Principal component analysis



Motivation

Task: Propose the scenarios of the changes in the yield curve for
the purpose of stress testing of the bond portfolio

Problem: The yield curve comprises a number of points in which the
changes are partially correlated



Motivation

« What can be seen in the data:
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Source: http://www.ecb.int/stats/money/yc/html/index.en.html



Motivation

 Whatis prescribed by the regulation:

— Act on banks (§ 33f):

« The economic value of a bank may not fall by more than 20% of the value of
its own funds as a result of a sudden and unexpected change in market
interest rates.

— Decree 13/2010 on risks and on details of risk management system (§ 4):

» A sudden and unexpected change of interest rates on the market is
understood as a parallel shift of the yield curve upwards or downwards by 200
basis points.



Main idea

* In a (hypothetical) case of only two interest rates:
— The ellipse can be represented by its main axis
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Main idea

« The case of three interest rates

— Ellipsoid can be compressed to
an ellipse

3D scatter: 1Y, 3Y, 7Y e



PCA: a sketch

PCA = principal component analysis

In risk management, we often face the problem of a large number of risk
factors

— equity portfolio with a large number of shares
— vyield curve containing a large number of points
— positions in different currencies

The aim is to identify the most important risk factors for typical movements
— identification of the systemic risk
— designing stress scenarios

The basic idea: Reduce the dimension!

The aim is to find a small number of linear combinations of the original
variables

— Sufficiently high share of volatility should be explained
— These linear combinations should be pairwise uncorrelated



Theoretical background

Assumption: X'is N X T matrix of the changes in the risk factors (time series are in
rows)

Theoretical background: Spectral decomposition of a matrix
Each symmetric matrix A can be decomposed as follows:
A=PAPT,

where A is a diagonal matrix of eigenvalues of the matrix A and

P is an orthonormal matrix of the standardised eigenvectors of the matrix A (rows of
the matrix P).

We can apply the spectral decomposition to the variance-covariance matrix 2 of the
original variables: > =P A PT

The calculation of the N X T matrix of the principal components (PCs)

Y= PT(X- p)



Properties of the PCs

One has

~ E(V)=0
— cov(Y)=PTSP=PTPAPTP=A

Consequence: PCs are not correlated and their variances are equal to
the eigenvalues

Transformation of the original data to the PCs corresponds to their
centralisation and rotation

Since the total variability of the original data is

Zvar(X ) =trace(X) = 2/1
A,
the part of total varlablllty corresponding to thej th PCis ——

>
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Properties of the PCs

The first PC corresponds to the linear combination of X, which has a
maximum variance among all such combinations

— The direction of greatest variance of the N-dimensional cloud of original
data

Sample principal components:

— If X has a normal distribution and all the eigenvalues of cov (X) are
different, then the sample principal components are estimates of the
actual PCs of the random vector X provided that the sample PCs are
estimated using the ML.

PCs are not invariant to the scaling of the original variables

— Itis common to apply the PCA to standardized variables, i.e. using the
correlation matrix



How to determine the number of PCs

» Eigenvalues higher than their average (Kaiser)
« Impose a limit on the percentage of the explained variance

« Break in the plot of the sorted eigenvalues (scree plot)



Interpretation of the PCA

Component loadings:
— Standardised eigen vectors

— The coefficients correspond to the weight of the original variables in the
respective PC

— Can be computed by an OLS

Component scores
— Coordinates in the PCs space

Biplot = scatter plot of the component scores for two different PCs

Exercise: What if the original variables have not been centralised?



Results

« Time series: daily absolute changes (first differences) of the interest rates
« Component loadings — first three PCs (97,7%)
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Results

Component scores
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Results

How to identify the type of the changes which have been prevailing

in a given period?

Biplot - Scatter plot in the (PC1, PC2) space



The scenario size

 Now we know the qualitative description of the ,most representative”
change in the yield curve

« How the size of the scenarios should be determined?



The scenario size

The case of the first PC
« Conditional normal distribution for the given day: N(ux, 0%1x)

« We choose y = (Uyx — U,Oux; O, ..., 0)T

« Backward transformation of the change in the PC to the yield curve
X=Py+yu

 We use that
— P =P, where columns of P are the eigenvectors of the matrix 2
— PCs are pairwise linearly independent

« After simplification:

X = Py (Hpk — UgOHk) + M,
where P, is the eigenvector corresponding to the largest eigenvalue



The scenario size

The result for the ,most typical® scenario on the probability level of 99%:
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Using of covariance matrix

« Component loadings — first three PCs (98,3%)
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 Thin lines ilustrate the results based on the correlation matrix



Critics
* The interpretation of the principal components is often difficult

« The PCA only addresses the linear dependencies (i.e. correlations)
— The pattern of an increasing dependence in market turmoils is not captured

« The PCA does not allow changing weights when constructing the PCs



Critics

 The dependence between (non-correlated) PCs in terms of volatilities
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Possible extensions

. Usage of a conditional correlation / covariance matrix
. Orthogonal GARCH
. Mapping of the portfolio to the set of risk factors

. Factor analysis — principal component rotation can increase the
interpretation



