ASYMPTOTIC BEHAVIOUR OF SOME MARKOV OPERATORS
APPEARING IN MATHEMATICAL MODELS OF BIOLOGY

IGOR MELICHERCIK

ABSTRACT. A class of Markov operators satisfies the Foguel alternative if its mem-
bers are either sweeping or have stationary densities. We show that this alternative
holds for some integral Markov operators appearing in mathematical models of biol-
ogy.

1. INTRODUCTION

Let K : L1(X) — L1(X) be an integral Markov operator of the form:

(11) Kf(z) = /X K(z,9)f()dy ,

where K (z,y) defined on XzX is a kernel. Such operators were intensively stud-
ied. In [1], [4], [6], [7] some sufficient conditions for sweeping (see def. 3.1.) and
asymptotical stability were given. It was proved in [4] that,under the assumption
of having subinvariant locally integrable function, the alternative of sweeping or
having stationary density holds. The condition without the assumption of the ex-
istence of a subinvariant locally integrable function for operators satisfying some
property (P) was given in [3]. The main result of this paper is the proof of the
Foguel alternative for operators of the form:

A(z) 9
(12) Kf@)= [ (5@ ~ ) Wiy

where ), A ,—H are nonnegative, nondecreasing, absolutely continuous functions
on RT satisfying:
H(0)=1, lim H(z) =0
Tr—ro0

Q0) = A(0) =0, zh—{go Q(z) = mll}rrgo AMz) = 0 .

Operators of this type need not satisfy the property (P). The asyptotic behaviour
of operators of the form (1.2.) has many practical applications in biology.

In Section 2, some necessary results of [2] are presented. In Section 3, the main
result (Theorem 3.2.) is proved.
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2. SOME PROPERTIES OF MARKOV PROCESSES
AND INTEGRAL MARKOV OPERATORS

Theorems 2.1 - 2.4. are proved in [2].

Definition 2.1. A Markov process is defined to be a quadruple (X, %, m,P) ,
where (X,X,m) is a o— finite measure space with positive measure and where P
is an operator on L;(X) satisfying

(i) P is a contraction : ||P|| <1

(#4) P is positive : if 0 <u € Ly(X) then Pu >0

Definition 2.2. If u is an arbitrary non-negative function, set Pu := limy_,o Pug
for 0 < ux € Li(X),ur / u, where the symbol  denotes monotone pointwise
convergence almost everywhere. The sequence Puy, is increasing so that limy Puy
exists (it may be infinite). By [2] the definition of Pu is independent of the partic-
ular sequence uy.

Definition 2.3. Take ug € Ly (X) with ug > 0. Define

oo
C={x: ZPkuo(w) =00}, D=X\C
k=0
By [2] this definition is independent of the choice of ug.
Theorem 2.1. If0<wu € Li(X) then

o0 o0
ZPku(m) < oo forx €D, ZPku(x) =0 or oo forz € C.
k=0 k=0

Definition 2.4. A function K(z,y) > 0 defined on XxX which is jointly measur-
able with respect to its variables is called a kernel. If [, K(x,y)dx =1, then K is
called a stochastic kernel. Stochastic kernel defines an operator on L (X) :

Kf(z) = /X K(z,9)f (w)dy

with ||K || = 1. So (X, X, m, K) is a Markov process.

Definition 2.5. Let P be an integral Markov operator, then (X,X,m, P) is said
to be a Harris process if X = C.

Theorem 2.2. Let K be an integral Markov operator and a Harris process. Then
there ezists 0 < u < 0o such that Ku = u (a o-finite invariant measure).

Theorem 2.3. Let P be a Markov process with X = D. Then there exists 0 < g <
oo such that Pg < g.

Proof: Let 0 <wug € Li(X). Set g =Y 4oy Pruo.
Definition 2.6. Let P be a Markov process. Define operators Pg, Pp:

Pc: Li(C) = Li(C),Pc f = (Pf) I C,
where the symbol | denotes the restriction to the set C, f is the function f extended
by 0 on D,

Pp : Ly(D) = Li(D), Pof = (Pf) I D,
where f is the function f extended by 0 on C.
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Theorem 2.4. Let P be a Markov process. If supp f C C, then supp Pf C C.
(supp f ={z: f(z) #0})
Corollary 2.1. Let K be an integral Markov operator. Then

(C,E TC,m fC;KC)
is a Harris process. (X | C denotes the o-algebra restricted to the space C, m [ C
denotes the measure m restricted to the space ¥ | C).

Proof: By Theorem 2.4. supp f C C implies supp Kf C C. By Theorem 2.1.
foru >0on C,u=0o0n D:

o0 = f:Kku(x) = iKé(u I C)(x)
k=0 k=0

for every z € C.
Corollary 2.2. Let P be a Markov process on Li(X). Then

Pp(f I D)=(Pf)D.
Proof: f = fp + fc, where fc = fl¢,fp = flp. By Theorem 2.4.
(Pfec) | D =0, hence
(Pf) I D=(Pfp) | D="Pp(f]|D).
Corollary 2.3. PE(f D)= (P"f) I D
Corollary 2.4. Let P be a Markov process on X, let u >0 on D. Then

oo
Z Phu < 0.
n=0

Proof: Let 4 be a function on X such that @ | C = 0,4 [ D = u. By

Corollary 2.3.
o0 oo
> Ppu=()_P"a) | D.
n=0 n=0

By Theorem 2.1. (3°.°  P"a) [ D < o0.

3. THE FOGUEL ALTERNATIVE FOR INTEGRAL
MARKOV OPERATORS OF THE FORM (1.2.)

Definition 3.1. Let a family A C ¥ be given. A Markov process is called sweeping
with respect to A, if
lim [ P"fdm =0
n— o0 A
for A€ Aand f €D (D ={f € Lu(X),lIfll = 1,f > 0})
In the sequel we shall assume that 4 satisfies the following properties:
(()0<m(A) <ocofor Ae A
(’L’L) Al,Az eA 1mphes Al U A2 eA
(i4i) There exists a sequence {4, } C A such that UA,, = X.
A family satisfying (1) — (¢9¢) will be called admissible.
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Definition 3.2. Let (X,X,m) and an admissible family A C ¥ be given. A
measurable function f: X — R is called locally integrable, if

/|f|dm<ooforA€A.
A

The following theorem is proved in [4].

Theorem 3.1. Let a measure space (X,X,m), an admissible family A and an
integral Markov operator K be given. If K has no invariant density but there exists
a positive locally integrable function f. subinvariant with respect to K, then K is
sweeping.

Remark 3.1. Theorem 3.1. was proved in [4] for stochastic kernel operators
(fx K(z,y)dx = 1). But the proof is completely same for integral Markov op-
erators.

Let K be an integral Markov operator. Recall the definition of K and Kp (see
def. 2.6.). By Corollary 2.1. K¢ is a Harris process and by Corollary 2.4. Kp is
dissipative (X = D). By Theorem 2.2. and Theorem 2.3. there exist g¢, gp such
that Kcge = go and Kpgp < gp- The following two lemmas (3.1. and 3.2.) claim
that gc, resp. gp are locally integrable in all points y € C, (resp. y € D) such that

/ Kco(z,y)dm(z) > 0 (resp. / Kp(z,y)dm(z) >0).
c D

Denote by Rt the set [0,00) and by T the Euclidian metric topology on R*.

Lemma 3.1. Let K be an integral Markov operator of the form (1.2.), lety € R .
Let 0 < g < o0 and Kcg < g. Let

/ Kc(z,y)dm(z) >0 .
c

Then there exists an open neighbourhood Uy of y such that

/ 9(2)dz < 00 .
UpNC

Proof: Let

/ 9(z)dz = oo VYU, € T such that y € U, .
UynC

y

Let B={z € C: K(z,y) > 0}. Let E C B and m(E) > 0. Then

/Eg(@")dﬂ?Z/E/Uyncg(z)K(m,z)dzdarz
(3.1.) :/Uncg(z)/EK(:c,z)dxdz.

Yy

Since

K(z,y) = ¢(A\(2))- N (2)h(Q(A(z)) — Q(y))
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and Q(y) is absolutely continuous,

/ K (z, 2)dz = / h(t — Q(2))dt
E QIN(E))

is continuous with respect to z. By the assumption there exists € > 0 such that

/K(w,y)dw>s>0.
E

Since [, K(z,z)dz is continuous with respect to z, there exists U, € T such that
y € Uy and

/K(x,z)dw>€ Vze Uy .
E

Now (3.1.) and nymC g(z)dz = oo imply that

/Eg(;v)da: =00.

E C B was arbitrary, so g(z) = oo on the set B. But by the assumption 0 < g <
0. O

Lemma 3.2. Let K be an integral Markov operator of the form (1.2.), lety € R .
Let 0 < g < o0 and Kpg < g. Let

/ Kp(z,y)dm(z) >0 .
D

Then there exists an open neighbourhood Uy of y such that

/ g9(z)dz < 0 .
UoND

The proof of Lemma 3.2. is the same as the proof of Lemma 3.1..

Theorem 3.2.. Let K be an integral Markov operator of the form (1.2.). Let A be
the family of compact subsets of RT (with respect to the Euclidian metric topology).
If K has no stationary density, then K is sweeping with respect to A.

Proof: Denote B B
Kcf=(Kf)lc, Kpf=(Kf).1p

fe=flc, fo=f1lp.

Now
IEL foll = IKKLfoll = |1 Kc Kb foll + 1K foll
hence o ~ ~
IKcK, foll = IKL foll - 1K foll
(3.2.) S KK foll = IKp foll = 1K foll

=k



Lemma 1. Lety € Rt. Then there exists Uy € T such thaty € Uy, and

lim K}fdm =0

n—o0 Jy.nD

for every f € Ly(D).
Proof (of Lemma 1.): By Corollary 2.4.

0< ZKBU(:U) < o0
n=0

for u > 0, hence the process Kp is dissipative. By Theorem 2.3. there exists a
o -finite subinvariant measure A equivalent to m [ D.
Let Ay be the family of all sets of finite measure (with respect to m) such that

d\
—dm < 0o VA€ A,.
A dm

Since % < 00, the family Ay is admissible. Kp is dissipative, hence by The-
orem 3.1. Kp is sweeping with respect to A). Let y be such that for every

neighbourhood U € T of y the set D N U has positive measure. Denote g = %.
Let

/ K(z,y)dx >0 .
D

By Lemma 3.2. there exists U, € 7 such that

/ g(z)dz < oo,
U,ND

hence
U,ND € Ay, lim Kjfdm=0.

n—o Uy nD

Let [, K(z,y)dx = 0. Let

lim K3(f 1 D) #0

n—o0 Uy nD

for all U, € T such that y € U, and some f € Li(R"). Now [, K(z,y)dx = 1.
Since [, K(z,y)dz is continuous with respect to y (see the proof of Lemma 3.1.),
there exists U, € T such that y € U, and

/ K(z,z)de >e>0 VzeU, .
c
By the assumption there exists § > 0 such that

/ K3p(f 1 D) > 6
U,nD
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for infinitely many n. By Corollary 2.3.

K3(f 1 D)= (Kpfp) I D.

Then
/K'Cf{f)fp(m)de// K(z,2)K} fp(2)dzde =
c c¢Juy,nb
=/ f{ng(z)/ K(z,2)dzxdz >
U,nD c
> 6/ K} fp(2)dz > €.
U,nD

for infinitely many n. Hence
- IRoKpinl > Y. [ RoRpfo()is = oo
n=0 n=0"¢

which contradicts (3.2.). O

Lemma 2. Let y € R, let Ko has no stationary density. Then there exists
Uy €T such thaty € Uy and

lim K2 fdm =0
n—00 U,nC

for every f € Li(C).

Proof (of Lemma 2.): By Corollary 2.1. and Theorem 2.2. K¢ is Harris and
there exists a function g, 0 < g < oo such that Kcg = g.

Let y be such that for every neighbourhood U € T of y the set C N U has a
positive measure. Since [, K(z,y)dz = 1 and by Corollary 2.2 K(z,y) = 0 for
reD,yeC,

/ K(z,y)dz =1 .
c
By Lemma 3.1. there exists U, € 7 such that y € U, and
(3.3.) / g(z)dz < 00 .
U,nC
Let A, be the family of all sets of finite measure such that
/gdm<oo VAe A, .
A
Since g < oo, the family A, is admissible. By (3.3.) U, NC € A, and by Theo-
rem J3.1.

/ K2 fdm —0 Vf € Ly(C). O
U,nC
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Lemma 3. Let K¢ has no stationary density, let A € A. Then
(3.4.) lim K&fidm =0, lim K fadm =0
for every f1 € Li(C), fa € L1(D).
Proof (of Lemma 3.): Let y € R*. By Lemma 1. there exists U; € T such that
y € Uy and
lim Kgfzdm =0 VfQ S Ll(D)
n—o0 UlmD
By Lemma, 2. there exists Us € T such that y € Us and

lim Kgfldm =0 Vfl e Ly (C)

n—oe UaNC

Set Uy = U1 n UQ. Then

(3.5.) lim K& fidm =0, lim KB fodm =0

n—o0 UyﬁC n— o0 UyﬁD

Thus we have proved that for every y € R* there exists U, € T such that y € U,
and (3.5.) holds. Finally (3.4.) follows from compactness of A. [

Proof (of Theorem 3.2.): By Lemma 3. Kp is sweeping, K¢ is sweeping or has
a stationary density.

Let Ko have a stationary density f Let f. be a function on Rt such that
f«1C=7F, fo!D=0.Then

(Kf)1C = (K(fulc) I C+ (K(f1p)) I C = Kcf = [.

By Corollary 2.2. (Kfs) | D = Kp(f« | D) = 0, hence K f, = f.. Let Ko be
sweeping. We shall prove that K is sweeping.
Let f € Li(R"), then f = fo + fp, where fc = f.1¢, fp = f.1p. By Corol-
lary 2.3.
(K™fc) I D=0, (K"f) | D=EKp(f | D).

By Lemma 3.

K" fdm — 0 for every A € A.
AND

Now it is enough to prove that

K"fdm — 0 for A € A.
AnC

Clearly
Kof = Ko(fo + fo), Kf = Kof + Kpf,
Ko(Kf)=Kefo+K2fp + KcKpfp
Ko(K*f) =K fo+ Kifp+ KeKpfp+ KcKpfp

K'flo =Ko(K"lf) =
=K.:fo+K&fp+ KL 'Kpfp+...

+ K PRE fo+ -+ KoKy .
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Take 1 < k < n and define:

Mynf=K2fc + K2 fp+ K2 "Kpfp +---+ KZ " K5 fp
Rk’nfD = K—g_kkf)fp + -4 chg_lfp.

K¢ is contraction, hence

|Rknfoll < |IKEFEEfoll + -+ |[Kc Ky fpll <
<|[[KcKpfoll+ -+ |IKcKp " foll.

By (3.2.) . )
| Bxnfoll < IKDfoll = IKBfll-

The sequence {||K%f||} is nonincreasing for Kp being contraction. Thus
- - €
IKD foll = KD foll < 5 for n,k > no(e), n > k.
Now fix k > ng(e), A € A. K¢ be sweeping implies

My fdm < &
AnC 2

for n sufficiently large, hence
/ K'fdm —-0for Ae A. O
AnC
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