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THE RAMSEY MODEL OF ECONOMIC GROWTH
AS AN OPTIMAL CONTROL PROBLEM

- *
Pavol Jurca

We study the Ramsey model of economic growth with the irreversible investment constraint. The Ramsey model is one of
the basic concepts used when solving the problem of the optimal allocation of the production. The objective is to maximize the
discounted value of utility of consumption across the whole planning horizon. To solve the model, the Pontriagin maximum
principle is used. The model is formulated as an optimal control problem with infinite horizon. The solution of the model is
well known providing that the constraint is not binding. However, only a little we know about the behaviour of the solution
if the constraint is binding, especially for large values of the initial level of capital. In this paper, we extend the result that
are known considering this case and show that there are several types of the solution plausible.
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1 INTRODUCTION

The Ramsey model of optimal economic growth was
firstly introduced in [8] in 1928. Today it is considered
to be one of the basic models in the modern dynamic
macroeconomics. In this paper, we deal with a specific
version of this model including irreversible investment
constraint. Although the solution of the model is widely
available in the prevalent literature regarding the theory
of the economic growth (see e.g. [2], [3]), the solution
is given only in case that the constraint is not actually
binding. Some results that are already known consider the
limit behaviour of the optimal solution for infinitely large
level of initial resources (see [1]) or a very local behaviour
at some points (see [4]). Our purpose is to bring further
contribution to the description of the optimal solution if
the constraint of irreversible investment is binding.

In section 2 we formulate the Ramsey model as an op-
timal control problem and introduce the assumptions of
the model. The necessary conditions implied by the Pon-
triagin maximum principle are given in section 3. Section
4 introduced the well-known solution of the model for
"standard” level of initial condition. In section 5 we deal
with the situation when the constraint in the model is
binding. Section 6 concludes.

2 FORMULATION OF THE MODEL

To introduce the model, consider a closed economy,
which produces only one product. The amount of produc-
tion depends on the level of capital per capita denoted by
k. This dependency is given by the production function
f(k). We assume that
(A1) f € C?*({0,00)),

(A2) f is strictly increasing, strictly concave and non-
constrained on {0, 00),

(A3) f(0)=0, lim f'(k) =00, lim f'(k) =0.
k—0+ k—o0

This production can be divided between current con-
sumption ¢ and investment in the capital. The investment
increases the disposable capital in the future and hence
increases the future consumption. As the resources are
scarce, in every moment a decision has to be made: We
have to determine how much of the production should
be consumed now and how much should be invested to
make future consumption higher. To solve this dilemma,
we have to find the optimal distribution of the consump-
tion in the time in terms of maximizing the utility of this
consumption U discounted by r > 0 across the whole
time horizon (0, 00). The assumptions on the utility func-
tions are as follows:
(A4) U € C*((0,00)),
(A5) U is strictly increasing and strictly concave on

(0,00),
(A6) C£%1+ U'(c) = 0, Jim U'(e) = 0.

Moreover, at every moment we assume that the amor-
tisation of the capital per capita is given by the factor
A > 0, which is the sum of the growth rate of the pop-
ulation and the rate of amortisation of the total capital.
Finally, the consumption cannot be negative and it is not
possible to consume more than there was the production
at the given time. This constraint is called constraint of
irreversible investment.

To sum it up, the Ramsey model can be formulated as
an optimal control problem in the following form:

{e(t)}
k= f(k)— M —c,
0 < e(t) < F((K(2))-

* —rt
max/o e U (c(t)) dt

k(0) = ko > 0 given
(RM)
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3 THE NECESSARY CONDITIONS

To solve the problem (RM), we define the Hamiltonian
function H and Lagrangian function L as follows

H(k, ¢, o, 9) = ¢oU(c) + Y[f(k) — Ak — (]

L(kac; d}O;d)a/J/laM?) = H(kaca ¢05¢) +M10+N2[f(k) —C].

The Pontriagin maximum principle (PPM) yields (cf.
[4, Th. 7.4]) that if (c¢*(t),k*(t)) is the optimal solution
to (RM), then there exists a constant ¥y = 0 or ¢y =
1, a continuous function v (¢) and piecewise continuous
functions pq(t), pe(t) such that following conditions are
satisfied:

(i) For all ¢ > 0 it holds (¢07¢7HI7P’2) 7é (0707070) .
(ii) With the possible exception of the discontinuity
points of ¢* we have

OL

%=¢0U'(C*)—¢+M1—N2=0; (1)
J251 Z 07 /lflC* = 07
p2 >0,  pof(k*) —c*]=0. (2)

(iii) The function ¢ has a continuous derivative at all
discontinuity points of ¢* and

== S =t A= fE (). (3)

Moreover, we use the condition introduced and proved
in [7]

(K (1), ¢ (6), Yo, (1)) = o / e U (et (s)) ds,
)

again for all continuity points of ¢*. Although this con-
dition is derived in [7] only for problems without con-
straints on state or control variables, as it is stated in
this paper the proof can be easily extended for discounted
autonomous problems with mixed constraints.

Although the necessary conditions state that g = 0
or o = 1, the former case can be actually excluded.
For contradiction, assume that ¥y = 0. If ¢(7) = 0 at
any 7 > 0, then from the condition (i) and the Equation
(1) we have p1(7) = pa(7) # 0. The Equation (3) then
implies ¢*(7) =0 and ¢*(7) = f(k*(7)), hence k*(7) =0
using (A2) and (A3). Recalling the formulation of the
model, from the equation k* = f(k*) — A\k* — ¢* > —\k
using k*(0) > 0 we can derive k*(t) >0 for all t >0, a
contradiction.

So far we know that 4 is continuous function which is
different from zero everywhere. As a result, employing the
necessary condition we get that two plausible cases can be
distinguished: ¢*(t) = 0 if ¥(¢) > 0, and c¢*(¢t) = f(k*(t))
if ¥(t) < 0.

First, we shall exclude the latter case using (4). The
condition ¢* = f(k*) > 0 implies gy = 0 and from (1)
we have ¢ = —puo. Hence, the Equation (2) takes the
form ¢ = (r+ )1, where the solution is given by ¥ (t) =
Ae(mtMt A < 0. On the other hand, for the state variable
k we have k* = —\k*, suggesting k*(t) = koe > . Finally
we shall verify whether the condition (4) is satisfied: For
1o = 0 we get that

e_rtH(k7 ¢, ¢0; ¢) = e_rtw[f(k*) — A" — C*] = _AAkO

should be zero, a contradiction with A > 0, A < 0,
ko > 0.

It is now easy to exclude ¢* = 0 and so to complete
the proof. Actually, the value of the objective function
is strictly greater for ¢ = f(k), which is admissible but
non-optimal, as we have just shown.

4 THE SOLUTION TO THE MODEL

The solution of the Ramsey model (RM) is well-known
in case that the constraint ¢ < f(k) is not binding at any
t > 0. We shall describe it in short in this section. In
addition, using (A6) it can be easily concluded that the
second constraint ¢ > 0 cannot be binding at any ¢ > 0
(cf. [4, Ex. 8.5]), thus p; = 0. The interpretation of this
fact tell us that it cannot be optimal to consume nothing
and save the whole production, even for arbitrary small
level of the initial capital.

First, consider that the constraint ¢ < f(k) is not
binding at any ¢ > 0. Recall that in this case each optimal
solution (k*,c*) has to satisfy a system of non-linear
differential equations in the following form:

E* = f(k*) — \k* — ¢,

& = %[r A= F).

It can be shown that this system has a saddle point (k, &),

for which it holds 0 < é < f(k) (for the precise derivation
of these results we can refer e.g. to [4], [5], [6]).

In our model, the Hamiltonian function H is concave
in both state and control variable. To show this, we use
¥ > 0 implied by (1) and (2). Moreover, the constraints
are quasi-concave. Therefore we also have sufficient condi-
tions for the optimal solution that read (cf. [9, Th. 6.11]):
A pair of admissible solution to (RM) ((k*(¢),c*(t)) is
optimal if there exist functions 1, u; and ps such that
conditions (i) — (iii) from the previous section are satisfied
with 19 =1 and, in addition,

lim inf e "tp(t) (k(t) — k*(t)) >0

for all admissible k(t). Furthermore, as H is strictly
concave, the solution satisfying this conditions is unique.
The precise derivation specifically for the Ramsey model
is given also in [6, Th. 2.5]. However, if (k*(t),c*(t)) is
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the solution of the necessary conditions that converges
(along the stable saddle path) to (k,é), these sufficient
conditions hold. This claim is based on the fact that each
admissible solution k(t) is restricted from bellow and
k*(t) is restricted from above.

5 THE SOLUTION TO THE
MODEL FOR LARGE ko

From the previous chapter we know that the optimal
solution to the Ramsey model is the stable saddle path for
any initial level of capital kg, providing that this saddle
path lies everywhere under the constraint ¢ = f(k), i.e.
the constraint is not binding. However, there arises a
question concerning the optimal solution in the case that
the intersection of the stable path and the constraint
¢ = f(k) exists. Denote by k, the lowest value such

that k, > k and (kp, f(kp)) is the intersection of the
constraint ¢ = f(k) and the stable saddle path; define
kp = oo if such an intersection does not exist. There
are two types of problems: First, we can study whether
it can be optimal to consume the whole production as
ko approaches to infinity (note that this can be the case
only if k, < 00). Another interesting question is if the
constraint is binding for £ > k,.

The first problem can be presented as a problem of
limit behaviour of the optimal solution when the initial
level of capital approaches to infinity. As kg — 00, at the
beginning of the time horizon it can be optimal to con-
sume the whole production, not to consume the whole
production, or neither of these cases (i.e. the limit be-
haviour cannot be determined). This problem was dealt
by Arrow and Kurz (see [1]). Considering the specific form
of the function U given by

|
Ua(c) = { 1-0

Ine

for 8 >0, 0 #1,
for 0 =1,

they suggested and proved a sufficient condition providing
that ¢*(0) = f(k*(0)) as ko approaches to infinity. This
condition reads

. f(k)k
hlrcrisip ()\0 0 ) <r+ A

Expressed in economic terms, it is optimal to consume
the whole production for the sufficient level of capital if
the rate of impatience r is sufficient large, the elasticity of
production is small and the elasticity of marginal utility
given by —8 is sufficiently high.

Now we provide the answer to the second question.
We want to distinguish two types of solutions: (a) The
constraint is binding for all £ > k&, and (b) the constraint
is not binding for all k& > k,, although it is binding
on some right neighborhood of k,. Actually, we already
know that the constraint is always binding on some right
neighborhood of &k, (see [4, Ex. 8.5]). We shall extend this
result and prove that if the stable saddle path lies above

the constraint on (k,, k) , the constraint is not binding on
some right neighborhood of k;,. In addition, the optimal
solution surprisingly does not lie on the saddle path for

k >k, anymore, but it lies under this path.

c f(k)

4 ————
>
=
e

Fig. 1. The stable saddle path lies above the constraint on (kp, k).

Lemma 1. Let (k*(t),c*(t)) be the optimal solution
to (RM) with the initial condition k(0) = ko > k,. Then
(c*(t), k*(t)) lies for all t € {to,t,) under the stable sad-
dle path, where k(tp) = kj.

Proof. Let us choose arbitrary 79 € (to,t,). Consider
the stable path approaching to (lAc, ¢) as a parameterized
curve (k(t),&(t)), where k(7o) = k*(79). Furthermore, let
a be arbitrary number satisfying

c(t)

max —=——

” S, Tk ()

where 7, is such that k(7,) = k,. It holds &(t) < af(k(t))
for all t € (79,t,). Hence (k(t),é(t)) is an optimal solu-
tion to the problem

< —r(t—70)
max e Ule(t)) dt
{c®} Jry ( ( ))

k= f(k) = Xk — ¢, k(7o) = k*(10),

0<c(t) <af((k). (RM,)
The necessary conditions implied by the Pontriagin max-
imum principle state that there exist a constant v and
functions 9 (t), fi1(t) and fi>(t) satisfying conditions very
similar to (i) — (iii) from section 4 for the problem (RM,,).
Moreover, the proof that ¥y = 1 can be straightforwardly
rewritten to derive that 1o = 1.

Notice that the constraint in (RM ) is not binding at
any t > 19, thus fi1(¢t) = fi2(t) = 0. On the other hand,
(k*(t),c*(t)) is the unique optimal solution to (RM),
where the constraint is binding on a non-trivial interval.
Therefore we have the following inequality for the values
of the objective functions:

/oo e~ "=y (a(t)) dt > /oo e~ "=y (¢*(¢)) dt. (5)

70
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Recall that the necessary conditions for both problems
(RM) and (RM,,) are satisfied with 1o = 1 and g = 1,
respectively. Using this fact together with (4) and the
definition k*(79) = k(79) =: ko we get

[ e ) de= 10 )+

+=[U'(¢*(70)) — p2(70)] [ (ko) — Mko — ¢*(10)]

and analogously

1
T

/OO e~ "=y (e(t)) dt =

0

= H{(U () + U'(elr0)) [ (ko) ~ Aho — ()] }.

Let us denote
G(co) = U(co) + U'(co) (f(ko) = Ako — co) - (6)

Using the derived formulae, the Inequality (5) takes the
following form:

G(&(m0)) > G(c*(70)) = p2(10) (f (ko) = Ako — ¢*(10)) -
Further we can use (2) twice to get
G(&(n)) > G(c*(0)) + pa(10)Abko > G(c"(10)).  (T)

This directly implies &(19) # ¢*(10).
Suppose for contradiction that ¢(79) < ¢*(79). Differ-
entiating of (6) leads to

G'(&(r0)) = U"(&(r0)) (£ (ko) — Ako — &(70)) =

For k > k lies the stable path in the region with k& < 0,
¢ < 0. Moreover, the Assumption (A5) yields U" (¢(r)) <
0, thus

GI(E(T())) > 0.

For arbitrary c¢o > ¢(79) we get
G'(co) = U"(co) (f(ko) — Ako — o) =

0 —&(10)) = U"(co)(co — &(10) =
k(o) = U"(co)(co — (1)) > 0.

I
<
/;
o)
S
A
~—~~
%
ol
S
|
>
ol

The function G is therefore increasing on {¢(7y), ¢*(79)),
hence G(¢(1)) < G(c*(m0)), a contradiction with (7). We
can conclude that ¢(79) > ¢*(15). ®

6 CONCLUSION AND DISCUSSION

The contribution of this paper was the introduction of
some extension to the standard solution of the Ramsey
model. We proved that the necessary conditions implied
by the Pontriagin maximum principle has to be satisfied
with 99 = 0 and that the well-known solution of the
Ramsey model, which converges along the stable path
to the saddle point (lAc,é) is really unique. We used this
properties to extend the description of the solution that
has been known so far in case that the stable path in-
tersect the constraint ¢ = f(k) at k, but lies under the
constraint for k > kj,, where k;, > k,. To be more spe-
cific, we have shown that in this case the constraint is not
binding at the beginning of the planning horizon, than
¢* = f(k*) on a non-trivial interval and finally it con-
verges along the stable saddle path to (k,¢). Translated
into economic terms: If the irreversible investment con-
straint is binding on a non-trivial time interval, we can-
not consume such an amount as it would be optimal if
we had not considered this constraint. However, it is op-
timal to consume less that it would be optimal without
this constraint also before this interval, even though the
constraint is not binding.
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