Chapter 3

Stress scenarios for large number of
risk factors

3.1 Introduction

Stress testing is one of the basic methods and should represent an integral part of the risk
management framework. Within this context, we assess the impact of adverse scenarios
of economic and financial situation which are severe but still plausible.

One of the important challenges within the process of stress testing is scenario
design. The two most relevant issues are:

e Type and magnitude of the scenario: The scenario should capture the main risks
and vulnerabilities which the portfolio is exposed to. In addition, the scenario must
be sufficiently severe but its occurrence must still be possible at least with some
low level of probability.

e Capturing the dependences among risk factors: In practice, portfolios consist
of a large number of assets and are exposed to a large number of risk factors.
When designing these scenarios, existing dependencies between various risk fac-
tors should be taken into account. In addition, any risk manager designing the
stress scenarios must be aware that these dependencies tend to change during a
market turmoil. In particular, the correlations tend to be higher during turbulent
periods which restrict the diversification effects.

In this chapter, we will mainly address the second issue. In particular, we will
present two possible approaches which can be applied to the problem of scenario design
for portfolios with a large number of risk factors:

(a) Mixture models: This approach focuses mainly on addressing the issue of elevated
correlations in turbulent periods. In particular, it assumes that the distribution of
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changes in risk factors is actually a mixture of two distributions: the first one
represents quiet periods and the second one captures periods of market turmoil.

(b) Principal component analysis: This approach addresses the issue of capturing
the dependence structure by a significant reduction of dimensionality of the set
of risk factors. In particular, the large number of risk factors is represented by
a relatively small set of mutually uncorrelated principal components while pre-
serving the largest possible amount of the variability of the original data. This
condensed set of principal components can be then modeled by multidimensional
models which would not be feasible for the original large set of risk factors.

3.2 Models based on the mixture of normal distributions

3.2.1 Motivation

Assume that FX rates represent important risk factors for a given portfolio. In particular,
assume that significant open positions are mainly in the following six currencies: USD,
JPY, GBB CHE AUD, CAD. For the purposes of the stress testing, we want to propose a
relevant stress scenario.

One possible approach is to propose the scenario in accordance with a historical
scenario which would cause a significant loss if repeated today. However, this might not
by entirely sufficient approach, for example in case of several different portfolios with
a different sensitivity to the same historical scenario or in case that we want to have a
scenario which is consistent with a particular broader macroeconomic shock. Hence, we
might want to impose a shock which did not occurred in the past. For example, we want
to assume e.g. a significant depreciation of euro with respect to US dollar by 30 %. Then
the question arises what changes in the other FX rates are consistent with this change
in EUR/USD. Note that the historical dependencies have to be taken into account in this
case. Given the large magnitude of such a shock, we need to focus mainly on estimating
dependencies which occur on the market during turbulent periods.

We know that in turmoil periods, both volatilities and correlations increase signifi-
cantly. Hence we assume that data are generated from two normal distributions ("quiet”
and “hectic”) with different volatilities and correlations. Data from each distribution are
drawn with some probability.

3.2.2 Two alternatives of model formulation

First, assume that we have only two FX rates. Denote their daily relative changes by x,
and y,. Then the model is based on a mixture of two two-dimensional normal distribu-
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Note that this model has 11 parameters (5 for each distribution and 1 parameter for
probability of hectic days). If we extend the model to all 6 FX rates, we would end up
with 55 parameters! Hence this approach is not feasible for large portfolios.

In order to reduce the number of parameters and make the implementation of
the model feasible, we assume that one of the risk factors is core factor and others are
peripheral factors. In our example, the core factor may be the FX rate for which the
assumption of the magnitude in the stress scenario is made. The main simplification is
mainly based on the assumption that the hectic and quiet periods are identified solely for
this core risk factors and are assumed to be the same for all other peripheral risk factors.

Let us assume for illustration that the core risk factor is EUR/USD exchange rate.
We assume that this core factor can be modeled by a one-dimensional mixture distribu-
tion with 5 parameters. In particular, when denoting the changes in the core FX rate by
x,, the mixture model for this risk factor is:

N (.pr 0')2(1) with probability 1 — w (quiet days),
X ~
N (sz; 0)2(2) with probability w (hectic days).

Then we compute the conditional correlations between the core factor and each
peripheral factor given that a hectic period occurred, as well as means and standard
deviations for the hectic period. Based on these results, we can estimate the magnitude
of the changes in other peripheral FX rates based on the change in the core FX rate.

One of the most important properties of this model is that the hectic period is not
determined a priori. Instead, we calculate the probability that any given change in the
core risk factor was drawn from the hectic distribution.

3.2.3 Estimating the parameters for the core risk factor

The model can be estimated using maximum likelihood method. The probability density
function of the one-dimensional mixture distribution is
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Hence, the parameters are obtained by maximizing the log-likelihood function

n
lnL(.uxl’ O x15 Ux2> O x2, W | xt) = Zf(xt | U150 515 Uxas O x2s (1))
t=1
Note that this is a problem of non-convex optimization. Hence, it is important to im-
plement a method which is capable to find a true global maximum. One of the possible
approaches is to use methods of stochastic optimization, e.g. the method of simulated
annealing.

In Matlab, the estimation of the parameters can be easily implemented:

%Data for USD JPY GBP CHF AUD CAD, Jan 1999 - Dec 2012
Data=xlsread(’fx_rates.xls’);
Returns=log(Data(2:end, :)./Data(l:(end-1),:));

obj=gmdistribution.fit(Returns(:,1),2);
Proportions = obj.PComponents;
Means=obj.mu;
Volatilities=sqrt(obj.Sigma);

%Identifying hectic period

if Volatilities(:,:,2)>Volatilities(:,:,1)
hectic=2;

else
hectic=1;

end

»Calculating parameters for the primary risk factor
disp(’Calculating parameters for the primary risk factor’)
quiet=3-hectic;

omega=Proportions(hectic)

mu2=Means (hectic)

mul=Means(quiet)

sigma2=Volatilities(hectic)

sigmal=Volatilities(quiet)

One of the questions that arises here is whether the model based on the mixture
of two normal distributions is better than the model based on one normal distribution.
Given that the former model is a generalization of the latter, we can apply the likeli-
hood ratio test to assess whether the increase of the number of parameters significantly
improves the value of the likelihood function. The likelihood ratio statistics has asymp-
totically y2-distribution where the degree of freedom is equal to number of additional
parameters (i.e. 3 in our case).
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Model w W o
Uncondititional (one normal) 0.00003 0.0066

Conditional — quiet period  0.80 0.00002 0.0053
Conditional — hectic period  0.20 0.00007 0.0103

Table 3.1: Estimated values of parameters, USD/EUR (1999-2012)

This test can be easily implemented in Matlab as follows:

%TEST OF THE SPECIFICATION OF THE MODEL FOR 1 MAIN RISK FACTOR
temp_obj=gmdistribution.fit(Returns(:,1),2);
LogL2=temp_obj.NlogL;
temp_obj=gmdistribution.fit(Returns(:,1),1);
LogLl=temp_obj.NlogL;

Likelihood_ratio=-2*(LogL2-LogL1)

ch2_quantil=chi2inv(0.95,3)

In this case the likelihood ratio statistics equals to 156.4 which is higher than the
quantile of y2-distribution with 3 degrees of freedom and the confidence level 5 % (7.8).
Hence we reject the null hypothesis that the extension of the model is not statistically
significant.

Now, we calculate the probability that a particular relative change was drawn from
the hectic distribution. In particular, it is the conditional probability of hectic period
given that the change in the core risk factor was x,. This probability can be calculated
by the Bayes formula:

P(hectic A x,) _ wf(x, [ Uy, 03)
P(x) (1= )f(x 1,00+ of (x|, 03)

H(x,) = P(hectic|x,) =

The plot of this function can be obtained using Matlab (see Figure 3.1):

h=(omega.*pdf (’Normal’,Returns(:,1),mu2,sigma2))./((1-omega).*pdf (’Normal’,Returns(:,1),mul,sigmal) ...
+omega. *pdf (’Normal’ ,Returns(:,1),mu2,sigma2));
scatter(Returns(:,1),h)

3.2.4 Estimating the parameters and scenario design for peripheral
risk factors

Assume that we have determined the scenario for the change in the ”core” exchange
rate. Now we describe how the parameters and scenarios for other (i.e. peripheral)
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Figure 3.1: Conditional probability of hectic period. Horizontal axis represents x,, verti-
cal axis represents H(x,).

exchange rates can be calculated. We illustrate the procedure on one peripheral risk
factor — denote the relative changes of this risk factor by y,.

First we estimate the mean and standard deviation of changes of the peripheral
risk factor as well as their correlation with the changes in the core risk factor. All these
parameters will be estimated for the distribution corresponding to hectic days. This
calculation is based on the standard formula for calculating this statistics, but all the
sums in the formulas are adjusted to be weighted by the probability of hectic period
(H(x,)). In other words, replacing H(x,) by value 1 in the formulas below would yield
classic formulas for calculation of mean, standard deviation and correlation.

” 2 Hx)y,
Y H(x,)

o, \/ 2 H (nxt)(yt ~ )
2 HEx)
_ 21;1 H(x )0, — P2 ) (e — Uy2)
N Ox20 y2 Z’Z=1H(xt)
Note that the conditional values of parameters corresponding to the quiet period can be

calculated analogously by replacing the conditional probability of hectic period (H(x,))
by the conditional probability of quiet period (1 — H(x,)).

P2

Given that we know all the parameters (i.e. the mean and standard deviation for
the core as well as for all peripheral FX rates together with their correlations) of the
distribution corresponding to hectic period, the values of the stress scenarios can be
calculated using the following formula:

Ye = Uy2 X — Uy
2 = P2 : + 1= pse;.

O-yZ Ox2
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Given that the common shock expressed by the change in the core risk factor is the only
shock on the market and there are no additional idiosyncratic shocks to the peripheral
risk factors, ¢, vanishes and the previous equality can be rewritten to:
o
y2
Ys :nu‘y2+p2(xs_nu‘x2) )
Ox2

where x; and y, denote the scenario change in the core and peripheral risk factor.
The implementation in Matlab is as follows:

scenarios=[0.3 0 0 0 0 0];

for i=2:6
N=size(Returns(:,i));
mu_y2=sum(h.*Returns(:,i))/sum(h)
mu_yl=sum((1-h).*Returns(:,i))/sum(1-h)
sigma_y2=sqrt (sum(h.*(Returns(:,i)-mu_y2*ones(N))."~2)/sum(h))
sigma_y1=sqrt (sum((1-h).*(Returns(:,i)-mu_yl*ones(N)).~2)/sum(1-h))
rho_y2=sum(h.*(Returns(:,1)-mu2*ones(N)) .*(Returns(:,i)-mu_y2*ones(N)))/(sigma2*sigma_y2*sum(h))
rho_yl=sum((1-h).*(Returns(:,1)-mul*ones(N)).*(Returns(:,i)-mu_yl*ones(N)))/(sigmal*sigma_yl*sum(1-h))
scenarios (i)=rhc_y2* (scenarios(1) —mu2)*sigma_y2/sigma2+mu_y2
pause

The value of parameters as well as scenarios for all the risk factors are summarized
in Table 3.2. Note that the correlations between the changes in core and peripheral
risk factors are indeed higher in case of the distribution corresponding to hectic period
compared to the quiet period.

USD JPY GBP CHF AUD CAD

Uq 0.0020% 0.0014% 0.0031% -0.0030% -0.0157% -0.0135%
Us 0.0070% -0.0287% 0.0068% -0.0293% 0.0066% 0.0104%

o, 0.53% 0.71% 0.46% 0.37% 0.67% 0.61%
O, 1.03% 1.10% 0.67% 0.46% 0.84% 0.90%
o 54% 44% 13% 20% 52%
0o 75% 61% 25% 33% 70%
Scenario 30% 24% 12% 3% 8% 18%

Table 3.2: Parameters and scenarios for all FX rates

3.2.5 References
The following references might be useful in case of a deeper interest:

[1 ] Description of the model and its implementation:

Kim, J., Finger, Ch. C. (2000): A Stress Test to Incorporate Correlation Breakdown,
RiskMetrics Journal, Volume 1
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[2 ] Application to the stress testing of FX risk in the NBS:

Juréa, P, Rychtérik, S. (2006): Stress testing the Slovak banking sector, Banking
journal BIATEC, Vol. XIV, No. 4, National Bank of Slovakia

[3 ] Implementation of the method of simulated annealing for the maximization of
the likelihood function:

Lucia Potiskovd (2007): Stresové testovanie s vyuzitim modelu zaloZzenom na kom-
binacii normélnych rozdeleni (Bachelor thesis, in Slovak)

3.3 Principal component analysis

3.3.1 Motivation

Assume that we want to propose stress scenarios of the changes in the yield curve for the
purpose of stress testing of the bond portfolio. The main issue is the high dimensionality
of this problem: The yield curve consists of a number of points representing individual
maturities (tenors). The changes of the interest rate corresponding to different maturi-
ties are partially mutually interrelated, but they are not fully correlated.

One of the possible solutions to this issue is to explore which types of changes
were the most typical in the historical data. The time series of EUR interest rates for 1
year, 3 years, 5 years and 7 years are depicted in Figure 3.2.! We can see that one of
the most typical changes was a parallel shift in the whole yield curve. This was mainly
prevailing in the market from 2006 until the first half of 2008 as well as in 2012 and
2013. However, there are also other types of changes which should be captured by the
stress testing. For example, there was a significant increase in slope of the yield curve
during the second half of 2008 with a large drop in short-term interest rates and only a
mild decrease in long-term rates. An additional type of changes can be observed at the
end of 2011 characterised by a significant jump in both 1-year and 7-year interest rates
while the increase in 5-year rates was more limited. Hence, we will apply the principal
component analysis which will allow us to rigorously identify the most common types of
changes which the yield curve has been exposed to.

In addition, CRD IV? prescribes that supervisors should apply supervisory measures
in case that bank’s economic value declines by more than 20 % of its own funds as a result
of a sudden and unexpected change in interest rates of 200 basis points. The principal
component analysis allows us to assess how representative is such a change and estimate
its probability level.

1Source: ECB, EUR spot rates, all credit ratings.

2Directive 2013/36/EU of the European Parliament and of the Council of 26 June 2013 on access to
the activity of credit institutions and the prudential supervision of credit institutions and investment firms,
Article 98 paragraph 5.



3.3. PRINCIPAL COMPONENT ANALYSIS 9

=1 year
— Y EEE
5 years
— EErE

01.01.08 01.01.08 01.01.07 01.01.08 01.01.09 01.01.10 01.00.11 01.01.12 01.01.13 01.01.14

Figure 3.2: Interest rates for 1 year, 3 years, 5 years and 7 years.

3.3.2 Main idea

Let us start with exploring only two time series, in particular 1-year and 3 year interest
rates. The scatter plot of the daily absolute changes of these two interest rates is in
Figure 3.3. It can be seen that the majority of the data are represented by an ellipse.
If we want to reduce the dimensions of the data from 2 to 1 while keeping the largest
possible part of the variability of the original data, we can represent the dataset by the
main axis of this ellipse.
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Figure 3.3: Interest rates for 1 year, 3 years, 5 years and 7 years.

In case of 3 interest rates, the data can be represented by an ellipsoid. In this
case, the data can be compressed (projected) into an ellipse, while neglecting the third
dimension. It is however important to choose the right direction of the compression. In
order to preserve the largest possible part of the data variability, we have to find a plane
where the intersection of the ellipsoid with this plane forms the largest possible ellipse,
and to compress the data in the direction which is orthogonal to this plane. In order
words, we have to identify the vectors and lengths corresponding to the three main axes
of the ellipsoid and then to compress the data in the direction of the shortest main axis.
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We now that the vectors of the main axes of the ellipsoid can be obtained as the
eigenvectors of the variance-covariance matrix of the original data. Their lengths are
represented by the eigenvalues of this matrix. Based on this insight, we will now rigor-
ously describe the theoretical background of the principal component analysis.

3.3.3 Theoretical background

Let us denote the N X T matrix of the changes in the risk factors by X (i.e. time series
are in rows of this matrix).

We know that any regular symmetric matrix A with mutually distinct eigenvalues
can be decomposed as follows:
A=PAPT,

where A is a diagonal matrix of eigenvalues of the matrix A and P is an orthonormal ma-
trix of the standardised eigenvectors of the matrix A (represented by columns of matrix
p).

Based on the main idea of the principal component analysis that has been intro-
duced above, we use the following procedure:

1. First, we identify the main axes of the N-dimensional ellipsoid of the data. In par-
ticular, we can apply the spectral decomposition to the variance-covariance matrix
% of the original variables:
Y =PAP".

We know that the directions of the main axes are represented by the columns of
matrix P and their length by eigenvalues, which are on the diagonal of matrix A.

2. We now transform the original data into the new coordinate system with origin
at the centre of the ellipsoid and with coordinates given by the eigenvectors. In
particular, the transformed data can be calculated as follows:

Y =PT(X —pu),

where u is the vector of means of the original time series X. The rows of matrix
Y represent the original data transformed to the new coordinate system and they
are called principal components. Note that one has

E(Y)=0

and
cov(Y)=P'SP=P"PAPTP =A.

Hence, individual principal components are mutually uncorrelated and their vari-
ances are equal to the eigenvalues.



3.3. PRINCIPAL COMPONENT ANALYSIS 11

Let us note that the columns of matrix P represents coefficients which are used to
calculate individual principal components (i.e. coeffitients for the linear combina-
tion). These coefficients are also called component loadings.

3. Finally, we identify the most important principal components together with the
share of the variability of the original dataset that is captured by these factors.
Recall that the variance of any principal component is given by its corresponding
eigenvalue. Hence, we sort the principal components in descending order accord-
ing to their corresponding eigenvalues. Since the total variability of the original

data is
N

N

Zvar(Xi) = trace(X) = Z A

i=1 i=1

the share of total variability corresponding to the j-th principal component is
A

J

=N
2121 Ai

Based on this procedure, the first principal component corresponds to such linear
combination of X, which has a maximum variance among all other linear combinations.

A question arises here whether principal components calculated on sample data
(so-called sample principal components) are identical to the principal components of the
true underlying distribution. This is indeed the case provided that some assumptions are
satisfied. In particular, if X has a normal distribution and all the eigenvalues of cov(X)
are different, then the sample principal components are estimates of the actual principal
components of the random vector X provided that the sample principal component are
based on a variance-covariance matrxi estimated using the maximum likelihood (i.e. not
adjusted fir degrees of freedom).

One of the important issues of the principal component analysis is that principal
components are not invariant to the scaling of the original variables. In other words,
if we calculate principal components for a set of returns of equity prices, the result
(including matrix P) will be different when the price of one of the equities is expressed
in euro cents compared to the case when this price is expressed in euros. Due to this
reason, it is common to apply the principal component analysis to standardized variables,
i.e. using the correlation matrix instead of variance-covariance matrix of the original
data. On the other hand, if the different volatilities are present a homogeneous scale
and we want to capture this property in the model, it could be appropriate to use the
variance-covariance matrix.

Another important question is how to determine the number of principal compo-
nents. Clearly, the decision is based on the corresponding eigenvalues. In particular, the
following approaches can be used:

1. Select eigenvalues higher than their average (Kaiser)
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2. Impose a floor on the percentage of the explained variability

3. Identify a break in the plot of the sorted eigenvalues (scree plot)

3.3.4 Interpretation of results

We will now apply the principal component analysis to the example of designing stress
scenarios for yield curve changes. The implementation of the method will be done in
Matlab. In particular, the Matlab code presented below implements the following steps:

(a) Load the data (dates and values) and calculate the centralised daily absolute
changes.

(b) Apply the principal component analysis. In order to illustrate the differences,
the principal component analysis is applied based on both correlation as well as
variance-covariance matrix.

(c) Calculate the share of the variability which is represented by the first three princi-
pal components.

(d) Plot the component loadings for the first three principal components.

/#Read data

[YC,txt]=x1sread(’YC.x1s8’);
Changes=YC(2:end,1:177)-YC(1:end-1,1:177);
Changes_centr=Changes-repmat (mean(Changes) ,size(Changes,1),1);
Dates=datenum(txt(3:end,1),’dd.mm.yy’);

axis=3/12:1/12:179/12; fYconvert months to years

%PCA based on correlation matrix

[loadingsl,componentsl,eigenvaluesl] = ...
princomp(zscore(Changes_centr));

%PCA based on variance-covariance matrix

[loadings2,components2,eigenvalues2] =princomp(Changes_centr);

hPart of volatility explained by first three principal components

cumsum(eigenvalues1(1:3))./sum(eigenvaluesl)

sLoadings

figure(1)
plot(axis,loadings1(:,1:3),’LineWidth’,3)
legend(’1st PC’,’2nd PC’,’3rd PC’)

hold on

plot(axis,loadings2(:,1:3))
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As a results of this procedure, we can see that using the correlation matrix, the
share of the overall variability of the original dataset captured by the first three principal
components is very high — it is 96.9 %. In particular, the first component itself explains
78.4 %, the second one 13.3 % and the third one 5.2 %. In addition, based on the
component loadings depicted in Figure 3.4, these principal components have a nice in-
terpretation: The component loadings of the first principal component are between -0.6
and -0.8 for the majority of maturities (except the shortest maturities). Hence, this prin-
cipal component can be interpreted as approximately a parallel shift of the whole yield
curve. Similarly, the second principal component corresponds to a change in the slope
of the yield curve, since its loadings are negative for short-term maturities and positive
for long-term maturities. Finally, the third principal component represents some kind of
butterfly effect.

Figure 3.4 also illustrates the differences in the component loadings for the method
based on correlation and variance-covariance matrix. We can see that the differences are
not significant in this case. Note however that this is a result of a relative homogeneity
of the time series (all represents changes in interest rates) and generally it should not be
considered as a valid result.
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Figure 3.4: Component loadings for the first three principal components. Thick lines rep-
resent loadings calculated from correlation matrix, thin lines represent loadings based
on variance-covariance matrix.

To distinguish between the types of effects that were prevailing in the different
time periods, Figure 3.5 plots the principal components themselves. Note that for eas-
ier interpretation, the cumulative values of the principal components are plotted. For
example, we can see that the period between 2004 and first half of 2008 was mainly
characterised by parallel shift in the yield curve. During the second half of 2008, all
three effects took place. In particular, the yield curve was shifted downward while its
slope increased significantly. This figure has been obtained by the following Matlab code:
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plot(Dates, cumsum(components1(:,1:3)),’LineWidth’,3)
datetick(’x’,’mm/yy’, ’keepticks’)
legend(’lst PC’,’2nd PC’,’3rd PC?)
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Figure 3.5: Times series of the first three principal components (cumulated).

3.3.5 Using PCA for stress scenario design

Having identified the most common types of changes in the yield curve, we now know
how to design the most representative stress scenarios that can be used in the manage-
ment of the interest rate risk.

First, let us focus on the first principal component. We assume that the values of
this principal component are normally distributed from N (,uHK, O'IZJK).

Hence, the quantile corresponding the probability level of a = 99 % is
Y = (Uux —UaOpi, 0, - .07

(assuming zero value of all others principal components).

Using backward transformation, this scenario for the first principal component can
be expressed as the change in the yield curve as follows:

x =Py +u.

In this backward transformation, we have used that PT = P~!, given that the matrix P
of eigenvectors is orthonormal.
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After simplification, this yields

x = Py(Upx — UaO k) + Uy

where P, is the eigenvector corresponding to the largest eigenvalue and y = E(X).

Using Matlab, this procedure can be easily implemented:

scenario=loadings1(:,1)*(mean(componentsi(:,1))
-std(componentsi(:,1))*norminv(0.99,0,1))+mean(Changes) ’;
plot(axis,scenario)

When applying this procedure to the analysed data, we obtain the scenario de-
picted in Figure 3.6.
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Figure 3.6: The result for the "most typical” scenario on the probability level of 99%.
Horizontal axis represents maturities (tenors) in years, vertical axis represents interest
rates in percentages.

3.3.6 Main weaknesses of the principal components analysis

The principal component analysis suffers from several weaknesses that should be taken
into account:

e The interpretation of the principal components is often difficult. A straightforward
interpretation as in the example presented above is a rare exeption.
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e Given that the principal component analysis is based on correlation / variance-
covariance matrix, it only addresses the linear dependencies (i.e. correlations). It
captures neither more complex in the dependency structure nor the pattern of an
increasing dependence in market turmoils.

e The principal component analysis does not allow changing weights (i.e. compo-
nent loadings) when constructing the individual principal components, even if this
would be appropriate for the real data. For example, the typical type of change in
the yield curve might change in time over a longer time period.

e Although the principal components are mutually uncorrelated, the more complex
interdependencies between principal components exist. This issue might be illus-
trated by the dependencies between volatilities of the principal components.

3.3.7 Possible extensions

There are several possible extensions of the basic principal component analysis which
might be able to address some of the above-mentioned shortcomings:

(a) The calculation of the principal component can be based on conditional instead of
unconditional correlation / covariance matrix.

(b) Orthogonal GARCH models.

(d) Factor analysis — rotation of principal components can improve their interpretation.



