there is no vector χ. The condition (ψ0, χ) 6= (0, 0) from
Theorem 3.1 is replaced by the condition (ψ0, ψ1) 6= (0, 0) in Theorem
3.4. Note that the condition (ψ0, χ) from Theorem 3.1 is particulary
important. Without it any admissible control would satisfy the con-
ditions of the theorem with zero ψ0 and zero solution of the adjoint
equation. In this way, however, the necessary optimality conditions
would be worthless. This role of condition (ψ0, χ) 6= (0, 0) is played
by (ψ0, ψ1) 6= 0 in Theorem 3.4. Due to the regularity assumption of
the matrices ∂fi

∂xi
(x̂i, ûi), we can equivalently write the adjoint equation

(3.16) in the form

ψi+1 =

[
∂fTi
∂xi

(x̂i, ûi)

]−1
[

−∂f
0
i
T

∂xi
(x̂i, ûi)ψ

0 + ψi

]

, i = 1, 2, . . .

(3.84)
The equation (3.84) represents a recursive rule which uniquely deter-
mines its solution for given (ψ0, ψ1). In the case ψ0 = 0, this solution is
non-trivial.
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In the proof of the theorem we use the following auxiliary result,
which in fact is a small modification of the Bellman optimality principle
(Theorem 2.2).

Lemma 3.1. Let Û = {û0, û1 . . . } be an optimal solution for the prob-
lem (3.78)-(3.81), let X̂ = {x̂0, x̂1 . . . } be its response. Then for each
k = 1, 2, . . . , the control Û0,k−1 := {û0, û1 . . . , ûk−1} is optimal for the
problem

maximize

k−1∑

i=0

f0
i (xi, ui) (3.85)

subject to xi+1 = fi(xi, ui), i = 0, , . . . , k − 1 (3.86)

x0 = a, (3.87)

xk = x̂k, (3.88)

where f 0
i , fi and a are the data of the problem (3.78)-(3.81).

Proof is very similar to the proof of Theorem 2.2. Therefore, we present
its idea only and leave the details to the reader as an exercise.

If the claim of the lemma were not true, there would be other admis-
sible control Ū0,k−1 for the problem (3.85)-(3.88) with a higher value of

the objective function as Û0,k−1. Now, the control, the first k elements of
which were taken from the control Ū0,k−1 and the other from the control

Û , would give a higher value to the objective function (3.78) than the
control Û .

Proof of Theorem 3.4: Since by Lemma 3.1 each segment Û0,k of the

control Û is an optimal control for the finite horizon problem (3.85)–
(3.88), the necessary optimality conditions from Theorem 3.1 are sat-
isfied. This means that for each k = 1, 2, . . . there exists a number

ψ0(k), a vector χ(k) and a sequence Ψ(k) = {ψ(k)
1 , . . . , ψ

(k)
k } such that

(ψ0(k), χ(k)) 6= 0, ψ0 ≥ 0 and the conditions (3.18)–(3.21) are satisfied
with λi = 0. As it is a problem with fixed terminal state, the matrix
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∂gT

∂xk
(x̂k) is equal to the identity matrix, and hence ψ

(k)
k = χ(k). Therefore

(ψ0(k), ψ
(k)
k ) 6= 0. (3.89)

Obviously, we also have (ψ0(k), ψ
(k)
1 ) 6= 0. Namely, if (ψ0(k), ψ

(k)
1 ) = 0,

then from equation (3.84) by induction we obtain ψ
(k)
i = 0 for all i =

1, ..., k, which is in contradiction with (3.89).
By Remark 3.7 we can assume without loss of generality that

‖(ψ0(k), ψ
(k)
1 )‖ = 1 for each k. Since the sequence {(ψ0(k), ψ

(k)
1 )}∞k=1

is bounded, we can choose a convergent subsequence from it. Denote
a limit point of the subsequence as (ψ0, ψ1). Obviously (ψ0, ψ1) 6= 0.
Applying a limit approach to the necessary optimality conditions, we
obtain the theorem claim.

The variational necessary optimality conditions for an autonomous
infinite horizon problem do not exhibit remarkable specific features com-
pared to the general problem. Worth noting, however, is the autonomous
discounted problem. By transformation of adjoint variables we can
change the corresponding non-autonomous adjoint equation and the
variational condition to autonomous ones, which then allows an anal-
ysis of trajectories behavior through phase portraits. Recall that by the
autonomous discounted problem we understand a problem, in which the
functions fi ≡ f do not depend on i and f 0

i = βiF , where 0 < β < 1.
In this case the adjoint equation is

ψi = βi
∂F T

∂xi
(x̂i, ûi)ψ

0 +
∂fT

∂xi
(x̂i, ûi)ψi+1, i = 1, 2, . . . (3.90)

and the variational equation (3.83) is

ψ0βi
∂F

∂ui
(x̂i, ûi) + ψTi+1

∂f

∂ui
(x̂i, ûi) = 0, i = 0, 1, . . . . (3.91)

In terms of transformed adjoint variables ψ̃i = β−iψi, equations (3.90),
(3.91) obtain the forms

ψ̃i =
∂F T

∂xi
(x̂i, ûi)ψ

0 + β
∂fT

∂xi
(x̂i, ûi)ψ̃i+1, i = 1, 2, . . . (3.92)
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ψ0 ∂F

∂ui
(x̂i, ûi) + βψ̃Ti+1

∂f

∂ui
(x̂i, ûi) = 0, i = 0, 1, . . . . (3.93)

respectively.

Remark 3.20. The necessary optimality conditions, derived in this
subsection for the problem without control constrains, remain valid also
for problems with constraints, provided the optimal control values are
interior points of the sets Ui. Note that most applications leading to
infinite horizon problems do satisfy this assumption.

3.6 Problem Solving

Example 3.2. Optimal mine extraction. The owner of a mine con-
taining a tons of ore, has to decide how to optimally allocate extraction
into particular years. He would like to extract the mine within k years.
The annual revenues from selling u tons is

√
u and the unit extraction

cost is c. The problem is to maximize the total discounted profit from
ore mining.
This problem can be formulated as an optimal control problem

maximize

k−1∑

i=0

βi(
√
ui − cui)

subject to xi+1 = xi − ui, i = 0, . . . , k − 1,

x0 = a,

xk = 0,

where ui denotes the amount of extracted ore in the i-th year and xi
denotes the amount of ore available for extraction at the beginning of the
i-th year. Obviously c, a > 0 and the constraints ui ≥ 0 are implicitly
contained in the definition domain of the objective function.

The Hamiltonian for this problem is of the form

Hi(xi, ui, ψ
0, ψi+1) = ψ0βi(

√
ui − cui) + ψi+1(xi − ui).
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The maximum principle for this problem holds in the following form:
Let Û = {û0, . . . , ûk−1} and X̂ = {x̂0, . . . , x̂k} be optimal control and its
response. Then, there exist (ψ0, χ) 6= (0, 0), ψ0 ≥ 0 and {ψ1, . . . , ψk}
such that the maximum condition

max
u≥0

[ψ0βi(
√
ui− cui)+ψi+1(x̂i−ui)] = ψ0βi(

√

ûi− cûi)+ψi+1(x̂i− ûi),

the adjoint equation

ψi =
∂Hi

∂xi
(x̂i, ûi, ψ

0, ψi+1) = ψi+1

and the transversality condition

ψk = χ

hold. Note that from the adjoint equation and the transversality condi-
tion it follows that ψi = χ for each i. Further, if ψ0 = 0, then χ 6= 0 and
the maximum condition would provide either no solution (if χ < 0), or
ûi = 0 for all i. However, such a control would not be admissible, since
its response would not satisfy the terminal condition. Because of this
we can set ψ0 = 1. Due to a barrier effect of the function

√
ui at 0, it

is now clear that if there exists a solution û of the maximum condition,
then necessarily û > 0 and

0 =
∂Hi

∂ui
(x̂i, ûi, 1, ψi+1) =

(
βi

2
√
ûi

− c

)

− ψi+1,

from which it follows
βi

2
√
ûi

= c+ χ =: b.

This means that the value of extraction is such that in each year the
discounted marginal profits are equal. From the last expression we can
express the control

ûi =
β2i

4b2
.
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The constant b can be determined from the state equation and the ter-
minal condition, where we obtain

k−1∑

i=0

β2i

4b2
= a,

and hence

b =

√

4a(1 − β2)

1 − β2k
.

Remark 3.21. Note that the formulation of this problem leads to a
special case of the problem from Example 1.4.

Example 3.3. Optimal consumption. In this example we again
solve Example 1.2 about the optimal consumption

maximize
k−1∑

i=0

(
1

1 + δ

)i

lnui (3.94)

subject to xi+1 = (1 + r)xi − ui, i = 0, . . . , k − 1, (3.95)

x0 = a, (3.96)

xk = b, (3.97)

where a, b, r, δ are given nonnegative constants where in addition r, a >
0. This time the example will be solved using Theorem 3.3, the as-
sumptions of linearity of fi, convexity of U and concavity of f 0

i being
satisfied.

First notice that the problem does not have a solution for all combi-
nations of data a and b. In fact, should we consume nothing, i.e. all the
values of ui were zero, we would achieve the value x̄k = (1 + r)ka at the
end of the proces. Since the form of the objective function implies that
the only permitted control values are ui > 0, it is clear that the value x̄k
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represents an upper bound for those b, for which the admissible control
exists. In the following we therefore solve the problem for b < (1+ r)ka.

Since there is no control constraint and the difference equation is
linear, by Remark 3.8 we can set ψ0 = 1. The adjoint equation is of the
form

ψi = (1 + r)ψi+1, i = 1, . . . , k − 1 (3.98)

and since the problem has fixed terminal state, the transversality con-
dition

ψk = χ

does not provide any useful information. The maximum condition is

(
1

1 + δ

)i

lnui + ψi+1((r + 1)xi − ui) → max
ui>0

, i = 0, . . . , k − 1,

which means that we are looking for a free extremum of a convex func-
tion. Necessary and sufficient optimality condition for the solution of
the maximum condition is:

(
1

1 + δ

)i 1

ui
− ψi+1 = 0,

from which we obtain

ψi+1 =

(
1

1 + δ

)i 1

ui
. (3.99)

The adjoint equation yields

ψi+1 =

(
1

1 + r

)i

ψ1. (3.100)

Substitution of (3.100) to (3.99) gives

(
1

1 + r

)i

ψ1 =

(
1

1 + δ

)i 1

ui
,
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from which we obtain

ui =

(
1 + r

1 + δ

)i 1

ψ1
, (3.101)

where ψ1 > 0, because ui > 0.
Already at this stage of the problem solution we can derive an im-

portant qualitative information which shows how an increase/decrease
of consumption over time depends on the ratio of constants δ and r.
Namely, from the relation (3.101) it is seen that

if r > δ, then ui increases with i,
if r < δ, then ui decreases with i,
if r = δ, then ui is constant.

This result is apparent: if the interest rate is higher than the discount
factor, it is worth to postpone consumption, otherwise not. To the
complete identification of the control we now just calculate the value of
ψ1. For this purpose we use the initial and terminal condition for x.
Substituting (3.101) in (3.95) we get

xi+1 = (1 + r)xi −
(

1 + r

1 + δ

)i 1

ψ1
. (3.102)

The solution of the equation (3.102) with the initial condition (3.96) we
obtain by the formula (4.10)

xi+1 = (1 + r)i+1a−
i∑

s=0

(1 + r)i−s
(

1 + r

1 + δ

)s 1

ψ1

= (1 + r)i+1a− (1 + r)i

(
i∑

s=0

(
1

1 + δ

)s
)

1

ψ1
.

If δ = 0, then

xi+1 = (1 + r)i+1a− (i+ 1)(1 + r)i
1

ψ1
,
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if δ > 0, then

xi+1 = (1 + r)i+1a− (1 + r)i
(1 + δ)i+1 − 1

δ(1 + δ)i
1

ψ1
. (3.103)

The value of 1
ψ1

can be easily determined by substituting (3.103) to
the terminal condition (3.97). So, we have a unique candidate for the
optimal control. The fact that this candidate is indeed optimal follows
by Remark 3.10 from the linear-concave nature of this problem.

In the previous example we saw that the necessary optimality condi-
tions allowed to derive some qualitative characteristics of optimal solu-
tions even if we did not know the specific values of the constants entering
the problem formulation. In the following example, which is a general-
ization of the problem from the previous example, we will see that these
characteristics can also be derived in the case of very general production
function and utility function.

Example 3.4. General optimal consumption problem. The prob-
lem is

maximize J =

k−1∑

i=0

βi U(ui)

subject to xi+1 = f(xi) − ui, i = 0, . . . , k − 1,

x0 = a,

xk = 0.

We assume that the functions f and U are both continuously differen-
tiable, increasing, concave, and satisfy

lim
x→0+

f ′(x) = ∞, lim
x→∞

f ′(x) = 0,

lim
u→0+

U ′(u) = ∞, lim
u→∞

U ′(u) = 0,
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and f(0) = 0. With the help of the necessary conditions, similarly as in
the previous example, we can derive the following relation

U ′(ui)
U ′(ui−1)

=
1

βf ′(xi)
. (3.104)

This relation says that if the parameter β or the marginal production
increase, the proportion of marginal utilities in two adjacent periods
decreases. As a consequence, by concavity of U , we obtain that the
proportion of optimal consumptions at stages i and i−1 increases. This
result is in accord with economic theory: the parameter β expresses
the weight assigned to the utility from future consumption and if for
example the value of β increases, then we can expect an increase of the
future consumption at expense of the present.

Example 3.5. Optimal investment. A product is produced by two
industries A and B. Every unit invested into industry A (B) brings at
the end of each subsequent year 2 (1) kg of product and 0.5 (0.9) unit of
profit. For a given initial amount of units a1 (a2) invested to A (B) and
some free unit amount a3, we would like to determine how at the end
of each year to divide the free units (generated by profit), to maximize
the total production in five years.

Introduce the notations:

x1
i – amount of units invested to A up to the end of the i-th year,

x2
i – amount of units invested to B up to the end of the i-th year,

x3
i – free units available at the end of the i-th year;

ui – the fraction of the free units invested to A in the i-th year.

We obtain the following three dimensional optimal control problem given
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by the difference equations

x1
i+1 = x1

i + uix
3
i , i = 0, . . . , 4

x2
i+1 = x2

i + (1 − ui)x
3
i ,

x3
i+1 = 0.5x1

i+1 + 0.9x2
i+1

= 0.5(x1
i + uix

3
i ) + 0.9(x2

i + (1 − ui)x
3
i )

= x3
i + 0.5x1

i + 0.9x2
i − 0.1x4

i − 0.4u3
i ,

the initial conditions

x1
0 = a1 ≥ 0, x2

0 = a2 ≥ 0, x3
0 = a3 ≥ 0,

the target set C = R
3, the control constraints

0 ≤ ui ≤ 1, i = 0, . . . , 4,

and the objective function of the form

max J : =

5∑

i=1

(2x1
i + x2

i )

=

4∑

i=0

(
2(x1

i + uix
3
i ) + x2

i + (1 − ui)x
3
i

)

=

4∑

i=0

(2x1
i + x2

i + x3
i + uix

3
i ).

For the given problem we obtain the adjoint equation in the form

ψ1
i = ψ1

i+1 + 2ψ0 + 0.5ψ3
i+1,

ψ2
i = ψ2

i+1 + ψ0 + 0.9ψ3
i+1,

ψ3
i = ψ3

i+1 + ψ0(1 + ui) + ψ1
i+1ui

+ψ2
i+1(1 − ui) + (−0.1 − 0.4ui)ψ

3
i+1,

167



MAXIMUM PRINCIPLE

for i = 1, . . . , 4 and the transversality condition

ψ5 = 0.

As in the previous example we can put ψ0 = 1. Since the conditions of
linearity and concavity are satisfied, we can use the maximum condition,
which obtains the form:

(1 + ψ1
i+1 − ψ2

i+1 − 0.4ψ3
i+1)x̂

3
i ûi

= max
0≤ui≤1

(1 + ψ1
i+1 − ψ2

i+1 − 0.4ψ3
i+1)x̂

3
iui.

¿From the state equation and the initial condition it follows that x̂3
i > 0

for each i, and hence the maximum condition yields

ûi =







1, if ψ2
i+1 + 0.4ψ3

i+1 − ψ1
i+1 < 1,

0, if ψ2
i+1 + 0.4ψ3

i+1 − ψ1
i+1 > 1,

unspecified, if ψ2
i+1 + 0.4ψ3

i+1 − ψ1
i+1 = 1.

This solution together with the adjoint equation and the transversality
conditions allow to compute ψi and ui, for i = 4, 3, 2, 1, 0, and then from
the state equation to compute xi, i = 1, . . . , 5.

Let a1 = 0, a2 = 0, a3 = 1. Since ψ0 = 1, then from the adjoint
equation we have:

ψ1
i = ψ1

i+1 + 2 + 0.5ψ3
i+1,

ψ2
i = ψ2

i+1 + 1 + 0.9ψ3
i+1,

ψ3
i =

{
0.5ψ3

i+1 + 2 + ψ1
i+1, if ψ2

i+1 + 0.4ψ3
i+1 − ψ1

i+1 < 1,
0.9ψ3

i+1 + 1 + ψ2
i+1, if ψ2

i+1 + 0.4ψ3
i+1 − ψ1

i+1 > 1.

The solution of this difference system backwards from ψ5 = 0 is pre-
sented in Table 3.1.

The optimal response can be obtained solving the state equation
recurrently from the initial condition a = (0, 0, 1)T at û0 = û1 = 0,
û2 = û3 = û4 = 1 (Table 3.2).
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Table 3.1: The solution to the adjoint equation and the maximum con-
dition for Example 3.5

i 5 4 3 2 1

ψ1
i 0 2 5 9.5 16.25

ψ2
i 0 1 3.8 9.3 18.85

ψ3
i 0 2 5 9.5 18.85

ψ2
i + 0.4ψ3

i − ψ1
i 0 -0.2 0.8 3.6 10.14

ui−1 1 1 1 0 0

Table 3.2: Solution of the response for Example 3.5

i 0 1 2 3 4 5

x̂1
i 0 0 0 1.71 4.275 8.1125
x̂2
i 0 1 1.9 1.9 1.9 1.9
x̂3
i 1 0.9 1.71 2.565 3.8475 5.77125

Again we receive the unique candidate for the optimal control and
since an optimal control exists (see Remark 3.6), the received control is
indeed optimal.

Example 3.6. The linear problem of optimal control. This is a
problem in which the state equation, the constraints and the objective
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function are linear. Hence the problem is

maximize J =

k−1∑

i=0

cTi xi + dTi ui

subject to xi+1 = Aixi +Biui, i = 0, . . . , k − 1,

Fiui ≤ wi, i = 0, . . . , k − 1,

x0 = a,

Gxk = h,

where for each i = 0, . . . , k−1 the matrices Ai and Bi are of the types n×
n and n×m, respectively, the matrices Fi, G and the vectors ci, di wi, h
are of appropriate dimensions. Since everything is linear, it is possible
to use Theorem 3.2, and we can set ψ0 = 1. The system of adjoint
equations does not depend on xi and ui:

ψi = ATi ψi+1 + ci, i = 1, . . . , k − 1.

The transversality condition is

ψk = GTχ.

The Hamiltonian is of the form

Hi = cTi x+ dTi u+ ψTi+1(Aixi +Biui)

and the maximum condition reads:

dTi ûi + ψi+1Biûi = max
ui∈Ui

(dTi ui + ψTi+1Biui), i = 0, . . . , k − 1. (3.105)

Assume in particular

Ui = {ui : αji ≤ uji ≤ βji , j = 1, . . . ,m},

which means

Ui = U1
i × · · · × Um

i , where U j
i = [αji , β

j
i ]. (3.106)
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Then, the condition (3.105) falls apart into m conditions

(dji + (ψTi+1Bi)
j)uji → max

uj
i∈U

j
i

,

from which it follows

ûji =







αji , if dji + ψTi+1B
j
i < 0,

βji , if dji + ψTi+1B
j
i > 0,

unspecified, if dji + ψTi+1B
j
i = 0,

where Bj
i is the j-th column of the matrix Bi, j = 1, . . . ,m, i = 0, . . . , k−

1.
So we get an interesting qualitative result: except of an exceptional

case dji + ψTi+1B
j
i = 0, the control ûi takes only the extreme values.

Example 3.7. The Linear-quadratic regulator. In this problem
the state equation and the control constraints are linear of the same form
as in the previous example. This time we however assume free terminal
state and we minimize the quadratic convex objective function:

k−1∑

i=0

1

2
(xTi Qixi + uTi Riui),

where Qi, Ri are symmetric matrices, Qi ≥ 0, Ri > 0. The adjoint
equation is

ψi = ATi ψi+1 + ψ0Qix̂i

and the maximum condition is

1

2
ψ0ûTi Riûi + ψTi+1Biûi = max

ui∈Ui

[
1

2
ψ0uiR

T
i ui + ψTi+1Biui

]

. (3.107)

Because of the free terminal state we can set ψ0 = −1. If we choose
particular Ui as in the previous example and Ri = I, then the condition
(3.107) can be rewritten into m conditions

−1

2
(uji )

2 + ψTi+1B
j
i u

j
i → max

uj
i∈[αj

i ,β
j
i ]
, j = 1, . . . ,m
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from which it follows

ûji =







αji , if αji > ψTi+1B
j
i

ψTi+1B
j
i , if αji ≤ ψTi+1B

j
i ≤ βji

βji , if βji < ψTi+1B
j
i

.

We again obtain an interesting qualitative result: ûji is equal to value

from the interval [αji , β
j
i ], nearest to ψTi+1B

j
i .

Example 3.8. Optimal consumption as an infinite horizon
problem. We again return to the problem from Example 3.3, but this
time it will be treated as an infinite horizon problem. That is, we solve
the problem

maximize

∞∑

i=0

(
1

1 + δ

)i

lnui (3.108)

subject to xi+1 = (1 + r)xi − ui, i = 0, 1, . . . , (3.109)

x0 = a, (3.110)

lim
i→∞

xi = b, (3.111)

here again a, b, r, δ are given nonnegative constants, where moreover r >
0, a > 0.

In our case the condition ∂f
∂x = 1+ r 6= 0 holds, and so we can apply

the necessary optimality conditions from Theorem 3.4. For particular
indices i, these conditions are of the same form as the conditions for the
problem from Example 3.3. This means that by solving these conditions
we obtain the control given by the relation (3.101) for i = 0, 1, . . . , i.e.

ui =

(
1 + r

1 + δ

)i 1

ψ1
, (3.112)

where ψ1 > 0. Is such a control admissible for the infinite horizon
problem? More precisely, for which values of the parameters a, b, r, δ,
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and yet undetermined positive constant ψ1, such control is admissible
for the problem?

To answer this question we must first investigate convergence of the
infinite series in the objective function for such control, i.e. convergence
of the series

∞∑

i=0

(
1

1 + δ

)i

ln

[(
1 + r

1 + δ

)i 1

ψ1

]

, (3.113)

where ψ1 > 0. Note that in the case δ = 0 the series diverges (it does not

satisfy the necessary convergence condition, since limi→∞ ln
(

(1+r)i

ψ1

)

=

∞). This means that if δ = 0, the problem does not have optimal
solutions. In the case δ > 0, the series (3.113) always converges, for
example by the d’Alambert criterium. So, we further investigate only
the case δ > 0.

Our goal is to find (if it exists) ψ1 > 0 such that the response on
the control (3.112) with the initial condition (3.110) satisfies also the
terminal condition (3.111). Since the response on the control (3.112) is
given by the same relation as in the finite horizon case, we obtain from
(3.103) that

xi = (1 + r)ia− (1 + r)i−1 (1 + δ)i − 1

δ(1 + δ)i−1

1

ψ1
. (3.114)

We now try to determine ψ1 so that the limit condition (3.111) holds.

Denote ψ
(k)
1 the value of ψ1, for which xk = b holds. From the relation

(3.114) we obtain

1

ψ
(k)
1

=

[
(1 + r)ka− b

(1 + δ)k − 1

]

δ

(
1 + r

1 + δ

)k−1

. (3.115)

By the limit approach in (3.115) we get the following relation for ψ1:

1

ψ1
= lim

k→∞
1

ψ
(k)
1

= δa

(
1 + r

1 + δ

)

. (3.116)
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Substituting into (3.114), after adjustments we obtain

xi = a

(
1 + r

1 + δ

)i

. (3.117)

Let us now analyze the possibilities of the limit behavior of xi. We can
see that if r > δ, then xi diverge, and hence the optimal control for the
problem (3.108)–(3.111) does not exist no matter what the value of b is.
In the case r = δ, the response xi is constant, and hence there exists
the optimal control only if a = b. In the case r < δ, the response xi
converges to zero, and hence the problem has the solution only if b = 0.
Note that if we substitute (3.116) to (3.112) we obtain

ui = aδ

(
1 + r

1 + δ

)i+1

(3.118)

and if we compare the last relation to (3.117) we get

ui = δ

(
1 + r

1 + δ

)

xi. (3.119)

We find that the problem (3.108)–(3.111) has an optimal solution only
if b = 0 and r < δ, or if b = a and r = δ and then the optimal ui is a
constant multiple of xi. How to explain these facts?

We can approach the problem (3.108)–(3.111) from another side.
Set the values ψi and ψi+1 given by the formula (3.99) to the adjoint
equation (3.98). By adjusting and shifting indices we get the difference
equation for the control

ui+1 =

(
1 + r

1 + δ

)

ui. i = 0, 1, . . . .

This equation together with the state equation (3.109) form the following
system of linear equations

(
xi+1

ui+1

)

=

(
1 + r −1

0 1+r
1+δ

)(
xi
ui

)

. (3.120)
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The matrix of the system (3.120) has eigenvalues

λ1 =
1 + r

1 + δ
and λ2 = (1 + r)

with eigenvectors

v1 =

(
1

δ 1+r
1+δ

)

and v2 =

(
1
0

)

.

The general solution of the equation (3.120) is of the form
(
xi
ui

)

= c1

(
1

δ 1+r
1+δ

)(
1 + r

1 + δ

)i

+ c2

(
1
0

)

(1 + r)i,

where c1, c2 are given by the initial point (x0, u0).
In the case r 6= δ, the system (3.120) has a unique equilibrium,

namely x̂ = 0 and û = 0. We can see that if r > δ, then both eigenvalues
are greater than 1, and hence the equilibrium forms an unstable node
(see Figure 3.1 in the middle). This explains the nonexistence of the
optimal control for the problem with (3.111) in the case r > δ. In fact,
all the responses diverge to infinity.

If r < δ, then λ1 < 1 < λ2, which means that the equilibrium is a
saddle (see Figure 3.1 in the left). In order the trajectory for the point
(x0, u0) to converge, one must have c2 = 0. In other words, the point
must lie on the stable path, which is a straight line given by the equation
u = δ(1 + r)/(1 + δ)x. This explains the existence of optimal control
only for b = 0.

In the case r = δ, the problem exhibits an infinite number of steady
states, all unstable. Each pair x̂, û such that û = rx̂ is a steady state.
Trajectories lie on straight lines parallel to the axis x (see Fig. 3.1 on
the right). This means that the solutions we found above for a = b
correspond to steady states of the system. All solutions for other pairs
of initial and terminal points diverge.

The following example represents a simplified deterministic version
of so-called real business cycle (RBC) model. Such models allow to ana-
lyze national economic responses to technological and other shocks. The
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Figure 3.1: Trajectories for the response and control in Example 3.8 for
x0 = 2, for different initial values of u0 and for r < δ (in the left), r > δ
(in the middle) and r = δ (in the right).

RBC models are the starting point for the DGSE (dynamic stochastic
general equilibrium) models that currently are a popular tool for eco-
nomic analysis and forecasting.

Example 3.9. Optimal consumption and optimal amount of
labor. We extend the problem of optimal consumption studied in Ex-
ample 3.8 to a problem with two control variables. We assume that, in
addition to consumption, an agent chooses the amount of labor, which
is, together with capital, an input factor to the production function. In
this case, however, unlike in Example 3.8, we cannot find the optimal
solution analytically. Therefore, we are content with finding a stationary
point and we analyze local dynamics of the optimal solution using the
log-linearization of the differential equations in a neighborhood of this
point.

Suppose that in an economy there is a number of identical, infinitely
long living households. The households decide how much time they
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spend working (hi), how much time they retain as free time (li) and
what amount of the produced output they consume (ci). We assume
that hi + li = 1. Doing so, the households maximize their discounted
lifetime utility from consumption and free time, i.e.,

max
ci, hi

∞∑

i=0

βi(ln ci + ln(1 − hi)), where β ∈ (0, 1).

The amount of production is determined by the Cobb-Douglas produc-
tion function, which depends on the amount of labor and the amount
of capital (ki). Output produced can be either consumed or used to
increase the capital in the next period.

ki+1 = ki + f(ki, hi) − ci, where f(k, h) = kαh1−α and α ∈ (0, 1).
(3.121)

The initial level k0 > 0 of capital is given.

The Hamiltonian for the given problem is of the form

H(ki, ci, hi, ψi+1) = βi(ln ci + ln(1 − hi)) + ψi+1(ki + kαi h
1−α
i − ci).

We use Theorem 3.1 to formulate the necessary conditions. Accordingly,
if (ci, hi) is an optimal control and ki is its response, then there exists a
sequence of ψi such that the variational conditions holds in the form

βi

ci
− ψi+1 = 0 (3.122)

and

− βi

1 − hi
+ ψi+1

∂f

∂h
(ki, hi) = 0, (3.123)

where ψi is the solution of the adjoint equation

ψi = ψi+1

(
∂f

∂k
(ki, hi) + 1

)

. (3.124)
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¿From (3.122) and (3.124) we get

ci
ci−1

= β

(
∂f

∂k
(ki, hi) + 1

)

(3.125)

and from (3.122) and (3.123) we obtain

ci = (1 − hi)
∂f

∂h
(ki, hi). (3.126)

¿From (3.121), (3.122) and (3.123) for the steady state (k̂, ĉ, ĥ) we obtain
the following relations

ĉ = k̂αĥ1−α,

1 = β



α

(

k̂

ĥ

)α−1

+ 1



 ,

ĉ = (1 − ĥ)(1 − α)

(

k̂

ĥ

)α

.

Their solution is

ĥ = A, k̂ = AB, ĉ = ABα, (3.127)

where

A =
1 − α

2 − α
and B =

(
1 − β

βα

) 1

α−1

.

The equations (3.121), (3.125) and (3.126) describing model dynamics
are nonlinear and their solutions cannot be expressed in closed form.
Therefore, we first log-linearize 2 the equation at the equilibrium point.

2Under the log-linearization of the function f(x) in a neighborhood of the point
x̂ we understand the approximation f(x) ≈ f(x̂) + f ′(x̂)x̂x̄ where x̄ = lnx − ln x̂.
This approximation is based on the approximation of the function f by the first order
Taylor polynomial around the point x̂ and the approximation of ln x

x̂
≈ x

x̂
− 1,

which results from the approximation of the function ln(x) by the first order Taylor
polynomial in the neighborhood of the point 1.
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Log-linearizing the equation (3.121) we obtain

k̂ + k̂k̄i+1 = k̂ + k̂k̄i + f(k̂, ĥ) +
∂f

∂k
(k̂, ĥ)k̂k̄i +

∂f

∂h
(k̂, ĥ)ĥh̄i − ĉ− ĉc̄i,

where k̄i = ln ki− ln k̂i, c̄i = ln ci− ln ĉi and h̄i = lnhi− ln ĥi. Modifying
and using (3.127) we obtain

k̄i+1 = k̄i +Bα−1(αk̄i + (1 − α)h̄i − c̄i). (3.128)

We modify the equation (3.125) by log-linearization to the form

c̄i − c̄i−1 = (1 − β)(1 − α)(h̄i − k̄i) (3.129)

and finally we adapt the equation (3.126) into the form

ci = α(k̄i − h̄i) −
A

1 −A
h̄i = α(k̄i − h̄i) − (1 − α)h̄i.

¿From the last equation we can express h̄i in the form

h̄i = αk̄i − ci.

After substituting this into (3.128) and (3.129) we obtain the system of
linear equations

V1

(
k̄i+1

c̄i+1

)

= V2

(
k̄i
c̄i

)

,

where V1 and V2 are 2 × 2 matrices of the form

V1 =

(
1 0

(1 − α)2(1 − β) 1 + (1 − β)(1 − α)

)

,

V2 =

(

1 + (1−β)(2−α)
β

(1−β)(α−2)
αβ

0 1

)

.
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Since the matrix V1 is triangular, its diagonal elements are its eigenval-
ues. Both eigenvalues are nonzero and hence the matrix V1 is regular.
The system can be therefore adjusted to the form

(
k̄i+1

c̄i+1

)

= V

(
k̄i
c̄i

)

,

where V = V −1
1 V2. The solution to the system is

(
k̄i
c̄i

)

= d1v1λ
i
1 + d2v2λ

i
2,

where λ1 and λ2 are the eigenvalues of the matrix V ; v1 and v2 are the
corresponding eigenvectors and d1 and d2 are constants determined in
such a way that the solution starts at a given point (k̄0, c̄0).

To illustrate the solution we simulate the evolution of deviations of
the variables from the steady state in the case of an initial deviation of
10%. Note that due to the relation ln x

x̂ ≈ x−x̂
x̂ for x → x̂ the variables

k̂i, ĉi and ĥi express approximately one percentage deviation rate from
the steady state.

Parameters of the model are chosen as follows: α = 0.33, β =
0.98. For these parameters values the eigenvectors of the matrix V are
approximately λ1 ≈ 1.049 > 1 and λ2 ≈ 0.972 < 1. This means that
the steady state is a saddle3. We obtain a stable saddle path for d1 = 0.
Simulations of the percentage deviations of variables ki, ci and hi from
the equilibrium are shown in Figure 3.2.

3A more detailed analysis shows that the steady state is a saddle for any choice of
the parameters α ∈ (0, 1) and β ∈ (0, 1).

180



EXERCISES

0 10 20 30 40 50 60 70 80 90 100
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1
k
c
h

Figure 3.2: Simulations of the percentage deviations of variables ki, ci
and hi from the equilibrium for k̄i = 0.1.

3.7 Exercises

Exercise 3.1. Using Theorem 3.1 or Theorem 3.2 solve the problem

max

k−1∑

i=0

(xi + 2.5ui)

xi+1 = xi − ui, i = 0, . . . , k − 1,

x0 = a,

ui ∈ [−1, 1], i = 0, . . . , k − 1.

Exercise 3.2. Write down the necessary optimality conditions given
by Theorem 3.2 or Theorem 3.1 for the following optimal control problem
and use them to express the possible value of the control as a function
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of the state and adjoint variable:

min
1

2

k−1∑

i=0

[(x1
i )

2 + (ui)
2]

x1
i+1 = x1

i + ui, x1
0 = 1, i = 0, . . . , k − 1,

x2
i+1 = x2

i + 2x1
i + x1

iui, x2
0 = 0, i = 0, . . . , k − 1,

−1 ≤ ui ≤ 1,

C = {xk : x1
k = 0}.

Exercise 3.3. By the help of Theorem 3.2 or Theorem 3.1 solve
the optimal allocation resources problem formulated in Exercise 1.1.
Compare with the solution of Example 2.2.

Exercise 3.4. By the help of the maximum principle solve the LQ
problem from the Example 2.9 for k = 5.

Exercise 3.5. Prove the claim of Remark 3.9. In particular show that
if C = {x : x1 = a1, . . . , xl = al}, where l ∈ {1, . . . , n}, then ψl+1

k =
· · · = ψnk = 0 and ψik is free for i = 1, . . . l. Hint: Use the transversality
condition and justify that the relations ψik = χi for i = 1, . . . l can be
interpreted as ψik free.

Exercise 3.6. (a) Show that if C = {(x1
k, x

2
k) ∈ R

2| x1
k = x2

k}, then
the transversality conditions can be written as ψ1

k + ψ2
k = 0.

(b) Find the transversality condition for C = {(x1
k, x

2
k, x

3
k) ∈ R

3| x2
k =

x3
k}.

Exercise 3.7. Justify in detail that if ψ0 = 1, then Theorem 3.1 or
Theorem 3.2 provides formally enough conditions to determine a control.
This means that there is the same number of conditions as unknowns.
Hint: the unknows are the values of the control, response, adjoint vari-
ables and multipliers.

Exercise 3.8. Adapt the formulation and the proof of Theorem
3.1 for the case of the problem (3.1)–(3.5) having the set of terminal
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states C given by both equalities and inequalities, i.e., C = {x : g(x) =
0, q(x) ≤ 0}.
Exercise 3.9. Adapt the formulation and the proof of Theorem 3.1 for
the case, when the problem (3.1)–(3.5) has also state variables constrains
hi(xi, ui) ≤ 0, or h(xi) ≤ 0, where i = 0, . . . , k − 1.

Exercise 3.10. Adapt the formulation and the proof of Theorem 3.1
for the case when the initial condition is given by an equation h(x0) = 0.
Hint: consider J as a function of the variables (x0,U) together with other
equality constraint h(x0) = 0.

Exercise 3.11. Prove the claim from Remark 3.6. To this aim use
the Weierstrass theorem, according to which a continuous function on a
compact set reaches its minimum.

Exercise 3.12. Derive formulae (3.104) from Example 3.4.

Exercise 3.13. Prove the claim from Remark 3.12.

Exercise 3.14. Derive the Euler equation for the problem (3.66)–
(3.67) from the dynamic programming equation (3.76)–(3.77). Hint:
Apply the necessary optimality condition to the maximum condition
and then use the envelope theorem.

Exercise 3.15. Prove Lemma 3.1 in detail.

Exercise 3.16. Solve the problem from Example 3.2 on the infi-
nite time horizon. Show that the optimal control satisfies the difference
equation ui+1 = β2ui and analyze the phase portrait of the system of
equations consisting of the control and the state equation.

Exercise 3.17. Prove that for any choice of parameters α ∈ (0, 1)
and β ∈ (0, 1) the steady state from Example 3.9 is a saddle. Hint:
it suffices to prove that for any value of α ∈ (0, 1) and β ∈ (0, 1) the
relation det(V2 − V1) = 0 does not hold, which is equivalent to the fact
that λ = 1 is not an eigenvalue of the matrix V .
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Appendix

4.1 Maximum Principle in Nonlinear Program-

ming

Necessary optimality conditions for a nonlinear programming problem in
the form of the Kuhn-Tucker theorem require that certain regularity as-
sumptions (sometimes also called constraint qualification) are satisfied.
Such assumptions are quite difficult to verify if they should be applied to
optimal control problems. Therefore, we use a more general version of
necessary conditions in the third chapter requiring weaker assumptions
of regularity. This version of the necessary conditions used in Section 3
will be now derived from the John theorem.

4.1.1 The Standard Nonlinear Programming Problem

By a nonlinear programming problem (NP) we understand the problem

maximize f 0(x)

subject to f(x) = 0,

s(x) ≤ 0,

184



MAXIMUM PRINCIPLE IN NONLINEAR PROGRAMMING

where f 0 : R
n → R, f : R

n → R
ρ and s : R

n → R
σ. We assume that

f0, f, s ∈ C
1. If we denote

R := {x : f(x) = 0}, S := {x : s(x) ≤ 0},

then the problem (NP) can be rewritten as follows:

max
x∈R∩S

f0(x).

The function f 0 is called objective function, the constraint f(x) = 0 is
called equality constraint and the constraint s(x) ≤ 0 inequality con-
straint. As active constraint at a point x̂ ∈ R ∩ S we call a component
si of the inequality constraint s for which si(x̂) = 0 holds. We choose
x̂ ∈ R ∩ S and define I(x̂) as the set of the active constraints indices of
s in x̂, i.e.

I(x̂) := {i : si(x̂) = 0}.
We say that the problem (NP) satisfies the regularity assumption

(PR) at the point x̂ ∈ R ∩ S, if the vectors ∂si

∂x (x̂), i ∈ I(x̂), are linearly
independent. Note that this assumption applies only to the inequality
constraints and, therefore, it does not represent the regularity assump-
tion of the Kuhn-Tucker theorem for the problem (NP).

4.1.2 The Necessary Optimality Condition for Nonlinear

Programming Problems

In this section the necessary optimality conditions for the problem (NP)
are formulated in a form suitable for discrete optimal control theory.
To this end the John theorem, which is a certain generalization of the
Kuhn-Tucker theorem, will be used. The John theorem is not as well
known as the fundamental Kuhn-Tucker one. This is why we present its
formulation here in detail.

Theorem 4.1. The John theorem. Let x̂ be an optimal solution for
the problem (NP). Then there exist multipliers ψ0 ≥ 0, ψ ∈ R

ρ and
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λ ∈ R
σ, (ψ0, ψ, λ) 6= (0, 0, 0), such that both the variational condition

ψ0 ∂f
0

∂x
(x̂) + ψT

∂f

∂x
(x̂) + λT

∂s

∂x
(x̂) = 0 (4.1)

and the complementarity condition

λT s(x̂) = 0, where λ ≤ 0, (4.2)

are satisfied.

The proof of this theorem can be found for example in the book [8].

With the problem (NP) we associate the Lagrange function

L(x, ψ0, ψ, λ) = ψ0f0(x) + ψT f(x) + λT s(x), (4.3)

where ψ0 ∈ R, ψ0 ≥ 0, ψ ∈ R
ρ and λ ∈ R

σ, λ ≤ 0. Then the variational
condition (4.1) can be written in the form

∂L

∂x
(x̂, ψ0, ψ, λ) = 0. (4.4)

Here ψ0 is called the objective function multiplier, ψ the equality con-
straint multiplier and λ the inequality constraint multiplier.

Notice that the John theorem holds without any regularity assump-
tion. However, while in the Kuhn-Tucker theorem, we have ψ0 = 1, in
the John theorem we only have ψ0 ≥ 0 plus a condition that not all mul-
tipliers ψ0, ψ and λ simultaneously vanish. In the following theorem we
formulate necessary optimality conditions under the regularity assump-
tion (PR). With this assumption we obtain that merely the multipliers
ψ0 and ψ does not simultaneously vanish. Such a modification will be
more suitable for our purposes.

Theorem 4.2. Corollary of the John theorem. Let x̂ be an optimal
solution for the problem (NP) and let the regularity assumption (PR) be
satisfied at the point x̂. Then there exist multipliers ψ0 ≥ 0, ψ ∈ R

ρ and
λ ∈ R

σ, where (ψ0, ψ) 6= 0 such that both the variational condition (4.1)
and the complementarity condition (4.2) are satisfied.
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Proof: From the John theorem it follows that there exist multipliers
ψ0 ≥ 0, ψ ∈ R

ρ and λ ∈ R
σ, (ψ0, ψ, λ) 6= 0 such that (4.1) and (4.2)

hold. We have to prove (ψ0, ψ) 6= 0.
Note that the complementarity condition implies λi = 0 for i /∈ I(x̂).

The condition (4.1) hence yields

ρ
∑

i=0

ψi
∂f i

∂x
(x̂) +

∑

i∈I(x̂)
λi
∂si

∂x
(x̂) = 0. (4.5)

If (ψ0, ψ) = 0 were true, then (4.5) would yield

∑

i∈I(x̂)
λi
∂si

∂x
(x̂) = 0. (4.6)

Then from (4.6) and from the regularity assumption (PR) also λi = 0
for i ∈ I(x̂) would follow. Hence, we would have not only (ψ0, ψ) = 0,
but also λ = 0, which would be a contradiction with (ψ0, ψ, λ) 6= 0.
Therefore (ψ0, ψ) 6= 0 and the theorem is proved.

Remark 4.1. The John theorem, from which we have derived Theorem
4.2, is usually formulated with opposite signs in ψ0 and λ, i.e. with
ψ0 ≤ 0 and λ ≥ 0. This fact of course does not change the formulation of
Theorem 4.2, because the formulations can be obtained from each other
by multiplication of the equality (4.1) by −1. Important is that for the
maximization problem and for the given orientation of the inequality in
the formulation of the problem (NP), the signs of ψ0 and λ must be
different. We have chosen the positive sign for ψ0, since this is standard
in the optimal control problems.

Remark 4.2. The problem (NP) is formulated as a maximization prob-
lem. In the case of a minimization problem, the only thing that has to
be changed in Theorem 4.2 is the sign of the multiplier ψ0, i.e. ψ0 ≤ 0.
That means, for the minimization problem the signs of all components of
the vector λ are the same as the sign of the objective function multiplier.
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Remark 4.3. If the claim of Theorem 4.1 or Theorem 4.2 is true with
some (ψ0, ψ, λ), then it is true also with c(ψ0, ψ, λ), for any c > 0.
Hence if (ψ0, ψ, λ) is such that ψ0 > 0 (i.e. ψ0 6= 0), then, without loss
of generality, we can take ψ0 = 1.

Remark 4.4. Theorem 4.1 or Theorem 4.2 is of practical importance
only when we can guarantee that ψ0 6= 0. Such a case occurs whenever
the problem satisfies the regularity assumptions required by the Kuhn-
Tucker theorem. Those are satisfied, for example, if s and f are linear

or if the vectors ∂si

∂x (x̂), i ∈ I(x̂), ∂fj

∂x (x̂), j = 1, . . . , ρ, are linearly
independent. In other cases, the possibility of ψ0 = 0 can be usually
excluded by the help of the condition (ψ0, ψ) 6= 0.

Remark 4.5. Both Theorem 4.1 and Theorem 4.2 are true even in the
case when the problem (NP) has solely inequality or solely equality con-
straints. In that case we formally put ψ = 0 or λ = 0 in the claims
of the theorems. When the problem does not include the equality con-
straints, then the regularity assumption (PR) represents the regularity
assumption of the Kuhn-Tucker theorem, and hence we can put ψ0 = 1.

Remark 4.6. In the case ψ0 = 1, Theorem 4.1 and Theorem 4.2 provide
formally enough conditions to determine x̂.

4.1.3 Maximum Principle in Nonlinear Programming

Conditions (4.1) and (4.2) from Theorem 4.2 can be hard to verified.
In a special case, as seen from the following theorem, it is possible to
replace these conditions by another, stronger one that is easier to use.
In the optimal control theory, it has a wide use. That special case is the
problem (NP) satisfying following additional assumptions:

f is a linear function, i.e. f(x) = Px+ q,

S is a convex set and

f0 is a concave function.
We will refer to this problem as to (CP).
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Theorem 4.3. If for the problem (CP) there are (ψ0, ψ) 6= 0, ψ0 ≥ 0,
λ ≤ 0 and x̂ ∈ S such that the conditions (4.1) and (4.2) are satisfied,
then also the following maximum condition is true:

ψ0f0(x̂) + ψT f(x̂) = max
x∈S

(ψ0f0(x) + ψT f(x)). (4.7)

Proof: Note that we maximize the concave function ψ0f0(x) +ψT f(x)
on the convex set S in (4.7). For such a problem the Kuhn-Tucker
conditions are sufficient for optimality. However, the conditions (4.1)
and (4.2) from the assumption of the theorem are exactly those Kuhn-
Tucker conditions for the problem in (4.7) at the point x̂ and hence the
theorem is proved.

By combining Theorem 4.2 and 4.3 we obtain the following theorem.

Theorem 4.4. Let x̂ be an optimal solution to the problem (CP) and
let the regularity assumption (PR) be satisfied at x̂. Then, there exist
(ψ0, ψ) 6= 0, ψ0 ≥ 0 such that the maximum condition (4.7) holds.

Remark 4.7. The condition (4.7) from Theorem 4.4 is preserved
as maximum condition even if maximization in the problem (NP) is
changed to minimization. Only what needs to be changed is the sign of
ψ0 (instead of ψ0 ≥ 0, we have ψ0 ≤ 0).

Remark 4.8. If in the problem (CP) both the equality and inequality
constraints are linear, then the claims of Theorem 4.2 and Theorem 4.3
are true with ψ0 = 1 (see Remark 4.5). Moreover, in this case the claims
of these theorems can be reversed. That is, if x̂ ∈ S ∩ R satisfies (4.7)
with ψ0 = 1 and some ψ, then x̂ is an optimal solution to the problem
(CP).

4.2 The Envelope Theorem

The envelope theorem is a result often used in mathematics of economics.
It claims that the derivative of the value function, as a function of a
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parameter of the optimization problem, is equal to the partial derivative
of the objective function with respect to the parameter at the optimal
value. We referred to the envelope theorem in the third chapter (see
Remark 3.14 and Exercise 3.14) and the idea of the proof of the envelope
theorem was used in the derivation of necessary optimality conditions
from the dynamic programming equations in Subsection 3.4.2. Now, in
this subsection is time to formulate and prove this theorem.

Theorem 4.5. Let f : R
n×R

m → R be continuously differentiable and
let the function

V (x) := max
u

f(x, u)

be defined and continuously differentiable on an open subset O ⊂ R
n.

Let x̂ ∈ O and let û ∈ arg maxu f(x̂, u). Then

∂V

∂x
(x̂) =

∂f

∂x
(x̂, û).

Proof: From the definition of V and û we obtain that

V (x̂) − f(x̂, û) = 0

and for all x ∈ O we have

V (x) − f(x, û) ≥ 0.

This means that the function V (x) − f(x, û) attains its minimum at
the point x = x̂ on O, and hence at this point the necessary optimality
conditions are satisfied. This means that

∂V

∂x
(x̂) − ∂f

∂x
(x̂, û) = 0,

from which the claim of the theorem follows.

Remark 4.9. If there exists a continuously differentiable function v :
O → R

m such that for all x ∈ O the relation

V (x) = f(x, v(x)) (4.8)
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is satisfied, then Theorem 4.5 can be proved by a differentiation of the
relation (4.8) with respect to x. Indeed, from (4.8) we obtain

∂V

∂x
(x) =

∂f

∂x
(x, v(x)) +

∂f

∂u
(x, v(x))

∂v

∂x
(x) (4.9)

for all x ∈ O. Since

v(x) ∈ argmax
u

f(x, u), x ∈ O,

we have
∂f

∂u
(x, v(x)) = 0,

which, being substituted into (4.9), yields the claim of the theorem.

Remark 4.10. Note that in Subsection 3.4.2 we derived the adjoint
equation from the dynamic programming equation using the idea of
the first proof of Theorem 4.5. However, we could use an alternative
procedure described in Remark 4.9. To this aim we must assume both
V ∈ C

1 and the existence of v ∈ C
1.

4.3 Systems of Difference Equations

This section summarizes the most important knowledge related to cer-
tain types of difference equations and systems of such equations, neces-
sary for the solution of examples and exercises in this book.

(a) One-dimensional linear difference equations. The solution of
equations in the form

xi+1 = axi + bi, i = 0, 1, 2, . . . ,

where x0 is given, is based on the variation of parameters formula

xi+1 = ai+1x0 +

i∑

s=0

ai−sbs. (4.10)
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This formula can be easily proved by mathematical induction.

(b) Two-dimensional linear autonomous systems. These are sys-
tems of difference equations of the form

xi+1 = Axi, i = 0, 1, 2, . . . , (4.11)

where A is a 2× 2 matrix. For our purposes, it is sufficient to deal with
the case where A has real and mutually distinct eigenvalues λ1 6= λ2.
The corresponding eigenvectors are denoted by v1 and v2. It can be
proved that any solution to the system (4.11) is given by the formula

xi = c1v1λ
i
1 + c2v2λ

i
2, (4.12)

where the coefficients c1 and c2 are uniquely determined by the choice
of the initial value x0.

A steady state of the system (4.11) is an x̂ such that x̂ = Ax̂. It is
obvious that if λ1 6= 0 and λ2 6= 0, then x̂ = 0 is the only steady state.

Formula (4.12) implies that xi → 0 for i → ∞ (or is bounded,
respectively) if and only if all coefficients corresponding to eigenvalues
with absolute values ≥ 1 (or > 1, respectively) vanish. This condition
is trivially satisfied if there is no such eigenvalue. Hence x is called the
asymptotic stable (or stable, resp.) steady state if for i = 1, 2 we have
|λi| < 1 (|λi| ≤ 1, resp.). Otherwise, this steady state is unstable.

Systems (4.11) can be classified according to the behaviour of their
trajectories. The terminology is based on the analogy to the two-
dimensional systems of differential equations [18].

(i) If 0 < |λ1| < |λ2| < 1, the steady state 0 is called stable node. All
solutions converge to this solution.

(ii) If 1 < |λ1| < |λ2|, the steady state 0 is called unstable node. All
solutions with x0 6= 0 diverge from this solution.

(iii) If |λ1| < 1 < |λ2|, then only the solutions with c2 = 0, i.e. x0 =
c1v1 converge to zero. All other solutions are unbounded. This
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case is called saddle and the line x = cv1, c ∈ (−∞,∞) is called
stable path. It contains all converging trajectories.

(iv) If λ1 = 1, then each point on the line c2 = 0, i.e. x̂ = cv1, c ∈
(−∞,∞), is a steady state. This is stable if |λ2| < 1 and unstable
if |λ2| > 1.

(c) Non-linear autonomous two-dimensional systems. The set
of steady states of the system of non-linear difference equations

xi+1 = f(xi), i = 0, 1, 2, . . . , (4.13)

where f : R
2 → R

2 is a continuously differentiable function, is the set of
fixed points of f , i.e. x̂ such that f(x̂) = x̂. Stability, (local) asymptotic
stability and instability of a steady state x̂ are defined analogously to the
linear case but they are considered in a sufficiently small neighbourhood
of x̂. When determining the asymptotical properties of the solutions,
the eigenvalues of the matrix A are replaced by the eigenvalues of the
Jacobian ∂f

∂x (x̂). In particular, x̂ is locally asymptoticaly stable if the

absolute values of both eigenvalues of matrix ∂f
∂x(x̂) are < 1. On the

hand, it is unstable if at least one of these eigenvalues is > 1 in absolute
value.

If the eigenvalues of the matrix ∂f
∂x(x̂) satisfy |λ1| < 1 < |λ2|, then x̂

is a saddle in the sense that there is a unique stable path through x̂. This
path is a smooth curve which passes through x̂ with tangential direction
given by the eigenvector of the eigenvalue λ1.

4.4 Elements of Probability Theory

Given that the theory of continuous random variables requires knowl-
edge of measure theory that is beyond the scope of this book, this ap-
pendix only briefly summarizes some definitions and results of probabil-
ity theory for discrete random variables. This knowledge is necessary to
understand Subchapter 2.5 on stochastic dynamic programming.
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Consider a non-empty countable set Ω called set of elementary
events or sample space. Assume that F is a given σ-algebra on the
set Ω (i.e. F is a collection of subsets of Ω, which includes the empty
set, the complement of each set from F and the union of any countable
collection of sets from F). The set F is called a set of events, where an
event is a collection of possible outcomes included in the sample space
Ω. When defining discrete random variables, the set F is usually defined
as the set of all subsets of the sample space Ω (denoted by 2Ω), although
this may not be the case in general.

On the set of events F , we can define a function P : F → R, which
assigns to any event from F the probability of occurrence of this event.
This function satisfies three axioms:

(i) P (A) ≥ 0 for every A ∈ F (i.e. the probability of any event is
non-negative)

(ii) P (Ω) = 1 (i.e. probability that one of the elementary events in-
cluded in Ω occurs is equal to 1),

(iii) P (A ∪B) = P (A) + P (B) for arbitrary disjoint sets A ∈ F and
B ∈ F .

The triple (Ω,F , P ) is called a (discrete) probability space. On this
space, we can define a discrete random variable. Discrete random vari-
able is any real function Z : Ω → R satisfying

{ω ∈ Ω |Z(ω) ≤ z} ∈ F for each z ∈ R.

In the special case mentioned above where the set F contains all subsets
of the space Ω (i.e. F = 2Ω), the discrete random variable is any function
defined on the space Ω. In the following text, we will suppose that the
assumption F = 2Ω is satisfied. Note that in this case, the discrete
nature of the space Ω implies that for any random variable Z there exists
a countable set of values {z1, z2, . . . }, where zi ∈ R for all i = 1, 2, . . .
such that

P (Z = zi) := P ({ω ∈ Ω |Z(ω) = zi}) > 0 and
∑

i

P (Z = zi) = 1.
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The expected value of a one-dimensional random variable Z is de-
noted by EZ and it is defined as

EZ =
∑

i

ziP (Z = zi)

assuming
∑

i |zi|P (Z = zi) < ∞ (i.e. this series converges absolutely
which allows us to change the order of the summands). Analogously, for
any function f we can define Ef(Z) as

Ef(Z) =
∑

i

f(zi)P (Z = zi)

assuming
∑

i |f(zi)|P (Z = zi) <∞.

If Z1, Z2, . . . , Zn : Ω → R are random variables then the vector
function Z : Ω → R

n defined by

Z(ω) =
(
Z1(ω), Z2(ω), . . . , Zn(ω)

)T

is called n-dimensional random variable. The expected value of multidi-
mensional random variable Z = (Z1, . . . , Zn)

T is defined as

EZ = (EZ1, . . . , EZn)

assuming that all expected values EZi exist. The expected value Ef(Z)
is defined analogously to the one-dimensional case:

Ef(Z) =
∑

i

f(zi)P (Z = zi),

assuming that random variable Z attains values from the countable set
of vectors {z1, z2, . . . } with a non-zero probability.

Note that in general, Ef(Z) 6= f(E(Z)). However, any discrete
random variables Z1, Z2, . . . and real numbers a1, a2, . . . satisfy

(i) E(a1Z1 + a2) = a1EZ1 + a2, (linearity),
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(ii) E(
∑

i aiZi) =
∑

i aiEZi, (additivity).

If Z1, Z2 are discrete random variables attaining values {z1
1 , z

2
1 , . . . } and

{z1
2 , z

2
2 , . . . }, resp., then the functions f(zi1, Z2) for fixed i and f(Z1, z

j
2)

for fixed j are random variables as well. Expected values of these random
variables can be calculated as

EZ2
f(zi1, Z2) =

∑

j

f(zi1, z
j
2)P (Z2 = zj2),

EZ1
f(Z1, z

j
2) =

∑

i

f(zi1, z
j
2)P (Z1 = zi1).

Note that while Ef(Z1, Z2) is a deterministic number (expected
value of the random variable f(Z1, Z2)), EZ2

f(zi1, Z2) and EZ1
f(Z1, z

j
2)

are functions of the random variables Z1 and Z2, respectively. Hence,
they can be understood as random variables as well. Analogously, these
considerations can be generalized to any countable set of random vari-
ables.

Random variables Z1, Z2, . . . (of any dimension) are called indepen-
dent, if

P (Z1 = z1, Z2 = z2, . . . ) = P (Z1 = z1)P (Z2 = z2) . . .

for any z1, z2, . . . . If Z1, Z2 are independent (one-dimensional or mul-
tidimensional) random variables attaining values {z i1}i∈I and {zj2}j∈J ,
resp., where index sets I and J are countable, we can formulate so-called
law of iterated expectations as follows:

Ef(Z1, Z2) = EZ1
EZ2

f(Z1, Z2).
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Proof:

EZ1
EZ2

f(Z1, Z2) = EZ1

∑

j∈J
f(Z1, z

j
2)P (Z2 = zj2)

=
∑

i∈I




∑

j∈J
f(zi1, z

j
2)P (Z2 = zj2)



P (Z1 = zi1)

=
∑

i∈I, j∈J
f(zi1, z

j
2)P (Z2 = zj2)P (Z1 = zi1)

=
∑

i∈I, j∈J
f(zi1, z

j
2)P (Z1 = zi1, Z2 = zj2)

= Ef(Z1, Z2),

where we have used the independence of random variables Z1, Z2 in the
fourth equality.

The consequence of the above mentioned additivity of expected
value is that

E(f(Z1) + g(Z1, Z2)) = EZ1
(f(Z1) +EZ2

g(Z1, Z2)).

This is an important equality for deriving the dynamic programming
equation for stochastic problems.
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[19] N. L. Stokey, R. E. Lucas, Jr., E Prescott: Recursive Meth-

ods in Economic Dynamics, Hardvard University Press, Cambridge, Mas-
sachusetts, and London, England, 1989

[20] S. P. Sethi, G. L. Thompson: Optimal Control Theory. Applications

to Management Science and Economics, Kluwer Academic Publishers,
Boston, Dordrecht, London, 2000
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R set of real numbers
Z set of integers
N set of natural numbers
C
r set of r times continuously differentiable functions

R
n n-dimensional Euclidean space

sgn signum
tr trace of a matrix
a+ positive part of number a; a+ = max(a, 0)
a− negative part of number a; a− = max(−a, 0)
ui control variable in the stage i
U control on [0, k]; U = {u0, . . . , uk−1}
Uj control on [j, k]; U = {uj , . . . , uk−1}
Ui set of admissible values of the control variable in the i-th

stage
xi state variable in the stage i
X response; X = {x0, . . . , xk−1}
Xi set of admissible values of the state variable in the i-th

stage
vi optimal feedback control in the stage i
Vi value function in the stage i
Dj(x) the problem of optimal transition from the state x to the

terminal state on [j, k]
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Pj(x) set of admissible controls for problem Dj(x)
Γj(x) set of u ∈ Uj for which there exists Uj ∈ Pj(x) such that

uj = u

Γ̂j(x) set of u ∈ Uj such that there exists an optimal control Uj
for the problem Dj(x) satisfying uj = u

E expected value
zi random variable in the stage i
Zi admissible values of random variable in the stage i
Z sequence of realizations of random variable on [0, k]; Z =

{z0, . . . , zk−1}
Zj sequence of realizations of random variable on [j, k]; Zj =

{zj , . . . , zk−1}
V policy on [0, k]; V = {v0, . . . , vk−1}
Vj policy on [j, k]; Vj = {vj , . . . , vk−1}
∇ug gradient of function g with respect to (w.r.t.) u,

i.e. column vector of first partial derivatives g w.r.t. u
∇2
ug Hessian of function g w.r.t. u,

i.e. matrix of second partial derivatives g w.r.t. u
R > 0 symmetric matrix R is positively definite
Q ≥ 0 symmetric matrix Q is positively semi-definite
x ∈ R

n n-dimensional column vector
xT row vector which is a transpose of x
AT matrix which is a transpose of A
xi i-th component of vector x,

i.e. if x ∈ R
n, then x = (x1, . . . , xn)T ,

∂f
∂x matrix of partial derivatives of function f ,

i.e. if f : R
n → R

m, then ∂f
∂x =






∂f1

∂x1 . . . ∂f1

∂xn

...
...

∂fm

∂x1 . . . ∂f
m

∂xn




 .

∂fT

∂x transposed matrix of partial derivatives of function f , i.e.
∂fT

∂x =
(
∂f
∂x

)T

f ′ derivative of function f
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active constraint, 185
adjoint equation, 134
adjoint variable, 132, 134
admissible control, 13, 63
admissible policy, 95
approximations in the space of closed-

loop controls, 64
approximations in the space of value

functions, 64, 66
autonomous problem, 14, 61

Bellman’s equation, 35
Bellman’s optimality principle, 38
Bellman, R., 6

class of admissible controls, 32
complementarity condition, 135, 186
constraint multiplier, 186
constraint qualification, 131
control, 13, 63
control variable, 10

difference equation, 12
discrete random variable, 194
discrete variational problem, 153
DPE, 35
dynamic programming, 30
dynamic programming equation, 35,

100

envelope theorem, 151, 189
equality constraint, 185
equivalence principle, 126
Euler equation, 153
expected value, 95, 195

feedback control, 40
Fritz-John theorem, 185
functional equation, 64

geometric form of the problem, 132

Hamiltonian, 135

independent random variables, 196
inequality constraint, 185
initial condition, 13

John theorem, 132

Kuhn-Tucker theorem, 186

Lagrange function, 133, 138, 186
law of iterated expectations, 196
linear difference equation, 191
linear-quadratic problem, 71
linear-quadratic regulator, 171
LQ problem, 71, 74

Markovian property, 96
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maximization problem, 42, 187
maximum condition, 142, 189
maximum principle, 142
method of undetermined coefficients,

66
minimization problem, 42, 187
multidimensional random variable,

195
multistage decision process, 11

non-autonomous problem, 14, 62

objective function, 12, 185
present value objective function,

16
objective function multiplier, 186
open-loop control, 40, 94
optimal control, 14, 95
optimal feedback control, 40
optimal open-loop control, 40
optimal policy, 95
optimality principle, 38, 102

policy, 95
Pontryagin, L. S., 6
principle of optimality, 101
probability space, 194
problem

assets and liquidity management
in a bank, 123

bottleneck problem, 79
cash holding optimization, 26
choice of a pension fund, 124
container transportation, 17, 51,

57
D’Artagnan’s problem, 59
Formula 1 racing, 26
gambler’s problem, 113

harvesting operator problem, 28
knapsack problem, 86
management of a harbor, 60
maximal reliability of a device, 82
optimal allocation, 11
optimal allocation of funds, 18
optimal allocation of resources, 9,

45, 59
optimal allocation of time be-

tween work and study, 29
optimal consumption, 46, 51, 54,

57, 162
optimal consumption and optimal

amount of labor, 176
optimal consumption, general,

165
optimal consumption, infinite

horizon, 65, 68
optimal consumption, stochastic,

121
optimal herd-keeping at the

ranch, 25
optimal investment, 166
optimal machine maintenance,

19, 21, 49, 57
optimal mine extraction, 160
optimal renewal problem, 18
optimal replacement of a car, 27
optimal scheduling of general re-

pairs, 28
optimal scheduling of orange pur-

chase orders, 28, 59
optimal selling time of shares, 117
optimal transition, 31
shortest path, 87
trading radishes, 92, 109
transport operator, 26, 58
transportation problem, 84
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vans unloading, 27
problem in Bolza form, 15, 82
problem in Lagrange form, 15
problem in Mayer form, 15, 82
problem with discount factor, 16
problem with fixed endpoint, 15, 193
problem with fixed terminal time, 31,

61
problem with free endpoint, 15
problem with free terminal time, 16,

62
problem with infinite horizon, 16, 63,

74, 156
problem with partially restricted end-

point, 15
problem without control constraints,

14
problem without state constraints, 14

recurrent relation, 36
regularity assumption, 185
response, 94
Riccati equation, 74

saddle, 193
set of elementary events, 194
set of events, 194
shadow price, 152
stability of steady state, 192
stable node, 192
stable path, 193
stage, 10
state constraints, 79
state equation, 13
state variable, 10
steady state, 192
system of difference equations, 192

system of non-linear difference equa-
tions, 193

transverzality condition, 134

unstable node, 192

value function, 33, 99
current value function, 44

variational condition, 134, 186
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