
Principal component analysis 



Motivation 

• Task: Propose the scenarios of the changes in the yield curve for 

the purpose of stress testing of the bond portfolio 

 

• Problem: The yield curve comprises a number of points in which the 

changes are partially correlated 

 



Motivation 

• What can be seen in the data:  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Source: http://www.ecb.int/stats/money/yc/html/index.en.html 
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Motivation 

• What is prescribed by the regulation: 

 

– Act on banks (§ 33f):  

• The economic value of a bank may not fall by more than 20% of the value of 

its own funds as a result of a sudden and unexpected change in market 

interest rates. 

 

– Decree 13/2010 on risks and on details of risk management system (§ 4):  

• A sudden and unexpected change of interest rates on the market is 

understood as a parallel shift of the yield curve upwards or downwards by 200 

basis points. 



Main idea 

• In a (hypothetical) case of only two interest rates:  

– The ellipse can be represented by its main axis 
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Main idea 

• The case of three interest rates 

– Ellipsoid can be compressed to 

an ellipse 

3D scatter: 1Y, 3Y, 7Y 



PCA: a sketch 

• PCA = principal component analysis 

 

• In risk management, we often face the problem of a large number of risk 
factors 
– equity portfolio with a large number of shares 

– yield curve containing a large number of points 

– positions in different currencies 

 

• The aim is to identify the most important risk factors for typical movements 
– identification of the systemic risk 

– designing stress scenarios 

 

• The basic idea: Reduce the dimension! 

 

• The aim is to find a small number of linear combinations of the original 
variables 
– Sufficiently high share of volatility should be explained 

– These linear combinations should be pairwise uncorrelated 

 



Theoretical background 
• Assumption: X is N  T matrix of the changes in the risk factors (time series are in 

rows) 

 

• Theoretical background: Spectral decomposition of a matrix 

  

 Each symmetric matrix A can be decomposed as follows: 

 

A = P Λ PT, 

 where Λ is a diagonal matrix of eigenvalues of the matrix A and 

 P is an orthonormal matrix of the standardised eigenvectors of the matrix A (rows of 
the matrix P). 

 

• We can apply the spectral decomposition to the variance-covariance matrix Σ of the 
original variables: Σ = P Λ PT 

  

• The calculation of the N  T matrix of the principal components (PCs) 

  

Y = PT (X - μ) 



Properties of the PCs 
• One has 

– E(Y) = 0 

– cov(Y) = PT Σ P = PT P Λ PT P = Λ  

 

• Consequence: PCs are not correlated and their variances are equal to 

the eigenvalues 

 

• Transformation of the original data to the PCs corresponds to their 

centralisation and rotation 

 

• Since the total variability of the original data is  

 

 

 the part of total variability corresponding to the j-th PC is 
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Properties of the PCs 
 

• The first PC corresponds to the linear combination of X, which has a 

maximum variance among all such combinations 

– The direction of greatest variance of the N-dimensional cloud of original 

data 

 

• Sample principal components: 

– If X has a normal distribution and all the eigenvalues of cov (X) are 

different, then the sample principal components are estimates of the 

actual PCs of the random vector X provided that the sample PCs are 

estimated using the ML.  

 

• PCs are not invariant to the scaling of the original variables 

– It is common to apply the PCA to standardized variables, i.e. using the 

correlation matrix 



How to determine the number of PCs 

 

• Eigenvalues higher than their average (Kaiser) 

 

• Impose a limit on the percentage of the explained variance 

 

• Break in the plot of the sorted eigenvalues (scree plot) 



Interpretation of the PCA 

• Component loadings: 

– Standardised eigen vectors 

– The coefficients correspond to the weight of the original variables in the 

respective PC 

– Can be computed by an OLS 

 

• Component scores 

– Coordinates in the PCs space 

 

• Biplot = scatter plot of the component scores for two different PCs 

 

• Exercise: What if the original variables have not been centralised? 



Results 

• Time series: daily absolute changes (first differences) of the interest rates 

• Component loadings – first three PCs (97,7%) 
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Results 
• Component scores 
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Results 
• How to identify the type of the changes which have been prevailing 

in a given period? 

 

 

 

 

 

 

 

 

 

 

 

• Biplot - Scatter plot in the (PC1, PC2) space 
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The scenario size 

• Now we know the qualitative description of the „most representative“ 

change in the yield curve 

 

• How the size of the scenarios should be determined? 



The scenario size 
The case of the first PC 

• Conditional normal distribution for the given day: N(μHK, σ2
HK) 

 

• We choose y = (μHK – uασHK, 0, ..., 0)T 

 

• Backward transformation of the change in the PC to the yield curve 

 x = Py + μ 

 

• We use that 

– PT = P-1, where columns of P are the eigenvectors of the matrix Σ 

– PCs are pairwise linearly independent 
 

• After simplification: 

x = P1 (μHK – uασHK) + μ, 

 where P1 is the eigenvector corresponding to the largest eigenvalue 



The scenario size 

• The result for the „most typical“ scenario on the probability level of 99%: 
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Using of covariance matrix 

• Component loadings – first three PCs (98,3%) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Thin lines ilustrate the results based on the correlation matrix 
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Critics 

• The interpretation of the principal components is often difficult 

 

• The PCA only addresses the linear dependencies (i.e. correlations) 

– The pattern of an increasing dependence in market turmoils is not captured 

 

• The PCA does not allow changing weights when constructing the PCs 



Critics 

• The dependence between (non-correlated) PCs in terms of volatilities 
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Possible extensions 

1. Usage of a conditional correlation / covariance matrix 

 

2. Orthogonal GARCH 

 

3. Mapping of the portfolio to the set of risk factors 

 

4. Factor analysis – principal component rotation can increase the 

interpretation 


