INTRODUCTION

Systems that have a mixture of deterministic and probabilistic dynamics often
appear in biological and physical sciences. If these systems are described by densi-
ties, then the evolution of densities is given often by the equation

(0.1) fusr () = /X K (2, 9) fu(y)dm(y) .

where K (z,y) is a stochastic kernel, f,,(z) is the density describing the n-th gener-
ation. If continuous time systems are involved an analogous situation occurs. Then
the corresponding evolution of densities is given by the equation

(0.2.) ft(x):/XKt(a:,y)fo(y)dm(y),

where K;(x,y) is a stochastic kernel. An integral Markov operator of the form

(0.3.) Kf(z) = /X K(z,y)f(y)dm(y)

is defined by equation (0.1). A semigroup of integral Markov operators {P;}:>o of
the form

(0.4) Pf(z) = /X Ki(z,9)f(y)dm(y) . Pof = f

is defined by the equation (0.2). The main aim of this dissertation is to describe the
asymptotic behaviour of integral Markov operators of the form (0.3) with special at-
tention to the operators which have practical applications in biology and theoretical
physics. Only few results concerning the asymptotic behaviour of continuous time
systems are given. These results are immediate consequences of results concern-
ing asymptotic behaviour of discrete time systems. In the Chapter 1 some models
possessed by a mixture of deterministic and probabilistic dynamics are described.
To give an example of continuous time system, a continuous time system in the
presence of noise is presented.

Chapter 2 contains the contemporary state of the study concerning asymptotic
behaviour of integral Markov operators. There are several ways to deal with this
problem.

The first way is based on the results of Foguel [2]. The most important of
them are those giving conditions for the existence of a subinvariant measure and
decomposition theorems. These results are summarized in Section 2.1. Section 2.2
contains results of Baron - Lasota ([1]) and Komorowski - Tyrcha ([7]) based on
the results of Foguel.

The second way employs Lower Bound Function Theorem proved in [8]. The
condition for the asymptotical stability, based on this theorem is presented in Sec-
tion 2.3. Section 2.3 contains also some conditions for convergence of ergodic aver-
ages (also in [8]).



Another way is the study of asymptotical periodicity under the conditions of con-
strictivness of Markov operators. These results were summarized by J. Komornik
in [4]. Some important results of [4] and applications are given in Section 2.4.

The last way I know is based on the conditions dealing with Lyapunov and
Bielecki functions. Section 2.5 contains this method and its applications.

Section 2.6 shows the connection between the asymptotic behaviour of discrete
time semigroups of Markov operators and continuous time semigroups of Markov
operators.

The results of the dissertation are summarized in Chapter 3. The dissertation
also contains 2 papers: ”The Foguel Alternative for Integral Markov Opera-
tors” and ” Asymptotic Behaviour of Some Markov Operators Appearing
in Mathematical Models of Biology”.



1. EXAMPLES OF DETERMINISTIC SYSTEMS WITH STOCHASTIC
PERTURBATIONS LEADING TO INTEGRAL MARKOV OPERATORS

1.1. Generalized Lasota-Mackey Model (GLM)

This model is described in [19]. Assume that the cell cycle consists of two phases:
A-phase and B-phase. A-phase begins at birth and lasts until the occurrence of a
critical event which is necessary for mitosis and cell division. Then the cell enters
B-phase and is delayed for a time Tz until division occurs. The probability that
the critical event occurs in the interval [¢,t + At), provided it does not occur up
to the moment ¢, is equal ¢(s)At 4+ 0(At), where s is the size of the cell at time ¢.
Assume that the cell grows according to the equation

(1.1.1.) Z—i =g9(s),

where g(s) > 0 for s > 0, g(0) = 0 . Denote by f,, the density function of the
initial size of cells in the n-th generation. Let us denote by Ry the initial size of
randomly chosen cell from the first generation (n = 0) and by R; the initial size of
its daughters (n = 1). For the moment it is convenient to assume that Ry = r is
constant and only R; is a random variable. Denote by s(t,7) the solution of the
growth equation (1.1.1.) with the initial condition s(0) = r. Then for a given > 0
we may calculate the probability R, > x:

1
2
(1.1.2.) = Prob(T4 > T, (27)) ,

Prob(Ry > z|Ry = r) = Prob(=s(Ta + T, 7) > x)

where T,.(z) is the solution of the equation s(T' + Tg,r) = z with respect to T.
Denote
P(t) = Prob(Ty > t) .

By the assumption

P(t) — P(t + At)

= @(s(t,r)) At + 0(At) ,

P(t)
hence dP(t)
PO - st P)
and t
P(t) = exp{—/o o(s(u r))du}
Therefore

T,.(2z)
(1.1.3.) Prob(T4 > T, (2z)) = exp {—/O w(s(u,r))du} .

Substituting s(u,r) = y into (1.1.3.) we obtain

dy = (0s(u,r)/0u)du = g(s(u,r))du = g(y)du
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and consequently

A(z)
(1.1.4.) Prob(T4 > T (2x)) = exp {—/ q(y)dy} ,
where
(1.1.5.) a(y) = ¢(y)/9(y) and A(z) = s(T,(2z),r) .

Observe that A(z) does not depend on 7. In fact, since (1.1.1.) describes a dynam-
ical system, we have

Mz) = s(T.(2x),r) = s(—TB,s(Tp + T (2x),71))
which according to the definition of T;. gives
(1.1.6.) Mz) = s(—TB,2x) .

Formulas (1.1.4.) and (1.1.5.) are valid if 7,.(2z) > 0. In the remaining case we
have

(1.1.7.) Prob(Ry > z|Ry =7) = Prob(T4 > T,.(2z)) = 1.

From the definition of A(z) given by the second equality in (1.1.5.) it follows that
the condition T,.(2z) > 0 (T-(2x) < 0) is equivalent to A(z) > r (A(z) < r). Thus
combining (1.1.2), (1.1.4.) and (1.1.7.) we obtain

A(z)
Prob(Ry > xz|Ry =) = exp {—/ q(y)dy} for A(z) > r

Prob(Ry > z|Ry =71) =1 for A(z) <7 .

In the general case, when Ry is a random variable with density function f, we have
Prob(R; > x) = / Prob(R; > z|Ry = r) fo(r)dr
0

and consequently

A(z) A=)
fi(z) = —%Prob(Rl > ) = /O {—% exp (—/ Q(y)dy> } fo(r)dr .

If we denote

A(z)
K(z,r)= —% exp (—/ q(y)dy) for AM(z) > r

K(z,r)=0 for AM(z) <,
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we have
A=)

fi(z) = ; K (xz,r)fo(r)dr .

It is easy to verify, that
/ K(z,r)dez =1for r >0
0

and
K(z,r)>0forz >0, r>0.

So if we define the operator K : L;(X) — L;(X) by

A(z)

(1.1.8.) Kf(z)= i K(z,y)f(y)dy ,

then K is an integral Markov operator (see def 2.1.4.). The sequence of densities
{fn} describing the evolution of the initial size in GLM model is given by f,, = K" f,
where K is an integral Markov operator given by formula (1.1.8.).

1.2. General Model of Biological System Producing Events

This model is dealed in [11]. Consider a (biological) system which produces
events. In addition to the usual laboratory time the system is also assumed to have
an internal or physiological time. We denote this internal time by 7 to distinguish it
from the laboratory (or clock) time ¢. When an event appears the physiological time
resets from the value 7 = 7,,,, to 7 = 0. We assume that the rate of maturation
dr/dt depends on the amount of an activator (or maturation factor) which we
denote by a. Thus we have

dr

(1.2.1.) i v(a), >0.

We further assume that the activator is produced by a dynamics described by
the solution of the differential equation

da
1.2.2. — = > 0.
(122) = =g(a), 920

The solution of (1.2.2.) satisfying the initial condition a(0) = r will be denoted by
a(t) =TI(t,r) ,

and we assume it is defined for all ¢ > 0. When an event is produced at a time
T = Tmaz and activator level @y, 44, then a portion ¢ = 9(@maz) Of Gz is consumed
in the production of the event. Thus after the event the activator resets to the level

(1.2.3.) a = Gmaz — 0(Gmaz) -

We call the function y — o(y) the reset function , and assume it is invertible. The
inverse of y — o(y) is denoted by A.
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Our main assumption is related to the physiological time. Namely we assume
that the survival function of 7,,,,, is independent of the initial value of the activator.
We denote this survival function by H. Thus we may write

(1.2.4.) Prob(Tmaz > xla(t =0) =7) = H(x)

for every r > 0. In the terminology of population dynamics we could say that the
lifespan of an organism will be shorter when its rate of maturation is increased.
With these assumptions, we will derive a recurrence relation for the values of
activator at the times when events occur. Assume that the events appear at the
times
to<ti1<ta<....

Let a,, be the amount of the activator at the beginning of the time interval (¢, t,+1)-
According to Equation (1.2.2.), this amount at time ¢ € (¢,,%,41) is given by

a=1I(t —t,,an) .

Now using (1.2.1.) we may calculate the physiological time 7 corresponding to ¢.
Namely

(1.2.5.) T = /t o(II(s — tn,an))ds .

n

Substitute z = II(s — t,,ay)), dz = g(II(s — t,, a,))ds and observe that z = a,, for
s =t, and z = a for s =t. Then (1.2.5.) becomes

(1.2.6.) T = /a q(z)dz = Q(a) — Q(an) ,

n

where

_ e Y
(1.2.7.) q(z) = = and Q(2) = [ q(y)dy .
9(%) 0

The function ¢ has a simple biological interpretation, since it gives the rate of
change of the physiological time relative to the activator.

When t approaches t,, 1, the physiological time 7 and the amount of the activator
a take their maximal values which we denote by 7,, and ay,4,.n respectively. In this
case equation (1.2.6.) gives

(1.2.8.) Tn = Q(amaw,n) - Q(an) .

Further, from the definition of the reset function we have a,+1 = A" (amaz,n), and
consequently

(1.2.9.) nr1 = A HQ(Qap) + 1)) forn=0, 1, ....

This is the desired recurrence relation between successive activator levels at event
occurrence. By assumption, the variables a,, and 7,, are independent, see Equa-
tion (1.2.4.), and thus we may consider (1.2.9.) as a discrete time dynamical system
with stochastic perturbations by the 7,.
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The behaviour of this system from a statistical point of view may be described
by the sequence of distributions

F,(z) = Prob(a, <z) for n=0, 1, ....

Set H; = 1— H and denote by h = Hj the density function of the distribution of
Tn, (assuming that this density exists). If a,, has a distribution F), then Q(a,) has
the distribution G, (z) = F,,(Q~!(z)). Further, since a, and 7, are independent,
the variable u, = Q(ay) + 7, has a distribution function given by the convolution

z Q' (z)
(1.2.10. / Hy (2 — 9)dGu(y) = / Hy(o — Q) dFa(y)

Finally, \™1(Q*(uy,)) has the distribution function

A(@)
H1(Q(A(=)) — Q(y))dFn(y) -
0
From this and the definition of the density, it follows that a1 = A~H(Q ™ (uy))
has a density

A(z)
(12.11) fusa(z) = N (@)g(A(@)) / h(QA@)) — Q) f(y)dy -

Introducing the operator K defined by

A(z)
(1212) ki@ = [ |- @A @) - Q)| 1wy
we may write these relations in the more abbreviated forms f,1; = Kf, and
fn = K"fp. Under some simple regularity conditions concerning A\, ) and H,
Equation (1.2.12.) defines an integral Markov operator on the space Li(R™) of all
integrable functions defined on the half line RT = [0, oc).These assumptions will be
formulated in the section 2.2..

At this point it is worth noting the explicit use of the inverse function Q~*(x)
in the derivation of Egs. (1.2.9.) and (1.2.11.). In some applications it may happen
that the functions ¢(x) and ¢(x) vanish on an interval [0, 2] and are only positive
for x > . In this case it is clear that Q(z) as given by (1.2.7.) also vanishes for
0 < x < x4 and is thus not invertible. In [11] is shown, that if we denote by Q1!
the inverse of @ restricted to [zg,00), then (1.2.9.) and (1.2.11.) are still valid.

If the densities f; are given then it is easy to find the density of the distribution
of the interevent intervals, i.e., the time intervals At,, = ¢,,41 —t,, between the nth
and (n + 1)*¢ events. In fact, Equation (1.2.5.) with ¢ = #,,,1 gives

Tn:/
t

n

tn+1

Aty
o(Il(s — tp, an))ds = / e(I(s,an))ds .
0
Therefore

Prob(At, > z) = Prob (Tn > /0 ’ cp(H(s,an))ds)

_ /OOO Prob (m > /Oxcp(H(s,r))ds|an _ r) Fu(r)dr .
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From this and (1.2.4.) it follows immediately that

Prob(At,, > z) = /O T H ( /0 " o(I(s, r))ds) Fo(r)dr

By differentiation we can find the density distribution of At,, which we denote by
oy () Namely, the density of the interevent intervals is

(1.2.13.) (1) = /OOO h (/Om o(T1(s, r))ds) o(TT(z, 7)) fu (r)dr -

In the particular case when f, = fi, (n = 0, 1, ...) is a time independent
stationary sequence, «,, has the same property.

1.3. Discrete Time System with Constantly Applied Stochastic
Perturbations

Let the process be defined by

(1.3.1.) Tpt1 = S(zn) + &n
where S : R — R? is a measurable transformation and &g, &1, ... are independent
random vectors each having the same density g. Denote by f,, the density of z,,.
In [8] is found the relation between f,, and f,,41.

By (1.3.1.), p41 is the sum of two independent random vectors: S(z,) and &,.

Note that S(z,) and &, are clearly independent since, in calculating =1, ..., z,,
we only need &, ...,&n_1. Let b : R? — R be an arbitrary, bounded, measurable
function. It is easy to find the mathematical expectation of h(z,41), since
(1.3.2.) E(h(zni1)) = / W@ foga ()

R

Furthermore, by (1.3.1.) and the fact that the joint density of (z,, &) is just
In(y)g(z), we also have

E(h(zp41)) h(S(zn) + &)
/ / y) + 2) fn(y)g(2)dydz .

By a change of variables, this can be rewritten as

(1.3.3) h(@n 1)) / / ~ S(y))dyds .

Equating (1.3.2.) and (1.3.3.), and using the fact that h was an arbitrary, bounded,
measurable function, we immediately obtain

e / Fa )9z — S(y)dy

So if we define an integral Markov operator K : Li(R?) — L;(R?%) by
K7@) = [ ola=Sw)f)dy.

then K is an integral Markov operator with kernel

K(z,y) =gz - S(@)) -
It is clear that
K(z,y) > 0 and K(z,y)dz =1 Vy € R¢ |
RA
so K(x,y) is a stochastic kernel.



1.4. Discrete Time System with Multiplicative Perturbations

In this section we turn our attention to a discrete time system perturbated in a
multiplicative way. Specifically, we examine a process

(1.4.1.) Tnt1 = &nS(Tn)

where S : (0,00) — (0,00) is continuous and positive a.e. and the &, are indepen-
dent random variables, each distributed with the same density g. Denote by f,, the
density of x,,. In [8] is derived the relation between f,, and f, 1.

Using exactly the same approach employed in Section 1.3., let h : (0,00) —
(0,00) be an arbitrary bounded and Borel measurable function. The expectation
of h(zp41) is given by

(1.4.2) E(h(zns1)) = /0 @) o (2)d
Using (1.4.1.) we also have

E(h(#n41)) = S(xn))

/ / h(zS (1)) Fn ()9 (2) dyd=
(1.4.3.) / / 2) fu(y)g ( Sfy))%dyda:,

where we used a change of variables z = /S(y) in passing the second to third lines
of (1.4.3.). Equating (1.4.2.) and (1.4.3.), and using the fact that h was arbitrary
by assumption, we arrive at

(1.4.4.) foia(z / Faly (%) @dy

From (1.4.4.) we may also write f,+1 = K f,,, where the operator K, given by

ki@ = [ g (ﬁ) S

is an integral Markov operator with a stochastic kernel
z 1
Kew=a() b
@0 =9\50)) 56)

1.5. The Fokker-Planck Equation

In this section continuous time systems in the presence of noise are presented.
This leads to the Fokker-Planck equation, describing the evolution of densities for
these systems. We are specifically interested in the behaviour of the system

(1.5.1.)



with initial condition
(1.5.2.) z(0) =z,

where
bl(a:) 0'11($) ... Uld(.ﬂ'))
b(z) = : and o(z) =

ba(z) oar(z) .. oaa()

are given functions of x and

1 (t)
(t) = :
Tq (t)

is the unknown. The function o(z) is the amplitude of the perturbation & = 42,
where w is a d-dimensional Wiener process. The system (1.5.1.)-(1.5.2) is the
continuous time analog of the discrete time system with a constantly applied per-
turbation considered in the Section 1.3. and is in detail discussed in [8]. As in
discrete time systems we shall examine the evolution of densities. Denote by u(t, x)

the density of x(t) (the solution of (1.5.1.) with (1.5.2.)). Then u(t, z) satisfies

(1.5.3) Prob(z(t) € B) = / u(t, 2)dz

By Theorem 1.5.1. wu(t,z) can be found without any knowledge concerning the
solution z(t) of the stochastic differential equations (1.5.1) with (1.5.2.) and is
the solution of a partial differential equation, known as the Fokker-Planck (or Kol-
mogorov forward) equation.

Now set

d
(1.5.4.) aij(z) =Y oun(@)ojk(@) -
k=1
From (1.5.4.) it is clear that a;; = aj; and, thus, the quadratic form,
d
(1.5.5.) > aij(@)Aid;
,5=1

is symmetric. Further, since

d d [/ d 2
Z CLZJ(.’E))\Z)\J = Z (Z Uzk(m))\z> )
1,7=1 k=1 \:i=1

(1.5.5.) is nonnegative. Theorem 1.5.1. is proved in [8].
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Theorem 1.5.1. If the functions o;;, 00;;/0zy, 0%0i;/0zr0z1, bi, 0b;/0x;,
ou/ot, Ou/dx;, and 8*u/dz;0x; are continuous for t > 0 and x € R%, and if
bi, 0ij and their first derivatives are bounded, then u(t,x) satisfies the equation
d

ou 1 02
1.5.6. — == — (a; (b; t>0 R? .
(1.56.) ot 22;18% aigtt) = Za ), >0, ze
Moreover, if the initial condition x(0) = z°, which is a random variable, has a
density f then
(1.5.7.) u(0,z) = f(z), =z€RS

Equation (1.5.6.) is called the Fokker-Planck equation or Kolmogorov for-
ward equation.Equation (1.5.6.) is of second order and may be rewritten in the
form

ou 1 & 0%u . ou
- i b;
ot 2 Z i.d (-’I?) 8.737,8.’13] * ; (iE) 8.%‘1

7,7=1
(1.5.8.) +é(x)u, t>0, zeR?,
where .
- Oa;;
b(2) = —bi(e) + S 22
N 833j
J=1
and
d
0%a; ob;
1.5.9. : J — L
( ) JX_: 8:1328:63 ; ox;
We have shown that the quadratic form
d
Z a,-j(a:)/\z-)\j
7,7=1

is always nonnegative. We will assume that stronger inequality,

d d
(1.5.10.) > ag(@Aid >0y A,
3,j=1 =1

where p is a positive constant, holds. This is called the uniform parabolicity
condition. .

It is known that, if the coefficients a;;, b;, and ¢; are smooth and satisfy the
growth conditions

(1.5.11.) laij(z)] < M, [bi(z)] < M(1+ [z]), |&x)] < M(1+ [z[?)

then the classical solution of the Cauchy problem, equations (1.5.8.) with (1.5.7.),
is unique and given by the integral formula

(1.5.12.) u(t,z) = /Rd L(t,z,y)f(y)dy ,

where the kernel I', called the fundamental solution, is independent of the initial
density f.
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Definition 1.5.1. Let f : R? — R? be a continuous function. A function u(t, ),
t >0, z € R? is called a classical solution of Equation (1.5.6.) with initial
condition (1.5.7.) if it satisfies the following conditions:

(a) For every T > 0 there exist ¢ > 0, a > 0 such that

lu(t, z)| < ce®” for0<t<T, zeR:.

(b) u(t, z) has continuous derivatives us, g ,Ug,e; and satisfies Equation (1.5.8.)
for every t > 0, z € R?%; and
(¢) limy_yo u(t, z) = f(x).

Remark. Condition (a) is necessary because for functions which grow faster than

ea|‘”|2, the Cauchy problem, even for the heat equation u; = %JQUM, is not uniquely
determined.

Definition 1.5.2. We say that the coefficients a;; and b; of Equation (1.5.6.)
are regular for the Cauchy problem if they are C* functions such that the
corresponding coefficients a;;, b;, and ¢ of Equation (1.5.8.) satisfy the uniform
parabolicity condition (1.5.10.) and growth conditions (1.5.11.).

The following theorem, that ensures the existence and uniqueness of classical
solutions, is stated in [8].

Theorem 1.5.2. Assume that the coefficients a;; and b; are reqular for the Cauchy

problem and that f is a continuous function satisfying the inequality |f(x)| < ce@lzl®
with constants ¢ > 0 and o > 0. Then there is a unique classical solution of (1.5.6.)-
(1.5.7.) which is given by (1.5.12.). The kernel I'(t, x,y), defined fort >0, z, y €
R?, is continuous and differentiable with respect to t, is twice differentiable with
respect to x;, and satisfies (1.5.8.) as a function of (t,x) for every fixed y. Further,
in every strip 0 <t < T,z € R, |y| <r, I satisfies the inequalities

0<I(tz,y) < P(t, ‘ -y,
or 0°T
< — < _

where
O(t,z —y) = kt """/ exp[—5(z — y)? /¢

and the constants 6 and k depend on T and r.

Remark. The explicit construction of the fundamental solution I' for general co-
efficients a;j;, b; and ¢ is usually impossible. It is easy only for some special cases,
such as the heat equation,

ur = (02/2)Ugg -
In this case, I' is the familiar kernel

L exp[—(z— )/20%] .

Lltoy) = 7—
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2. THE CONTEMPORARY STATE OF THE PROBLEMS, THE WAYS TO SOLUTIONS.

2.1. Some Properties of Markov Processes and Integral Markov
Operators.

In this section some necessary results of [2] are presented. These results are
applied in [1], [7].

Definition 2.1.1. A Markov process is defined to be a quadruple (X, %, m, P) ,
where (X, X, m) is a o— finite measure space with positive measure and where P
is an operator on L (X) satisfying

(i) P is a contraction : ||P|| <1

(73) P is positive : if 0 <wu € L1(X) then Pu >0

Definition 2.1.2. If u is an arbitrary non-negative function, set

Pu:= lim Puyg for 0 < ug € L1 (X), up S u,

k—o0

where the symbol * denotes monotone pointwise convergence almost everywhere.

Remark. The sequence Puy is increasing so that limy Puy exists (it may be infi-
nite). To see that definition is independent of the particular sequence let vy € L
with v u also. Set wg ,, = min(uy,,vg). For fixed k, wg,, vk, and by Fatou’s

Lemma,
/wkmdm/‘/vkdm.

Thus wg n — v in Ly norm and Pwy , /* Pvg. Since Pu,, > Pwy,, for each n, we
have
lim Pu,, > Puyg .

n—o0

The result follows from symmetry.

Definition 2.1.3. Take uy € L1(X) with ug > 0. Define
C:{:U:ZPkuo(a:):oo}, D=X\C
k=0

By Theorem 2.1.1. this definition is independent of the choice of uy.
Lemma 2.1.1. (Hopf Maximal Ergodic Lemma). Let (X,X,m,P) be a
Markov process. Let u € Ly and define

E={z: s%p(u(x) + Pu(z) + - -- + P"u(x)) > 0} .

Then [, u(z)dm(z) > 0.

Proof: Note that u may take also negative values. For k a nonnegative integer
define operators S by Spu(z) = 0,

Spu(z) = u(z) + Pu(z) + - - + P lu(z) .

Set

+ —
Spy(z) = 2R, Sru(z) .
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Note that S;Fu(z) > 0 for all n.
Set E, = {z : S;fu(z) > 0}. Since S; u is an increasing sequence, the sets E,
are increasing, and in fact F, 7 E. Thus

/ udm = lim udm ,
E

n—00 E
n

and it suffices to show that f . udm > 0 for all n.
For 0 < k <mn, S;tu > Siu. Thus

PSu(x) > PSpu(z) ,

and
u(z) + PSHu(z) > u(z) + PSpu(z) = Skyu(z)

IfxeFE,,
Stu(z) = max Spu(z) ,

1<k<n
since Spu(z) = 0 < S;u(z). The previous inequalities, for 1 <k + 1 < n, give
u(z) + PS;Tu(x) > Stu(x)

on F,, or
u(z) > SFudm — PSu(x)

/ udm > /
En E

But fEn S;tudm = [ S;fudm. Thus

/ udmZ/Sﬁrudm—/PS’f{udmZO,
E, b b's

since ||P|| <1. O

for x € E,,. Thus

SHudm — / PStudm .
En

n

Lemma 2.1.2. Let (X,%, m, P) be a Markov process. Letu, v € Ly be nonnegative
functions. If

ZPku(x) =00,
k=0

then - -
either Z Pry(z) =00 or Z Pky(z)=0.
k=0 k=0
Proof: Set

Ayoy = {x : iPku(x) = 00, ika(a:) < oo} :
k=0 k=0
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So if r € A, , then

ZPk(u —av)(z) = ©
k=0
for every a > 0. In particular, if a > 0

Ayp C{z:supl + P+---+ P")(u—av)(z) >0} = B, .

By Lemma 2.1.1.

OS/ (u—av)dmg/udm—a/ vdm .
B b'e A

a u,v

Since this holds as ¢ — oo it follows that

/ vdm =0 .
Au,v

The same argument applies to the function P"v; since A, , = A, pn,, the conclu-
sion is that
/ P"vdm =0
Au,v

for every n > 0. [
Theorem 2.1.1. If0 <wu € Ly(X) then

ZPku(:v) < oo forzxeD, ZPku(x)zo or oo forx € C .
k=0 k=0

Proof: Let 0 < up € L; be the same as in def. 2.1.3.. Whenever Y ;- P*u(z) =
oo then by Lemma 2.1.2. also Yo, Pfug(z) = co. Thus > po, PFu(z) < oo on
D. If x € C then Y po, P*Pug(z) = oo and by Lemma 2.1.2. >"22 , P*u(z) is either
zero or infinity. O

Definition 2.1.4. A function K(z,y) > 0 defined on XxX which is jointly mea-
surable with respect to its variables is called a kernel. Let [, K(z,y)dz < 1. Define
an operator K on Lq(X):

Kf(x) = /X K (z,9)f(y)dy

Then ||K || <1 and K is called an integral Markov operator.

Definition 2.1.5. Let K be an integral Markov operator, then (X, 3, m, K) is said
to be a Harris process if X = C.

Theorem 2.1.2. Let K be an integral Markov operator and a Harris process. Then
there exists 0 < u < oo such that Ku = u (a o-finite invariant measure).

The proof of Theorem 2.1.2. is complicated. This theorem is one of the main
results of [2] (see [2] - Chapter VI.).
15



Theorem 2.1.3. Let P be a Markov process with X = D. Then there exists
0 < g < oo such that Pg < g.

Proof: Let 0 < up € L1(X). Set g = po g PPuo. O
Definition 2.1.6. Let P be a Markov process. Define operators Po, Pp:

Po : L1(C) — L1(C) , Pof = (Pf) | C,

where the symbol | denotes the restriction to the set C, f is the function f extended
by 0 on D, 3

Pp: Li(D) = Li(D) , Pof=(Pf) I D,
where f is the function f extended by 0 on C.

Lemma 2.1.3. Let (X,%,m, P) be a Markov process. If 0 < f € L, then

oo

ZP*kf(a:) =0 or o©

k=0
for z € C (P* denotes the operator adjoint to P).
Proof: Fix 0 < f € L, and suppose there is a set A C C with m(A) > 0 on
which

o0

ZP*kf(x) <M< oo.
k=0

Take 0 < u € L1 with v = 0 outside of A and v > 0 in A. Then
(Y Pru,Pf) = (u, > P*f) < Mllully < oo .
k=0 k=n

Since A C C, Y32, P*u must be either 0 or co. Since u > 0 on A the former
cannot occur. Thus P*" f must be 0 on A. [

Theorem 2.1.4. Let (X,X,m,P) be a Markov process. If supp f C C, then
supp Pf C C. (supp f ={z: f(z) #0})

Proof: Take 0 < u € Ly. Since > po , PPu < 0o on D, it is not difficult to find
a sequence B,, /' D such that

o0 [e.9]
00 > (ZPku, 1p,) = (u,ZP*klgn) .
k=0 k=0
Since u > 0,
o o
Y P*prip (z) <> P*ip, (z) <.
k=0 k=0
By Lemma 2.1.3. P*1p (z) = 0 if x € C. Thus P*1p(z) = 0if z € C, or

P*1p <1p.
Let 0 < f € Ly, supp f C C. Then

(Pf,1p)y =(f,P*1p) <(f,1p)=0. O

16



Corollary 2.1.1. Let K be an integral Markov operator. Then
(072 rcam rCaKC)

is a Harris process. (X | C denotes the o-algebra restricted to the space C, m | C
denotes the measure m restricted to the space ¥ [ C).

Proof: By Theorem 2.1.4. supp f C C implies supp Kf C C. By Theo-
rem 2.1.1. for u > 0 on C,u =0 on D:

o= Kku(z)=> Kk(ulC)(x)
k=0 k=0

for every x € C. 0O
Corollary 2.1.2. Let P be a Markov process on L1(X). Then

Pp(fI1D)=(Pf)ID.
Proof: f = fp + fco, where fo = f.le,fp = f.1p. By Theorem 2.1.4.
(Pfc) | D =0, hence
(Pf)I D= (Pfp) I D=Pp(fID). O
Corollary 2.1.3. P3(f [ D)= (P"f) D .
Corollary 2.1.4. Let P be a Markov process on X, let u > 0 on D. Then

o0
ZPB’U, < 00 .
n=0

Proof: Let u be a function on X such that « [ C = 0,u [ D = u. By

Corollary 2.1.3.
> Ppu=(>_Pra)[D.
n=0 n=0

By Theorem 2.1.1. (3°>7 ,P"a) D <oo. O
The following two theorems deal an existence of a finite invariant measure. These
theorems are not used in the dissertation, so we shall not prove Theorem 2.1.5..

Theorem 2.1.6. is an immediate consequence of Theorem 2.1.5.. The proof of
Theorem 2.1.5. can be found in [2] (Chapter IV.).

Theorem 2.1.5. Let (X,X,m,P) be a Markov process. Let P* be the operator
adjoint to P. Then X may be decomposed uniquely into disjoint union X = AqgUA1,

where
(1) Ao = Ay for sets A, with A, C Ap41 and

k—1
1/kY P14, =0

=0

uniformly off a set of measure 0;
(#4) There exists a finite measure p with Py = p, p is equivalent to the restriction
of m to Ay, and every finite invariant measure is weaker than .

17



Theorem 2.1.6. Let (X,3,m,P) be a Markov process. Let P* be the operator
adjoint to P. Then the following are equivalent:
(a) there exists a finite invariant measure equivalent to m
b) if 0< f € Lo ,f #0, then liminf(P"1, f) > 0
)if0< f € Lo ,f#0, then lirr}\}nfl/NZiV;OI(Pnl,f) >0

d) if 0< f € Loy , f 20, then limsup1/N Y21 (Pm1, f) > 0
N

(
(c
(

(e) there is no set A of positive measure for which

N-1
lim1/N D Piy(z) =0 (ae.)

n=0
(f) there is no set A of positive measure for which

N-1
lij{[n 1/N Z P*14(z) = 0 uniformly (a.e.)

n=0

Proof Clearly (a) = (b)) = (¢) = (d) = () = (f). (f) = (a) is an
immediate consequence of Theorem 2.1.5.. [

For the remainder of this section we shall assume that (X,X, A, P) is a fixed
Markov process and A a o -finite subinvariant measure (P1 < 1).

Theorem 2.1.7. P and P* are both positive contractions on each L, , 1 <p < oo.

Proof: Since (X, X, A\, P) is a Markov process, P* is a positive contraction on
L. Let g = > c¢;la,, where A; are disjoint measurable sets. Functions of this
type are dense in L;. Then P*g satisfies

1Pl = [ 1P cita)dr < 3lei [ Priadd
= S 1alPAAD) < 3 A4 = gl

Extending the operator P* to all of L; we have that P* is a contraction on L;.
The Riesz-Thorin Theorem now shows that P* is also a positive contraction on
each space L, with 1 <p < oo.

The operator P* has an adjoint acting on L., which we call P**. It is clear that
P** is a contraction on L,. If f, g belong to L; N L, then

(f,P*g) =(P*"f,g) .
But (f, P*g) = (Pf,g) and hence P**f = Pf for f € L1 N Ly,. Extending P** to

all of L; we have P**f = Pf Vfe L;. [O
Denote

K ={f € LX) : |[P"flle, = 1P fllz, = Ifllz. » n=1,2,...}

18



Theorem 2.1.8.
(1) K is an invariant subspace P and P*
(i5) on K, PP* = P*P = [
(#31) if f L K then weak lim P"f = weak lim P**f =0 .

Proof: If f € K then

I£1? = (P f, P fy = (PP f, f) < |PPrfILFl = 1F)12

Equality in the Cauchy-Schwarz inequality shows that P*"P"f = f and similarly
P*P* f = f. Conversely, if f = P**P"f = P"P*" f then

IfII? = (P*"P"f, [) = | P"f|]?
and [|f||> = |[P*" f||*. Thus
K={f€Ly: P*"P"f=f=P'P*"f n=12..1},

which proves (i¢). This characterization also shows, that K is a subspace.

By symmetry it will suffice to prove only half of (iii): we show that P™g converges
weakly to 0 for all g € K+. Suppose that P™g does not converge weakly to 0. Then
there exists € > 0, f € Lo and a subsequence {n;} such that |(P™g, f)| > e. Since
P is a contraction and since the unit ball of L, is weakly sequentially compact,
some subsequence of {P™ g} must converge weakly. But we shall show that every
such weakly convergent subsequence must converge weakly to 0, a contradiction.

Fix k, and let h € Ly. Then

”P*kPkPnh Pnh||2 ||P*kPk+nh||2 <P*kPk+"h,Pnh> + ||Pnh||2
< |[PEH R = 2| PR R + || PR
= [|[P"h||* — | P**" || .

Since ||P™h|| is a monotone decreasing sequence the last expression tends to 0 as
n — oo by the Cauchy criterion. Thus ||[P**P*P"h — P™h|| — 0 as n — co.

Suppose now that P™g — f weakly. We show that f = 0. Now P*kpkpnig
Pk pk f weakly. But by the above results

weak lim P**PFP" g = weak lim P%g = f .
Thus f = P**P*f for all k > 1 and similarly f = P*P**f. Hence f € K. But
g € K+, so that f = weak lim P"ig € KL also. Thus fe KNK+ = {0}, O

Denote
Y1.={Ae¥ 14, € K}

= UEl (precisely 1x, = esssup {14 : A€ X1})
Xo=X\ X,
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Theorem 2.1.9.
(1) X1 is a field. If B=\J A, for A, € ¥1 and \(B) < oo then B € ¥;.
(1) P and P* are automorphisms of ¥.
(7i1) X1 generates K : 0 < f € K if and only if {f > a} € ¥1 for all a > 0.

Proof: We prove (iii) and (i) in several stages.
(a) If f € K then |f| € K:

A= N2" I < WP A< WA= NA S

and similarly for P*.
(b) If f,g € K, then max(f, g) and min(f,g) € K:

1 . 1
max(f,g9) = 5(If —gl+f+g) and min(f,g)=35(f+g—I[f-9]).
(¢c)If A,B€ ¥, then AUB, ANB and A\ B € ¥;:

laup = max(la, 1), lanp = min(la,1p), laxp =1a — lans -

Thus ¥ is a field. Let A, and B are as in (¢). We may assume, that A,4+1 2O A,.
Then
Pkp**1, Mlp.

Since the convergence is in Ly norm Pkp*k1p =1p, and B € ¥;.

(d) If 0 < f € K and a is a positive constant, then ¢ = min(f,a) € K: Pg < Pf
and Pg < a. Thus Pg < min(Pf,a). Similar results hold for P*, P™ and P*".
Thus

P"P*g < P"min(P*" f,a) < min(P"P*"f,a) =g ;

similarly P*"P"g < g. Consequently
P*"P™(f —g) > f—g and P"P"(f-g)>f—g.

Since P and P* are contractions, equality must hold.

() If f € K then {z: f(z) > a > 0} € ¥1: we may assume f > 0 since fT € K
by (b). By (d) (f —a)*™ = f — min(f,a) € K. Thus min(n(f —a)*,1) € K. As
n — oo this tends to 1{;54} in Lz norm.

To prove (ii) let f = P14 for A € 3;. We show that f = 1p for B € %;. Clearly
0< f<1. Fixe, 6 >0 and set

E={r:e<f<1-0}={z:e<f}\{z:1-6<f}.

Since fe K, E€¥;. Setg=(1—f)lg. Then0<g<1,0< f+g<1l,and g #Z0
if E has positive measure. Also ¢ = min(lg — f,1g) € K. Thus P*(g + f) < 1.
But P*f = P*P14 = 14, so that P*g <1—14, and P*¢g =0 on A. So

0= (14, P*g) = (Plarg) = (f,g) > /E fgdr,

so that A(E) = 0. Let ¢ and § tend to 0: it follows that f = 1p. It is clear that
B € X,. The demonstration that P* maps Y, into ¥ is similar. Now P and P*
must map Y; onto Xp: if A is given then P(P*14) = 14, and P*14 = 1p for
BeX»;. O
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Remark. Let ¥; be atomic. Let W be an atom of ¥;. Then P"ly = 14, for
A,, € Xy; Since P" is invertible, A,, must be an atom. Two possibilities arise: either
all the atoms P"1y are distinct, or there is a smallest index k with P*1y = 1.
In the former case W is called wandering: then W C D, for 0 < > P"1ly < oc.
In the latter case P71y, are distinct for 0 < j < k — 1, and W is called cyclic of
order k.

Lemma 2.1.4. Let (X,3,m) be a measure space. Let K : L1(X) — L1(X) be an
integral Markov operator. Then ¥, is atomic.

Proof: Let K be an integral Markov operator with kernel K (z,y) on XxX.
Suppose, that i is not atomic. Then there exists A € X, such that for every
B € ¥, m(B) >0, B C A there exists C € ¥;, C C B with 0 < m(C) < m(B).
Denote

As={yec A:m{z: K(z,y) >0} >} .
If m(As) = 0 for every § > 0, then K(z,y) = 0 on XxA, which contradicts
|K14]| = |[14]]- So fix § > 0 such that m(As) > 0.

Now we prove that there exist M, N € ¥;, MNN = & such that Mﬂfi(g, NNA;

have positive measures. Suppose, that such sets M, N do not exist. Then

(VM C A, meX)(m(MnAs) >0= M D Aj) .
Let ~
F={Me¥:MCA & MDA},
(2.1.1.) c=inf{m(M);M € F} .
Clearly ¢ > m(/L;) > 0. Since X7 is a field, it is easy to construct a sequence of
sets {M;}, such that M;; C M;, and m(M;) — c. Using (i) of Theorem 2.1.9. we
have
(Mi=Mex, .
Since M D As, m(M) > 0. Since no subset of A is atom of %, we have
M=PUQ,
where P,Q € %1, m(P),m(Q) > 0. Then P D As or Q D As. Let P D As. Then
m(P) < m(M) = ¢, which contradicts (2.1.1.). Thus we have proved, that there
exist M, N € X1, M N N = & with positive measures such that m(As N M) > 0,
m(As N N) > 0and A =M UN. Then m(M) < im(A) or m(N) < 3m(A). Let
m(M) < im(A). Put A; = M. By the same way construct the sequence of sets
A; € Y1 such that
1
ADA; DA D..., m(Aj) < Em(Ai) ;

and m(A4; N As) > 0 Vi € N. Take n such that m(A4,) < §/2. Since A, € X1, we
have K14, = 1p, where m(B) = m(A,,) < §/2. Now

O?LWW@MZAWAK@”““WMZ

=/ K(z,y)dzlya, (y)dy =
x Jx\B

=Amw%@@.
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But a(y) = fX\B K (z,y)dz > 0 on the set A, N A, which is in contradiction with
0= fX\B 1g(x)dz. Thus A must contain some atom. [

Theorem 2.1.10. Let X; be atomic. Let A be a set with A\(A) < oo and f € L1(X).
Then
(1) if A C X5 then

lim | P"fdA=0, lim | P*fd\=0

(ii) if A C W where W is wandering then

lim P"fd)\ = lim P*"fd)\ =0

n—00 n—00

(#i1) if A C W is cyclic of order k then

Pl fd)

li Pnk+d — A fW

oo | 4 far=A(4) A(W)
P*dfd/\

0o | 4 JaA=A4) A(W)

Proof: (i) is an immediate consequence of Theorem 2.1.8. (ii3) and Theo-
rem 2.1.9. (44). For (ii) observe that 3 [}y, fdA < oo since f € L1, so that

ST PMA) < (L, Py < 00

To prove (i44) it suffices to let X be the single cycle UF™*PITW. Fix A € X with
A C W, and consider the function (A(A))/(A(W))1w. Now 14 —(A(A))/(A(W))1w
is orthogonal to K: it is clearly orthogonal to P71y, for j # 0 (mod k), and

Set g =14 — (A(A))/(A(W))1lw. By Theorem 2.1.8. P™g and P*"g tend weakly
to 0. If f € Ly then

A(A
(PEFIf,14) = (f, Pritg) + (f, PRt s ((W)) lw)

AA) _MA) [ pa
W) /P*dw A= 3w) /WP Jax

as n — oQ.
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Let h € Ly and fix € > 0. Choose f € Ly with ||h — f||1 < e. Then

AA) [ pa
7 /WP hd
A(A)

= <h — f, P*"k+d1A> _ m /W Pd(h _ f)d)\

A(4)

+ (f, Prktdy ) — NO7) /W PAfd

MA
SHh—ﬂh+x%%M—fm+e<%,

<Pnk+dh,1A> o

since

A(4) d
(PRt f ] ) — —/ Pefd) < ¢
AW) Jw
for sufficiently large n. The results for P* follow by symmetry. [

2.2. The Results Based on the Results of Foguel ([2]).
Definition 2.2.1. Let K be an integral Markov operator:

ww=AKmW@@.

If [ x K(z,y)dr =1, then K is called a stochastic integral Markov operator.

Definition 2.2.2. Let a family A C X be given. A Markov process is called
sweeping with respect to A, if

lim [ P"fdm =0

n—00 A

for A € A and every density f.
In the sequel we shall assume that .4 satisfies the following properties:
(1) 0 <m(A) <ocofor Aec A
(17) Ay, A € A implies A1 U Az € A
(#47) There exists a sequence {A,} C A such that UA, = X.
A family satisfying (¢) — (é2%) will be called admissible.

Definition 2.2.3. Let (X,X,m) and an admissible family A C ¥ be given. A
measurable function f: X — R is called locally integrable, if

/\f|dm<ooforA€A.
A

Definition 2.2.4. Let a Markov process P be given. A function f is called density,
if [|[f|l=1and f > 0. A density f is called stationary, if Pf = f. The operator is
called asymptotically stable, if there is a density f, such that

lim [[P"f — f.]| =0
n—oo

for every density f.

The following theorem is proved in [7] and is a consequence of Theorem 2.1.10..
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Theorem 2.2.1. Let a measure space (X,%, m), an admissible family A and an
integral Markov operator K be given. If K has no stationary density but there exists
a positive locally integrable f, subinvariant with respect to K, then K 1is sweeping.

Proof: Consider a new measure space (X, X, my) where dm, = f,dm and define
an operator K by the formula

Rh($)=/Xff(fﬁ,y)h(y)dm*(y)a K(z,y) = K(z,y)/f(z) .

It is easy to verify that K is a Markov operator on Li = L1(X, ¥, m,) and that K
has no invariant density; further K1 = K f, /fx < 1. This inequality allows to use
the classical decomposition technique [2]. Let X1, X, X5, defined for operator K
be the same as in section 2.1.. We have for every A C X5, m.(A) < oc and h € Ly

lim [ K"hdm, = lim [ U"hdm, =0,

where U is adjoint to K. By Lemma 2.1.4. ¥ is atomic. Thus Xy consists of sums
(with finite measure) of atoms: A;, As, .... Since K has no invariant density

lim K"hdm, = lim U"hdm, =0 for h € L,

holds for every atom Ax € X;.
Now we are in a position to verify that K is sweeping. Let f € L; and A € A
be fixed. Since f, is integrable, m,(A) < co. Setting h = f/f, we obtain

/ K™ fdm = / K"hdm, = / K"hdm, + / K™hdm, .
A A ANX, ANX,

Since AN Xy C X5 the first integral on the right hand side converges to zero. In
order to evaluate the second one, choose a p > 0. There exist an M > 0 and a
sequence of atoms Ay, A, ..., Ax such that

/ (h— M1p)Tdm, < pu where B = U, Ay, .
X1

Thus

/ K"hdm, < | K"(h—M1g)tdm, +M K™1gdm,
X1NnA X1 X1NA

§u+M/ ﬁnlxlnAdm* .
B

Since B is a finite sum of atoms, the last integral converges to zero and the proof
is completed. [
Theorems 2.2.2; 2.2.3. and Corollary 2.2.1. are proved in [1].
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Definition 2.2.5. We say that a Markov process P overlaps supports if for every
two densities f, g there is a positive integer ng = ng(f, g) such that

p(supp P™ f Nsupp P™g) >0 .
Observe that this condition implies that
p(supp P" f Nsupp P"g) > 0 for n > no(f,g) -
In fact,
supp P" f Nsupp P"g O supp P" " (min {P™ f, P"g}) .
Theorem 2.2.2. A stochastic integral Markov operator which overlaps supports
and has a stationary density f. > 0 a.e. is asymptotically stable.

Proof As in the proof of Theorem 2.2.1. consider a new measure space
(X, X, m,) where dm, = f.,dm and define an operator K by the formula

Kh(x)Z/XK(x,y)h(y)dm*(y), K(z,y) = K(z,y)/fu(z) .

It is evident that K is an integral Markov operator on the space L, = L1 (X, %, m,)
and that ~
Klx=1x.

This equality allows to use the classical decomposition technique [2]. Let ¥;, Xi,

X, defined for operator K be the same as in section 2.1..
Let f =1x,, g = 1x. Then by Theorem 2.1.10. (4)

n—0o0

lim [ ¢.K"fdm,=0.
X
Since K preserves the integral with respect to my, this gives m,(X3) = 0. Assume
that W; is a wandering atom of ;. Then
supp (K™1w,) Nsupp (K"K 1w,) = supp (K™1w,) Nsupp (K"*'1w,) = @

for every n, which contradicts the fact that K overlaps supports (since Knf =
1/fi K™ (f.f«), K also overlaps supports). Thus there are no atoms of ¥;. Assume
now that W; is a cyclic atom of 31 with period £ > 2. Then, as previously,

supp (K™1y,) Nsupp (K"K1y,) = supp (K™1w,) Nsupp (K" 1y,) =@

for every n. Consequently each atom W; of ¥, is cyclic with period £k = 1. Assume
that there are two such sets W; and W5. Then

sSupp (KH1W1) M supp (f(nlWQ) =WinWy, =0

for every n which again contradicts overlaping supports. Thus there is exactly one
cyclic set W with length of cycle k =1 and X = W;. By Theorem 2.1.10 (iiz) we

have
lim ||[K"f — (/ fdm*> x|z, =0
n—o0 X
for every f € Ly. Let f € L1, h = f/f.. Then
lim [[K"f — fullp, = lim [K"h —1x]|z, =0

Thus K is symptotically stable. [
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Sometimes we have a stationary density that is not positive on the whole space
which is an important assumption in the Theorem 2.2.2.. This situation may be
improved by studying P restricted to the support of the invariant density.

Let a Markov process P : L1 (X, 3, m) — L1(X, 3, m) be given. It is well known
that for every nonnegative f, f. € L1(X) the inclusion supp f C supp f. implies
supp Pf C supp Pf,. In particular, if f, = Pf, and supp f. = C then supp f C C
implies supp Pf C C. This property allows to consider P on the space L;(C) of all
functions from L, (X) with supports contained in C. We will denote P restricted
to Ll(C) by Pc.

Theorem 2.2.3. Let P : L1(X,%,m) —» Li(X,%X,m) be a Markov process with
||P|| = 1 having an invariant density f.. Assume that the operator Pc with C =
supp f« is asymptotically stable. Assume moreover that there is a 6 > 0 such that

(2.2.1.) sup/ P" fdm > § for every density f .
n JC

Then the operator P : L1(X) — L1(X) is also asymptotically stable.

Proof: According to the Lower Bound Function Theorem (Theorem 2.3.3.) it
is sufficient to find a nonegative h € L, ||h]| > 0 such that

T [[(P" — B) |z, =0

for every density f. Define h = %(5 f« and fix a density f. According to (2.2.1.)
there is an integer m such that

1
77::/ P™fdm > =§ .

c 2

For n > m we have
P"f= P"‘m(IX\Cme) + P " (1cP™f) .
Since P¢ is asymptotically stable with the invariant density f, we also have
lim (|23 (1P )~ nfl = 0.
Since h < nf. we have
Tim [(P"f —B)7[| < lim [[PA-"(1cP™f) ~nful = 0. O

Corollary 2.2.1. Let K : L1(X,X,m) — Li(X,X,m) be a stochastic integral
Markov operator which overlaps supports and has the invariant density f,. De-
note C = supp f«. If there is a 06 > 0 such that (2.2.1) is satisfied then K is
asymptotically stable.

Proof: According to Theorem 2.2.3. it is enough to prove that the operator K¢
is asymptotically stable. Evidently

Kof(z) = /C K (z,)f (y)dy

for every f € L1(C) and
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0=/Cf*(y)dm(y)—/Cch*(ﬂf)dm(x):
:/u—/K@wwmwmwwmm
C C

hence

/ K(z,y)dm(z)=1 for ye€ C ae.
C

This shows that K¢ is a stochastic integral Markov operator. Thus we can apply
Theorem 2.2.2. to the operator K¢ and its asymptotical stability follows. [

Theorem 2.2.3. has the assumption of the existence of an invariant density. Now
we give some sufficient condition for the existence of a stationary density.

Definition 2.2.6. A Banach limit L is a linear functional defined on the space
lo of bounded sequences (a,,) = (a1,as2,...) of real numbers which satisfies the
following conditions:

(1) L(ay) > 0ifa; >0 (i=1,2,...)

(Z’L) L(al, ag, .. ) = L(CLQ, as, . . )

(7i7) L(1,1,...) =1

If (ay,) is convergent then L(a,) = lim a,, and if limsup a,, < ¢ then L(a,) < c.
n—oo n

Theorem 2.2.4. Let P : L1(X,X,m) — L1(X,%X,m) be a Markov process with

|P|| =1 and L a Banach limit. Assume there erists a set A € A, m(A) < o, a
number 0 > 0 and a density f such that

(2.2.2.) L(/ P"fdm) <1 for EC A and m(E) < .
(X\A)UE

Then P admits a stationary density.

The proof of this result was given by Socala [18]. It should be noted, however,
that in Socala statement a stronger form of condition (2.2.2.) was used. Namely
functional L was replaced by limsup. The above formulation was proposed by
Komorowski and Tyrcha [7].

Theorem 2.2.4. and Corollary 2.2.1. were (in [1]) applied to some operators
appearing in the mathematical theory of the cell cycle. We shall consider stochastic
integral Markov operators of the form:

A(z)
(2.2.3) Kf(z)= i K(z,y)f(y)dy ,
where
(22.4) K(r,) = ~ - HQO@) - QM)

27



In the remainder of this section we shall assume that
(K1) The function H : [0, 00) — [0, c0) is nonincreasing, absolutely continuous,
and

H(O0)=1, lim H(z)=0.

—r0o0
(K2) The functions @ : [0,00) — [0,00) and A : [0, 00) — [0, 00) are
nondecreasing, absolutely continuous, and

Q) =X(0)=0, lim Q(z)= lim A(z) =00 .

T—r00 T—00

Denote h(z) = —H'(z). Theorems 2.2.5. and 2.2.6. are proved in [1].
Theorem 2.2.5. If there exists an o € (0,1] such that

T— 00

(2.2.5.) /000 z%h(z)dx < liminf((Q(A(z))* — Q(x)?) ,

then the operator K given by formulas (2.2.3.) and (2.2.4.) has a stationary
density.

The proof of this theorem is based on the Theorem 2.2.4..

Theorem 2.2.6. If there exists a positive number oo < 1 such that (2.2.5.) holds,
and a nonnegative number c such that

h(z) >0 forxz > c a.e.,

then the operator given by (2.2.3.) and (2.2.4.) is asymptotically stable.
The proof of this theorem is based on the Theorem 2.2.4. and Corollary 2.2.1..

2.3. The Results of [8]: the Convergence of Ergodic Averages, the
Lower Bound Function Theorem, the Lyapunov Function and the
Condition for the Asymptotical Stability.

All theorems and corollaries from this section are proved in [8].
Let (X,X,m) be a measure space, F a set of functions in L.

Definition 2.3.1. The set F will be called strongly precompact if every sequence
of functions {f,}, fn € F contains a strongly convergent subsequence {f,,} that
converges to f € L,.

Definition 2.3.2. The set F will be called weakly precompact if every sequence
of functions {fn}, fn € F contains a weakly convergent subsequence {fy,} that
converges to f € L.

n—1
Let A, f =1 % P¥ffor f € L.
k=0
Theorem 2.3.1. Let (X,X,m) be a measure space and P : L1(X) — L1(X) a
Markov process with ||P|| = 1. If for given f € Ly(X) the sequence {A,f} is
weakly precompact, then it converges strongly to some f. € L1(X) that is a fized
point of P. Furthermore, if f is a density, then f, is a density.

The proof of this theorem is based on the Hahn - Banach Theorem.
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Theorem 2.3.2. Let (X,X,m) be a measure space and P : L1(X) — L1(X) a
Markov process with |P|| = 1 with unique stationary density f.. If fo > 0Vz € X,
then

n—>00
for every density f.

The following theorem gives the necessary and sufficient condition for the asymp-
totical stability.

Definition 2.3.3. A function h € Lq is a lower - bound function for a Markov
process P : L; — Ly if

Jim (P~ )] =0
for every density f. A lower bound function is called nontrivial if » > 0 and ||A|| > 0.

Theorem 2.3.3. (The Lower Bound Function Theorem). Let (X, X, m) be a mea-
sure space and P : L1(X) — L1(X) a Markov process with ||P|| = 1. P is asymp-
totically stable if and only if there exists a nontrivial lower bound function for P.

Corollary 2.3.1. Let (X,X,m) be a measure space, K : XX — R a stochastic
kernel. Denote by K,(z,y) the kernel corresponding to the operator K™. If for
some m

/ inf K, (z,y)dx > 0,
X Y

then K is asymptotically stable.
Proof: By the definition of K,,, for every density we have

K" f(z) = /X Ko(z,9)f(0) ]y -

Furthemore, from the associative property of the composition of operators,

Koim(2,9) = / Ko(2, 2) K (2, y)dz |
X

so that
K™ (@) = [ Koo, ) (1) =
=[] Kootz sy
x Ux
If we set
h(z) = inlme(a:, Y)
then

k(o) 2 00) [ [ Kotz s =
— h(z) /X £(y)dy
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since K is a stochastic kernel. Furthemore, since f is a density,
K" f(@) 2 h(z)
for n > 1 and every density f. Thus
(K" —=h)"=0 for n>m+1,

which completes the prooof. [

The last theorem from this section gives a sufficient condition for the asymptot-
ical stability and has an application in the mathematical theory of the cell cycle
(see section 2.5.).

Definition 2.3.4. Let X be an unbounded measurable subset of a d - dimensional

Euclidian space R?, X C R?, K : XxX — R a measurable stochastic kernel. We

will call any continuous nonnegative function V' : X — R satisfying lim V(z) = oo
T—r0o0

a Lyapunov function.

Theorem 2.3.4. If a stochastic kernel K (z,y) satisfies

/ inf K(z,y)de>0 Vr>0
X lyl<r

and has a Lyapunov function V : X — R such that
| KewV@is<av@+s 0<a<i, 520,
X

then K is asymptotically stable.

2.4. The Asymptotic Periodicity of Markov and Related Operators.

The paper [4] provides a unified exposition of some results in the theory of
the asymptotical behaviour of Markov (and related) operators. In this section we
summarize some results of this paper.

Throughout this section by a Markov operator we mean Markov process with
norm 1. We shall deal with operators on L;(X), where (X,X,m) is a measure
space, m a o - finite measure on a o - algebra Y. Denote the set of nonnegative
elements of Ly by

Lf={feL;: f(z)>0a.e}

and densities
D={feLf:|fll=1}.

Definition 2.4.1. An operator P is called
(i) power bounded if there exists an M > 0 such that

IP"|<M VneN

(id) trivial if
lim |P"f|=0 Vfel
n—0o0
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(447) strictly nontrivial if
liminf [P f|| > 0
n—0o0

for every density f.
(iv) weakly almost periodic if for every f € L; the trajectory {P" f} is weakly

precompact.
(v) constrictive if there exists a weakly compact subset F' C L; such that

lim d(P"f,F)=0

n—00

for every density f, where d(g, F') is the infimum of ||g — h|| , h € F.
(vi) asymptotically periodic if it is either trivial or if there exist finitely many

distinct functions g1,...,9, € Lf, a permutation « of the set {1,...,a} and
positive continuous linear functionals A{,..., A, on Ly such that
a
(2.4.1.) dim [|P"(f — > Xi(f)gi)ll =0 and Pg; = gogiy , i=1,...,a.
=1

Theorem 2.4.1. A constrictive operator is asymptotically periodic.

Definition 2.4.2. A Markov operator P is called quasi constrictive if it has a
constrictor F' C LT satisfying: There exist K € ¥, m(K) < oo and numbers
k<1, ¢ >0such that

/ fdm <k for fe F, m(B) <§ .
BU(X\K)

Definition 2.4.3. A Markov operator is called almost constrictive if it satisfied:
There exist k£ < 1 such that for any decreasing sequence {B,,} with empty inter-

section
lim (limsup/ P”fdm) <K
m—ro0 n Bm

for every density f holds.

Definition 2.4.4. An operator P is called
(1) quasi constrictive if there exist K € ¥, m(K) < oo, real numbers £ , 6 > 0
and a function ng such that

/ P"fdm > e form(B) <o, f€ D, n>no(f)
K\B

(#4) almost constrictive if for any decreasing sequence {B,,} with empty inter-

section
lim (hm inf / pP"f dm) > ¢

for some € > 0 and all densities f.

Remark. For Markov operators, both definitions are equivalent.
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Theorem 2.4.2. If P is quasi - constrictive operator then it is asymptotically
periodic.

A more detailed characterization of the asymptotic periodicity of operators is
given by the following result.

Theorem 2.4.3. Let P be an asymptotically periodic operator.
(i) The functions g1, ...,g, € LT satisfying (2.4.1.) are linearly independent.
(i) For everyi , j€{l,...a} , i# j and f € LT

supp (f) € supp (9:) N supp (g;5) = lim [[P"f[|=0.

(#91) If P is strictly nontrivial operator, then the functions g1, ..., g, Satisfying
(2.4.1.) have disjoint supports.
(iv) If P is a Markov operator then there erist densities g1, ..., g, with disjoint

supports satisfying (2.4.1.).
Definition 2.4.5. B € ¥ with m(B) > 0 is called a lower set for an operator P if

lim m(B — supp (P"f))=0 VfeD.

n— 00

Theorem 2.4.4. If P is an asymptotically periodic strictly nontrivial operator
having a lower set, then P is asymptotically stable.

This result is a consequence of the following one.

Theorem 2.4.5. If P is a weakly almost periodic strictly nontrivial operator having
a lower set, then it is weakly asymptotically stable i.e. there exists a P - invariant
density g and a positive linear functional X on Ly such that for every f € Ly the
differences

P f = A(f)-g
converge weakly to 0.

[4] contains an interesting criterion of existence of invariant density for a given
nontrivial operator.

Theorem 2.4.6. A strictly nontrivial operator P has an invariant density if and
only if there exists f € D such that for every decreasing sequence {By,} C ¥ with
empty intersection the inequality

lim liminf/ An(f)dm | >0

holds. (An(f) =1/n nz;:: Pif )

Theorem 2.4.7. An almost constrictive operator is weakly almost periodic.

We shall end summarizing the results of [4] with one result that might help in the
studying the asymptotical stability of Markov operators. Under some assumptions
the studying the asymptotical stability can be restricted to the support of invariant
density.
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Theorem 2.4.8. Let P be an operator.
(i) For a given f € LT the trajectory {P"f} is weakly precompact if and only if
the sequence

An(f)=1/n)  Pf
1=0

converges in Lq.

(i) P is weakly almost periodic if and only if there exists a fo € D such that
fo >0 a.e. and the sequence { A, (fo)} converges in Ly to a P - invariant density
g. Moreover, the set G = supp (g) and its characteristic function 1g satisfy

lim ||P"f —1g.P"f||=0 Vfe€ L.

Theorem 2.4.2. was in [11] applied to the class of Markov operators appearing
in the mathematical theory of the cell cycle. Let

A(z)

(2.4.2.) Kf(z)= ; K(z,y)dy ,

where K (z,y) = — 2 H(Q(A(z)) —Q(y)). We shall assume that @, A and H satisfy
the following conditions:
(7) The functions Q : Rt — Rt and A : R™ — RT are non - decreasing and
absolutely continuous on each subinterval [0, c| of the half line RT. Moreover

Q(0) = A(0) =0 and $1g£10 Q(z) = lim A(z) =00 .

T—> 00

(1) The function H : R™ — R* is non - increasing, absolutely continuous on
each interval [0, ¢], and

H(0)=1, lim H(z)=0.

Tr—00

Denote h(x) = —H'(x). The following theorem is proved in [11].

Theorem 2.4.9. Assume that
o
/ zh(z)dxr < 0o
0

for some € > 0, and that
A
lim inf M > 0.
£—00 Q(aj)
Then P given by (2.4.2.) is asymptotically periodic. If there is a number zy > 0
such that

h(z) >0  forxz > xg,

then P given by (2.4.2.) is asymptotically stable.
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2.5. The Results Based on Lyapunov and Bielecki Functions.
Theorem 2.5.1. is proved in [3].
Theorem 2.5.1. Let K be a stochastic integral Markov operator of the form

where

A(z)
K("B7y) = _1[y,oo]()‘(x))% exp <_/ Q(Z)dz) .

( 1fy,00] is the characteristic function of the interval [y,o0] ). Let A and q satisfy
the following conditions:

(1) The function X\ : RT — R is continuously differentiable. Moreover,

A(z) >0 forz >0, A0)=0, and lim;_, A(z) = co.

(12) The function q : Rt — Rt is locally integrable and

/000 q(x)dx = oo .

Denote H(z) = Q(A\(x)) — Q(x), where Q(x) = fox q(y)dy. If 1l$II_1)£fH(.T) > 1 then
K is asymptotically stable.

The proof of this theorem is based on the Theorem 2.3.4..
Definition 2.5.1. A function V : RT — RT is called a Bielecki function if it is

measurable, locally bounded, and

inf V(z)>0 Ve>0.
0<z<c

Theorem 2.5.2. Let P be a Markov process with | P|| = 1. If there exists a Bielecki
function V' and a nonnegative constant v < 1 such that

| veri@i <y [ Ve
0 0
for every density f, then the operator P is sweeping with respect to the compact
sets of [0, c0).
This theorem is proved in [3]. The following theorem is proved in [1].

Theorem 2.5.3. Let K be a stochastic integral Markov operator of the form

A(z)
Kf(z)= ; K(z,y)f(y)dy ,
where 5
K(z,y) = -5 H(Q\(z)) - Qy))



Let Q, A, —H are nonnegative, nondecreasing, absolutely continuous functions
satisfying:
H(0)=1, lim H(z)=0,

Tr—00

Q(0) =A(0)=0, lim Qz) = lim AMz) =00 .
Denote h(x) = —H‘(x). Assume that

sw (QA)* - Q@) < [ " P h(x)dz < oo

T>x0

for an xog > 0 and B > 1 and that

/oo hw)dz > 0 .

Q(A(w0))
Then K is sweeping with respect to the compact sets of [0,00).

The proof of this theorem is based on the Theorem 2.5.2..

2.6. Asymptotical Stability, Sweeping and Stationary Densities for
Stochastic Semigroups of Operators

In this section we give some consequences of the results given in the sections 2.1.-
2.5. for stochastic semigroups of operators.

Definition 2.6.1. Let (X,X,m) be a measure space. A family of operators
P, : Li(X) — Li(X), t >0, satisfying
(2) Py(Afi+Xafe) = MPfi+ XaPifa Vi, fo € L1, A, M eER
(ie) Pf >0, if f>0;
(#5i) [y Pef(z)dm(z) = [y f(x)dm(x), Vf € Lq;
(’L’U) Pt+t’f = Pt(Ptlf) Vf e L, t, t' > 0;
(v) Pof=f VfelLls,
is called a stochastic semigroup. Further, if, for every f € L; and ¢ty > 0,

tllgtnptf—PtofH:O,

then this semigroup is called continuous.

Definition 2.6.2. A stochastic semigroup of operators {P;};>¢ is called asymp-
totically stable, if there exists a unique density f, such that P;f, = f, for allt > 0
(unique stationary density), and

lim P f = f.
t— o0
for every density f.

Definition 2.6.3. Let (X,X, m) be a measure space, A an admissible family of
measurable sets. A stochastic semigroup P; : L;(X) — L1(X) is called sweeping
with respect to A if

lim [ P.f(x)dm(z)=0

t—o0 A
for every density f and A € A.

Theorems 2.6.1.-2.6.3. are proved in [8] and give the connection between asymp-
totical behaviour of discrete time semigroups of operators and continuous time
systems of operators.
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Theorem 2.6.1. If P, : L1(X) — L1(X) is a continuous stochastic semigroup and
if Py, fo = fo for someto > 0 and some density fy, then

fulz) = & /O " P fo()dt

1s a density and satisfies Py f, = fy for allt > 0.

Theorem 2.6.2. Let (X,X,m) be a measure space, A an admissible family of
measurable sets, and Py : L1(X) — L1(X) a continuous stochastic semigroup. If
for some ty > 0 the sequence {Pt’z} 1s sweeping with respect to A, then the semigroup
{P:}i>0 is also sweeping with respect to A.

Theorem 2.6.3. Let P, : L1(X) — L1(X) be a continuous stochastic semigroup.
If for some ty > 0 the sequence {ng} 1s asymptotically stable, then the semigroup
{P;}e>0 is also asymptotically stable.

Now applying theorems 2.6.1.-2.6.3. and using results that we have for discrete
time semigroups, we may describe the asymptotic behaviour of continuous time
semigroups. Theorems 2.6.4.-2.6.6. are proved in [8].

Theorem 2.6.4. Let {P;};>0 be a semigroup of Markov operators, not necessarily
continuous. Assume that there is an h € Ly, h > 0, ||h|| > 0 such that
(2.6.1.) Tim [|(Pof ~ )7 =0

for every density f. Then there is a unique density f. such that P;f, = f. for all
t > 0. Furthermore,

(2.6.2.) lim Pf = f,

for every density f.

Proof: Take any ¢y > 0 and define P = P, so that P,;, = P". Then from
(2.6.1.)
i [[(P"f )] =0

for every density f. Using Theorem 2.6.3. and Theorem 2.3.3. (The Lower Bound
Function Theorem) we have (2.6.2.). O

Theorem 2.6.5. Let X, X, m) be a measure space, and A a given admissible family
of measurable sets. Furthermore, let Py : L1(X) — L1(X) be a continuous stochastic
semigroup for which there exists a Bielecki function V : X — R, a constant v < 1,
and a point tg > 0 such that

/X V(@) Py f(2)dm() < 7 /X V(@) f(2)dm(z)

for every density f. Then the semigroup { Py, };>0 is sweeping.

Proof: Since the operator P;, satisfies the conditions of Theorem 2.5.2., the
sequence {P;,} is sweeping. Theorem 2.6.2. completes the proof. [
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Theorem 2.6.6. Let X, X, m) be a measure space, and A a given admissible family
of measurable sets. Furthermore, let Py : L1(X) — L1(X) be a continuous stochas-
tic semigroup such that for some to > 0 the operator Py, satisfies the following
conditions:

(i) P, is an integral operator given by a stochastic kernel; and

(i) There is a locally integrable function f. such that

P fi <f« and f, >0 a.e.

Under these conditions, the semigroup { Py, }¢>0 either has an invariant density, or
it is sweeping. If a positive invariant density exists and, in addition, P;, overlaps
supports, then the semigroup is asymptotically stable.

Proof: Assume first that {P;,};>0 is not sweeping so by Theorem 2.6.2. the
sequence { P} } is also not sweeping. In this case, by Theorem 2.2.1. the operator
P,, has an invariant density. Theorem 2.6.1. then implies that {P,}:>0 must
have an invariant density f . In the particular case that f > 0 and P, overlaps
supports, it follows from Theorem 2.2.2. that { P} } is asymptotically stable. Finally
Theorem 2.6.3. implies that {P;, }+>0 is also asymptotically stable. [

37



3. THE RESULTS OF THE DISSERTATION AND APPLICATIONS

Definition 3.1. We say that an integral Markov operator K : L1(X) — L1(X)
satisfies the property (P) with respect to a topology 7 on X, if

(Vy € X)(3B € X with m(B) > 0 such that ((Vz € B)(3U; € T,

gz > 0 such that y € Uy, and Vz € Uy : K(z,2) > €;)))

Theorem 3.1. Let K be an integral Markov operator satisfying the property (P)
with respect to a topology T . Let the measure m be locally finite (with respect to T ).
Let the sets of A be compact. If K has no stationary density, then K is sweeping
with respect to A.

The proof of this theorem is in the paper ”The Foguel Alternative for In-
tegral Markov Operators” .

Example 3.1. In the mathematical theory of the cell cycle an important role is
played by the class of integral Markov operators of the form:

A(z)
Kf(z)= ; K(z,y)f(y)dy ,

where
K 9 "
(z,y) = ~ B exp{—/y q(z)dz} .

Assume the following conditions:

(i) A : RT — R is continuously differentiable. Moreover,

N(z) >0 for z >0, A(0) =0, and limg_, o, A(z) = 0.

(i7) The function ¢ : R* — R* is locally integrable and [~ ¢(z)dz = .

Let 7 be the Euclidian metric topology, A the family of compact subsets of
[0,00). In the paper ” The Foguel Alternative for Integral Markov Opera-
tors” is proved, that K satisfies the property (P) and hence, by Theorem 3.1., is
sweeping or has a stationary density. Using Theorem 2.2.3. is proved, that even
the alternative of sweeping or asymptotical stability holds.

Theorem 3.2. Let (X,%, m) be a Banach measure space with metric topology. Let
the measure m be locally finite. Let K be an integral Markov operator with kernel
K (z,y) satisfying:

inf K(z,y)dz >0 Vr>0.
x llyli<r

Then K 1is sweeping with respect to the compact sets or has a stationary density.

Proof: By Theorem 3.1. it is enough to prove, that K satisfies the property (P).
Take y € X and put r = ||y|| + 1. Denote by B(r) the set {z : ||z|| < r}. Put

B:{a:EX:”iﬂlf K(z,z) >0},
z||<r

U =B(r), e; = ”iﬁlf K(z,z) forz € B
z||<r

(see def. 3.1.). O
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Theorem 3.3. Let (X,3,m) be a measure space with a topology T. Let the mea-
sure m be locally finite (with respect to T ) and nonempty open sets have positive
measure. Let K : L1(X) — L1(X) be an integral Markov operator with continuous
kernel satisfying:

/X K (z,y)dz = 1

for every y € X. Then K is sweeping with respect to the compact sets or has a
stationary density.

Proof: It is enough to prove (by Theorem 3.1.), that K satisfies the prop-
erty (P). Take y € X. Since

/ K(ﬂ?,y)dﬂ?:]_,
X

there exists xg € X such that K(xo,y) > 0. K(z,y) is continuous, so there exist
e > 0, Uy - a neighbourhood of y, U, - a neighborhood of z such that K (z,y) > ¢
on the set Uy, xUy,. Now put B = Uy,, €; = ¢, UJ = U, for z € B (see def. 3.1.).
]

Remark. For integral Markov operators the condition

/X K (z,y)dz = 1

must be satisfied for almost every y. So the condition

/ K(z,y)dx =1
X
for every y € X is not trivial.

Theorem 3.4. Let K : L1([0,00)) — L1([0,00)) be an integral Markov operator of

the form
A=)

Kf(z)= ; K(z,y)dy ,

where X is a continuous, nondecreasing function with A(0) = 0 and limg o, A(z) =
co. Let the kernel K(x,y) be continuous on the set

{(y):0<y <A(2)},
and

/ K(z,y)dxr =1
0

for every y > 0. Then K is sweeping (with respect to the compact sets of the
Euclidian metric topology on [0,00)) or has a stationary density.

Proof: We show that K satisfies the property (P). Take y € [0, 0c0). Since
R+
there exists z¢ € (0,00) such that A(z¢) > y and K(z¢,y) > 0. K(z,y) is contin-
uous, so there exist €,01,d2 > 0 such that K(x,y) > ¢ on the set (zo — 01,20 +
01)x(y — 02,y + 62). Now put
B = (g — 61,m0 + 61) ,
e; =€, Uy = (y — 02,y + 02)
for x € B (see def. 3.1.). O
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Example 3.2. (Discrete time system with constantly applied stochastic perturba-
tions.) In the Chapter 1 is dealed the process

Tn+1 = S(xn) + én ;

where S : R* — R? is a measurable transformation and &g, &1, ... are independent
random vectors, each having the same density g. If we denote by f, the density of
z,, then

fn—*—l(m) - Kfn(x) 3
where

Kf(z)= y f(y)g(z— S(y))dy .

If the kernel K(z,y) = g(z — S(y)) is continuous, then by Theorem 3.3. K is
sweeping or has a stationary density.

Example 3.3. (Discrete time system with multiplicative perturbations.) Let X =
(0,00). Define the process on X by

Tnt1 = gns(xn) )

where S : (0,00) — (0,00) is continuous and positive and &, are independent
random variables, each having the same density g. In the Chapter 1 is shown that,
if we denote by f,, the density of xz,,, then

fn—l—l(x) = Kfn(x) ’

where
x 1

Kf(x) = /0 " ) (@) Sl

If the kernel K(z,y) = g (%) ﬁ is continuous, then by Theorem 3.3. K is

sweeping (with respect to the compact subsets of (0, 00)) or has a stationary density.
Note that if the density g is continuous, then the kernel K (z,y) is continuous.

Example 3.4. (The linear Boltzmann equation.) Consider the linear Boltzmann
equation
ou(t, x)
ot
where v : RTxX — R is a function, f € Li(X), K : L1(X) — Li(X) is an
integral Markov operator. Consider the solution u(t,z) as a function of positive
real numbers RT into L

+u(t,z) = Ku, u(0,z)=f,

u: Rt = Li(X) .
Thus we may write the equation in the form

du

— =(K—-1Du, u(0)=f.

W (KD, ()=

In [8] is shown, that this equation generates a unique continuous semigroup of

Markov operators {K;}s>0 given by

(3.1.) u(t) = Kof = etE-D g
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From (3.1.) easily follows (using e/ =1 f =3 %(K —I)"f ), that if K f, = f.
for some density f,, then also K;f. = f.. Now we prove, that if K is sweeping with
respect to some admissible family A, then also {K:}+>¢ is sweeping with respect to

A. Take a density f, A € A, € > 0. Then there exists ng € N such that

/K"fdm<6/2 Vn > ng .
A

Now
~ oo " . ~ no ,n . ~ oo n .
th:etZEK f:etZEK f—|—€t Z EK f,
n=0 n=0 " n=ng+1
and

o t"‘
K, f<et —/K"f+s/2.
RS

Since lim;_,o, e~*t™ = 0, there exists ¢ty > 0 such that
a1
— n
e ZE/AK f<e/2fort >ty
n=0

hence
/th<€f01‘t>t0.
A

Thus we have proved, that the semigroup {K;}:>o has a stationary density, if the
operator K has a stationary density and is sweeping, if the operator K is sweeping.
Now we may study the veracity of the Foguel alternative for the semigroup {K;}+>o
using Theorems 3.1.-3.4. on the operator K.

The following corollaries (3.1.-3.3.) are immediate consequences of Theo-
rems 3.1.-3.3. and Theorems 2.6.1.-2.6.2. for continuous stochastic semigroups
of the type

(3.2) K, f () = /X K(t,2,9)f (4)dy

Corollary 3.1. Let a measure space (X,X, m) with a topology T and a continuous
stochastic semigroup {K}i>0 of the type (3.2.) be given. Let the measure m be
locally finite. Let A be the family of compact sets. Let for some ty > 0 the property
(P) is satisfied for the kernel K (to,z,y). Then {K;}i>0 is sweeping with respect to
A or has a stationary density.

Corollary 3.2. Let (X, 3, m) be a Banach measure space with metric topology. Let
the measure m be locally finite. Let {K;}t+>0 be a continuous stochastic semigroup
of the form (3.2.). Let for some to > 0 the kernel K (to,x,y) satisfy

/ inf K(tg,z,y)dz >0 Vr>0.
x llyli<r

Then {Ki}i>o is sweeping with respect to the compact sets or has a stationary
density.
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Corollary 3.3. Let (X, X, m) be a measure space with topology T . Let the measure
m be locally finite (with respect to T ) and nonempty sets have positive measure.
Let {K;}t>0 be a continuous stochastic semigroup of the form (3.2.). Let for some
to > 0 the kernel K (to,z,y) be continuous and

/ K(to,ﬂf,y)d.ﬂf =1
X

for everyy € X. Then {K;}i>0 is sweeping with respect to the compact sets or has
a stationary density.

Example 3.5. In the Chapter 1 is dealed the Fokker-Planck Equation
d d
ou 1 0?
3.3. — == —[ai; - b L t>0, R .
B3) 5 =3 2 Gy e - L@, >0, €

If the coefficients a;;, b; and the function f satisfy the properties of the Theo-
rem 1.5.2.; then the classical solution of (3.3.) is unique and given by the integral
formula

u(t.o) = [ Ta) iy

where the kernel I'(¢,z,y) is continuous, positive and independent of the initial
density f. By Corollary 3.3. the semigroup {K;}+>o0

Kuf (@) = ult,a) = [ T(to.)f)dy

Rd
is sweeping or has a stationary density. Fix ty > 0. Then the operator

Ky f(z) = / T(to, 2, )/ (y)dy

Rd
has positive continuous kernel and hence, by Theorem 3.3. is sweeping or has a
stationary density. Let the operator K, has a stationary density. Since I'(¢, z,y) >
0, supp fx = Re. Tt is clear, that K;, overlaps supports. Hence by Theorem 2.2.2.
K, must be asymptotically stable. By Theorem 2.6.3. {K;}+>0 is asymptotically
stable. Thus we have proved,that {K;};>o is sweeping or asymptotically stable.

Remark. The fact, that integral Markov operator with continuous positive kernel
is sweeping or asymptotically stable is known and might be proved without using
Theorem 3.1.. The Foguel alternative for the Fokker-Planck equation is proved in

[8].

The following theorem claims the veracity of the Foguel alternative for integral
Markov operators of the type

A(z) o
(3.4 Kf@) = [ (-5 (TQO@) ~ Q) f)dy

where (), A\ , —H are nonnegative, nondecreasing, absolutely continuous functions
on R* satisfying:
H(0)=1, lim H(z)=0
T—r00

Q(0) = A(0) =0, a:ll)rgo Qx) = zlgglo Az) =00 .

Operators of this type need no satisfy the property (P). Applications of the opera-
tors of the form (3.4.) are discussed in the Chapter 1.
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Theorem 3.5. Let K be an integral Markov operator of the form (3.4.). Let A
be the family of compact subsets of [0,00) (with respect to the Euclidian metric
topology). If K has no stationary density, then K is sweeping with respect to A.

This theorem is proved in the paper ” Asymptotic Behaviour of Some Mar-
kov Operators Appearing in Mathematical Models of Biology” .

Theorem 3.6. claims, that the Foguel alternative holds for every integral Markov
operator, if we do not specify the admissible family A.

Theorem 3.6. Let K be an integral Markov operator. If K has no stationary
density, then K is sweeping with respect to some admissible family A.

Proof: By Corollary 2.1.4.

o0
0< ZKEU(:E) < 00

n=0

for u > 0, hence the process Kp is dissipative. By Theorem 2.1.3. there exists a
o -finite subinvariant measure A equivalent to m [ D. Let g = %. Let Ap be the
family of sets of finite measure (with respect to m ) such that

/gdm<oo VAe Ap .
A

Since g < oo, the family Ap is admissible. Kp is dissipative, hence by Theo-
rem 2.2.1. Kp is sweeping with respect to Ap.

Let K¢ have a stationary density f Let f. be a function on X such that
fo1C=f, fi I D=0. Then

(Kfe) 1 C = (K(fx10)) I C+ (K(fu1p)) IC=Kcf=f.

By Corollary 2.1.2. (K f,) | D= Kp(f« | D) =0, hence K f, = f.

Let K¢ have no stationary density. By Theorem 2.1.2. and Corollary 2.1.1.
there exists 0 < u < oo such that Ku = u (a o - finite invariant measure). Let A¢
be the family of all sets of finite measure (with respect to m ) such that

/udm<oo VA € Ao .
A

Since u < oo, the family A¢ is admissible. By Theorem 2.2.1. K¢ is sweeping with
respect to Ac. Now we shall prove that K is sweeping with respect to Ap U Ac.
Let A € Ap. Then by Corollary 2.1.3.

| Krsam= [ Kp(s1D).
A A
Since Kp is sweeping with respect to Ap:

lim [ K"fdm=0 VA€ Ap .

n—0o0 A
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Now it is enough to prove that
/K”fdm—>0f0rA€Ac.
A
Denote ~ ~
Kof=(Kf)1lc, Kpf=(Kf)1p

fe=flc, fp=flp.
Clearly

Kcf = Keo(fc+ fp), Kf = Kef + Kpf,
Ko(Kf)=K3fc+ K3fp+KoKpfp
Ko(K2f) = K fc+ K&fp + KZKpfp + KcKbfp

K'fle =Ko(K"lf) =
= K¢ fo+ Kgfp+KZ ' Kpfp+...
+ K" K fo+ -+ KoKy fp .
Take 1 < k < n and define:
Mynf = K fo + Kefp + K5 'Kpfp + -+ K§ "' K5 fp
Rinfp =K *Kpfp+--+ KoKy ' fp .
Ko is contraction, hence
|Renfoll < IKGF KB ol + -+ + |[KeKp ol <
<|KcKpfoll+--+ IKeKp ol -
Now
IKpfoll = IKKp foll = |KcKp foll + 1K5  foll ,
hence

IKcKD foll = Kb foll - IKE foll

n

S IKoKS foll = 1K foll - K5 foll
=k

| Rk foll < |K5foll — IKBfol -

The sequence {||K%,f||} is nonincreasing for Kp being contraction. Thus
- - €
K5 foll = | KR fol < ) for n,k > mng(e), n >k .

Now fix k > ng(e), A € Ac. K¢ be sweeping implies

/ My fdm < <
. 2

for n sufficiently large, hence
/K"fdm%OforAEAc. O
A

Corollary 3.4. is an immediate consequence of Theorem 3.6. for integral contin-
uous stochastic semigroups.
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Corollary 3.4. Let {K;};>0 be a continuous stochastic semigroup of the form

Kof(2) = /X K(t,2,9)f (4)dy

If {K}t>0 has no stationary density, then {K,}i>o is sweeping with respect to some
admissible family A.

Proof: It is an immediate consequence of Theorem 3.6. and Theorems 2.6.1.-
2.6.2. O
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THE FOGUEL ALTERNATIVE FOR
INTEGRAL MARKOV OPERATORS

JozEr KOMORNIK
Faculty of Mathematics and Physics, Comenius University, Mlynskd Dolina
84215 Bratislava, Slovakia

and

IGOR MELICHERCIK
Faculty of Chemical Technology, Slovak Technical University
812837 Bratislava, Slovakia

ABSTRACT. A class of Markov operators satisfies the Foguel alternative if its mem-
bers are either sweeping or have stationary densities. New sufficient condition for
this property is given.

1. INTRODUCTION

We shall consider Markov operators K : Li(X) — L1(X) of the form :

Kf(x) = /X K (z,9)f (y)dy

where K(z,y) defined on XxX is a kernel. Such operators were intensively stud-
ied. In [1], [4], [6], [7] some sufficient conditions for sweeping (see def.3.1.) and
asymptotical stability were given. It was proved in [4] that, under the assump-
tion of having subinvariant locally integrable function, the alternative of sweeping
or having stationary density holds. The main result of this paper is the proof of
this alternative without the assumption of having subinvariant locally integrable
function (Th.3.2.).

In the section 2., some necessary results of [2] are presented. In the section 3.,
the main result is proved. Section 4. contains an application of Theorem 3.2. to the
class of Markov operators appearing in the mathematical theory of the cell cycle.

2. SOME PROPERTIES OF M ARKOV PROCESSES

AND INTEGRAL MARKOV OPERATORS

Theorems 2.1 - 2.4. are proved in [2].

Typeset by ApS-TEX
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Definition 2.1. A Markov process is defined to be a quadruple (X,X,m, P) ,
where (X,Y,m) is a o— finite measure space with positive measure and where P
is an operator on L (X) satisfying

(i) P is a contraction : ||P|| <1

(#¢) P is positive : if 0 <wu € L1(X) then Pu >0

Definition 2.2. If u is an arbitrary non-negative function, set Pu := limy_, o, Pug
for 0 < up € L1(X),ur / u, where the symbol , denotes monotone pointwise
convergence almost everywhere. The sequence Puy is increasing so that limg Pug
exists (it may be infinite). By [2] the definition of Pu is independent of the partic-
ular sequence uy.

Definition 2.3. Take uy € L1(X) with ug > 0. Define
C:{:U:ZPkuo(a:):oo}, D=X\C
k=0

By [2] this definition is independent of the choice of wy.
Theorem 2.1. If0<u € Li(X) then

ZPku(x) < oo forxeD, ZPku(m) =0 oroo forxeC .
k=0 k=0

Definition 2.4. A function K (z,y) > 0 defined on XxX which is jointly measur-
able with respect to its variables is called a kernel. Let [, K(z,y)dz < 1. Define
an operator K on Ly (X):

Kf(z) = /X K(z,9)f (y)dy

Then ||K || <1 and K is called an integral Markov operator.

Definition 2.5. Let P be an integral Markov operator, then (X, X, m, P) is said
to be a Harris process if X = C.

Theorem 2.2. Let K be an integral Markov operator and a Harris process. Then
there exists 0 < u < oo such that Ku = u (a o-finite invariant measure).

Theorem 2.3. Let P be a Markov process with X = D. Then there exists 0 < g <
oo such that Pg < g.

Proof: Let 0 < ug € L1(X). Set g =Y o, P*uo. O
Definition 2.6. Let P be a Markov process. Define operators Pg, Pp:

Po : Li(C) — Li(C) , Pof = (Pf) | C,

where the symbol | denotes the restriction to the set C, f is the function f extended
by 0 on D, .
Pp:Ly(D)— L1(D), Ppf =(Pf) | D,

where f is the function f extended by 0 on C.
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Theorem 2.4. Let P be a Markov process. If supp f C C, then supp Pf C C.
(supp | ={wz: f(z) #0})
Corollary 2.1. Let K be an integral Markov operator. Then

(C’E rCam TC,KC)

is a Harris process. (3 | C denotes the o-algebra restricted to the space C, m | C
denotes the measure m restricted to the space 2 | C).

Proof: By Theorem 2.4. supp f C C implies supp K f C C. By Theorem 2.1.
for u >0 on C,u =0 on D:

o= Kru(x)=> KkulC)(x)
k=0 k=0

for every z € C. O
Corollary 2.2. Let P be a Markov process on L1(X). Then

Pp(f1D)=(Pf)ID.
Proof: f = fp + fo, where fc = f.leo,fp = f.lp. By Theorem 2.4.
(Pfc) | D =0, hence
(Pf)I D= (Pfp) | D=Pp(fID). O
Corollary 2.3. PR(f I D)= (P"f)[ D .
Corollary 2.4. Let P be a Markov process on X, let u >0 on D. Then

o0
ZPBU <00 .
n=0

Proof: Let @ be a function on X such that « [ C = 0,4 [ D = u. By

Corollary 2.3.
 Ppu=(>_Pra)[D.
n=0 n=0

By Theorem 2.1. (3,2 P™a) | D <oco. O

3. THE FOGUEL ALTERNATIVE FOR INTEGRAL MARKOV OPERATORS

Definition 3.1. Let a family A C X be given. A Markov process is called sweeping
with respect to A, if
lim P"fdm =0
n—oo A
for Ae Aand fe D (D={fe€ Li(X),||fl=1,f>0})
In the sequel we shall assume that A satisfies the following properties:
(1)) 0 <m(A) <oofor Ac A
(13) Ay, A2 € A implies A1 U Az € A
(731) There exists a sequence {A,} C A such that UA,, = X.
A family satisfying (¢) — (i2%) will be called admissible.
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Definition 3.2. Let (X,3,m) and an admissible family A C 3 be given. A
measurable function f: X — R is called locally integrable, if

/|f|dm<oof0rA€.A.
A

Theorem 3.1. Let a measure space (X,X, m), an admissible family A and an
integral Markov operator K be given. If K has no invariant density but there exists
a positive locally integrable function f, subinvariant with respect to K, then K is
sweeping.

Remark 3.1. Theorem 3.1. was proved in [4] for stochastic kernel operators
(/x K(z,y)dz = 1). But the proof is completely same for integral Markov opera-
tors.

We say that an integral Markov operator K : L;(X) — L1 (X) satisfies a property
(P) with respect to topology 7 on X, if

(Vy € X)(3B € X with m(B) > 0 such that ((Vz € B)(3U; € T,

€z > 0 such that y € Uy, and Vz € Uy : K(z,2) > ¢;)))

Theorem 3.2. Let K be an integral Markov operator satisfying property (P) with
respect to a topology T. Let the measure m be locally finite (with respect to T ). Let
the sets of A be compact. If K has no stationary density, then K is sweeping with
respect to A.

Proof: Denote ~ ~
Kof=(Kf)lc, Kpf=(Kf).1p

fe=flc, fp=flp.

Now
IKS foll = |IKKS foll = |1 Ke Kb foll + IIKS foll
hence o . ~
IKcKh fol = Kb fol — 1K5 ™ foll
(3.1.) Z |KcKLfoll = |1KSfoll = 1K™ foll

1=k
Lemma 1. Lety € X. Then there exists U, € T such that y € U, and

lim Kpfdm =0

n—o0 UyﬂD

for every f € Ly(D).
Proof (of Lemma 1.): By Corollary 2.4.

0< Z Kpu(z) < o0
n=0
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for u > 0, hence the process Kp is dissipative. By Theorem 2.3. there exists a
o -finite subinvariant measure A equivalent to m [ D.
Let Ay be the family of all sets of finite measure (with respect to m) such that

/ﬂdm<oo VA€ A, .
Adm

Since % < oo, the family Ay is admissible. Kp is dissipative, hence by Theo-

rem 3.1. Kp is sweeping with respect to Aj.

Let y be such that for every neighbourhood U € T of y the set DNU has positive
measure. By the assumption there is a set B (m(B) > 0) such that for every x € B
there is U; € T such that K(z,2) > &, on Uy. No loss of generality we may assume
that the sets U, have finite measure.

Let m(BN D) > 0. Then Vo € BN D

g(z) > /Ung K(z,2)9(z)dz > /Ung ez9(2)dz

hence

1
/ 9(2)dz < —g(z) < 0
UznD €z

for every € BN D and UF N D € Ay , limp o0 [(;onp Kpfdm = 0 for every
Yy

x e BND.
Let m(B N D) = 0. Let limp o0 f(7.p KB (f [ D) # 0 for some f € Li(X) and
Y

every z € B. By Corollary 2.3.
K} (f 1 D)= (Kpfp) I D

Then
| Rpioa) >, >0
U; nD

for some J, and infinitely many n,
Ve € B KoK} fp(x) > 0564

for infinitely many n. By the Lebesgue Monotone Convergence Theorem
oo =) KcKpfol =) IKcKpfoll,
n=0 n=0

which contradicts (3.1.). O

Lemma 2. Lety € X, let K¢ has no stationary density. Then there exists Uy € T
such that y € U, and

lim Kafdm =0

n—o0 Uync
for every f € Ly(C).

Proof (of Lemma 2.): By Corollary 2.1. and Theorem 2.2. K is Harris and
there exists a function g, 0 < g < oo such that Kgg = g.
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Let y be such that for every neighbourhood U € 7T of y the set C N U has a
positive measure. By the assumption there is a set B such that for every x € B
there is Uy € T such that K(z,z) > ¢, on U;. By Corollary 2.2. K(z,z) = 0 for
x €D, z€ C, hence BC C. Now

v@)> [ K@iz [ e,

U;”ﬂC

hence 1
/ g9(z)dz < —g(z) < 00
UzncC €

T

for some z € B. Let A, be the family of all sets of finite measure such that

/gdm<oo VAec A, .
A

Since g < oo, the family A, is admissible. Then Uy N C € A, and by Theorem 3.1.
/ KB fdm — 0 Vf € Ly(C) . O
UznC

Lemma 3. Let Ko has no stationary density, let A € A. Then

(3.2.) lim Kifidm =0, lim K fodm =0

n—o0 ANC n—0o0 AND

for every f1 € L1(C), fa € L1(D) .

Proof (of Lemma 3.): Let y € X. By Lemma 1. there exists Uy € T such that
y € Uy and

n—>00 U]_mD

By Lemma 2. there exists Uy € T such that y € Uy and

n—0o0 UQﬁC

Set Uy = U1 N Ug. Then

(3.3.) lim KZfidm =0, lim K7 fadm =0

Thus we have proved that for every y € X there exists U, € T such that y € U,
and (3.3.) holds. Finally (3.2.) follows from compactness of A . O

Proof (of Theorem 3.2.): By Lemma 3. Kp is sweeping, K¢ is sweeping or has
a stationary density.

Let K¢ have a stationary density f Let f. be a function on X such that
fo1C=Ff, f. 1 D=0. Then

(Kfi) 1 C = (K(fx10)) I C+ (K(fulp)) C=Kcf=f.
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By Corollary 2.2. (Kfs) | D = Kp(f« [ D) = 0, hence Kf, = f.. Let Ko be

sweeping. We shall prove that K is sweeping.

Let f € L1(X), then f = fo + fp, where fo = flo, fp = f1p.

lary 2.3.
(K"fo) 1 D=0, (K"f) | D=Kp(f | D).
By Lemma 3.

K" fdm — 0 for every A€ A .
AND

Now it is enough to prove that

K"fdm —0for Ae A.
ANC

Clearly
Kof = Ko(fo+ fp), Kf =Kof+Kpf
Ko(Kf)=Kifc+ Kéfp+KcKpfp

Ko(K%*f) = K fo+ Kifp+ K:Kpfp + KcK5fp

K"flo=Ko(K"'f) =
= K¢ fo+ Kgfp+ Kg ' Kpfp+...
+ K& KR fp+---+ KoKy fp .
Take 1 < k < n and define:

By Corol-

Mynf =K2fo+Kbifp+ K 'Kpfp+---+ KE K1 pp

Rinfp =K KEfp+- -+ KoK5 ' fp .

K¢ is contraction, hence

IRinfoll < |K& KD ol + -+ [KcKp " ol <

<||KcKEfpll+ -+ |KcKE o]l -

By (3.1.) . .
|Renfoll < |KDfDll — |IKDfDl -

The sequence {|[K%f||} is nonincreasing for Kp being contraction. Thus

- - €
1K foll = 1Kpfoll < 5 for n, k> no(e), n> k-

Now fix k > ng(e), A € A. K¢ be sweeping implies
€

Mk,nfdm < =

ANC 2

for n sufficiently large, hence

K'fdm —-0for Ac A. O
ANC
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4. APPLICATION

In the mathematical theory of the cell cycle an important role is played by the
class of integral Markov operators of the form:

A(z)
Kf(zx)= ; K(z,y)f(y)dy ,
where

A(z)
K(z,y) = —% exp{—/ q(z)dz} .

Assume the following conditions:

(7) A: Rt — RT is continuously differentiable. Moreover,

N(z) >0 for z > 0, A(0) =0, and limg_, o, A(z) = 0.

(i7) The function ¢ : Rt — R* is locally integrable and [~ ¢(z)dz = oc.

Let 7 be the Euclidian metric topology, A the family of compact subsets of Rt .
Then it is quite easy to prove that K satisfies the property (P) with respect to 7

A(z)
K(@,y) =N (@) exp{= [ a(a)dz)
N (z) > 0 for every z. Let yo € RT, let
B={z: q(A(z)) >0,A(z) > yo} -

m(B) > 0 follows from [;° q(z)dz = cc. Further

A(z) A(z)
| ez [ @ <o,
Yy 0

hence
A(z)
exp{—/ q(z)dz} > 6(x) >0,
and
(4.1.) K(z,y) > N(z)g(A(2))d(z) = e(x) >0

on the set {z : ¢(A(z)) > 0}. Now set U; = [0,A(z)) and the property (P) is
fulfilled. By Theorem 3.2. K is sweeping with respect to A or has a stationary
density.

Let K has stationary density f.. We show that K is asymptotically stable.
Denote C = supp f,. Lemma 4.1. was proved in [1].

Definition 4.1. We say that a Markov process P overlaps supports if for every
two densities f, g there is a positive integer ng = ng(f, g) such that

p(supp P™ f Nsupp P™g) >0 .
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Lemma 4.1. Let K : L1(X,3,m) — L1(X, X, m) be a stochastic integral Markov
operator which overlaps supports and has the invariant density f.. Denote C =
supp f«. If there is a 6 > 0 such that

sup / K"fdm > 6
n Jo
for every density f, then K is asymptotically stable.

Since A)
K(z,y) = X (2).q(\(z)). exp{— / a(2)dz}

g(A(z)) > 0 on C follows from

A(z)

felz) = ; K(z,y) f«(y)dy -

Let
mo = inf{z : m((0,2) N C) > 0} ,

my = )\_l(mo) ,
ma = A" (mq) .

Then the set
((m1,00) N {z:q(A(z)) >0} \C

has measure zero, since by (4.1.)

A(z) A(z)

Kf@) = [ Koy fly)dy> / e@)f.(y)dy > 0

0 mo

on the set (mqy,00) N {z:¢q(A(2)) > 0}.
Now (0,m1) U C D supp K f for every density f, and

[xs@e= [ ([ Kenriway) -

B /o (/(Oyml)UCK(x, ’!/)Kf(y)dy> dr =
- /Oml (/C K(ﬂ?,y)da:) K f(y)dy
“, (/o\(o,ml) K, y)Kf(y)dy> i

By (4.1.)

/Om1 (/C K(a:,y)da:> Kf(y)dy > /Om1 (/Cm(mwo) s(a:)da:) Kf(y)dy >

m1

(4.2.) >5[ Kf(y)dy.
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For Markov operators supp f C C implies supp Kf C C, if C' is support of
invariant density, hence

K Kfly)dy | de = K(z,y)K f(y)dy | dz =
/C /C\(O’ml) (z,y)K f(y)dy | dz /X /C\(O,ml) (z,y)K f(y)dy | dz

_ / / K (2, y)dzK f (y)dy =
C\(0,m1) /X

(4.3 -/ o Ty

Finally (4.2.) and (4.3.) imply that

/ K2f(z)dz > 5/ Kf(z)dz = 5/ Kf(z)dz =6
c (0,m1)UC X

for every density f. By Lemma 4.1. it is enough to prove that K overlaps supports.
By (4.1.)
K(z,y) >e(x) >0

on the set

S={z:q(\x)) >0}.

Since fooo q(z)dz = oo and q is locally integrable, the set (k,o00) N S has positive
measure for every k > 0. If f, g are arbitrary densities such that the sets

(0,k)N supp f and (0,k)N supp g
have positive measures, than on the set
(A1 (k),00)N S
Kf>0 and Kg > 0, hence K overlaps supports. [
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ASYMPTOTIC BEHAVIOUR OF SOME MARKOV OPERATORS
APPEARING IN MATHEMATICAL MODELS OF BIOLOGY

IcorR MELICHERCIK
Faculty of Chemical Technology, Slovak Technical University
812837 Bratislava, Slovakia

ABSTRACT. A class of Markov operators satisfies the Foguel alternative if its mem-
bers are either sweeping or have stationary densities. We show that this alternative
holds for some integral Markov operators appearing in mathematical models of biol-

ogy.

1. INTRODUCTION

Let K : L1(X) — L1(X) be an integral Markov operator of the form:

(L1) Kf(x) = /X K(z,9)f(y)dy

where K(z,y) defined on XzX is a kernel. Such operators were intensively stud-
ied. In [1], [4], [6], [7] some sufficient conditions for sweeping (see def. 3.1.) and
asymptotical stability were given. It was proved in [4] that,under the assumption
of having subinvariant locally integrable function, the alternative of sweeping or
having stationary density holds. The condition without the assumption of the ex-
istence of a subinvariant locally integrable function for operators satisfying some
property (P) was given in [3]. The main result of this paper is the proof of the
Foguel alternative for operators of the form:

A(z) o
(12) Ki@)= [ (=5 (Q0E) - Q) f)dy

where (), A\ , —H are nonnegative, nondecreasing, absolutely continuous functions
on RT satisfying:
H(0)=1, lim H(z)=0
T—r 00

Q(0) = A(0) =0, wli)rglo Qz) = $1££10 AMz) =00

Operators of this type need not satisfy the property (P). The asyptotic behaviour
of operators of the form (1.2.) has many practical applications in biology.

In Section 2, some necessary results of [2] are presented. In Section 3, the main
result (Theorem 3.2.) is proved.
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2. SOME PROPERTIES OF MARKOV PROCESSES
AND INTEGRAL MARKOV OPERATORS

Theorems 2.1 - 2.4. are proved in [2].

Definition 2.1. A Markov process is defined to be a quadruple (X,X,m, P) ,
where (X,Y,m) is a o— finite measure space with positive measure and where P
is an operator on Lq(X) satisfying

(1) P is a contraction : ||P|| <1

(#3) P is positive : if 0 <u € L1(X) then Pu >0

Definition 2.2. If u is an arbitrary non-negative function, set Pu := limy_, o, Pug
for 0 < ug € L1(X),ur / u, where the symbol ,* denotes monotone pointwise
convergence almost everywhere. The sequence Puyg is increasing so that limg Puy
exists (it may be infinite). By [2] the definition of Pu is independent of the partic-
ular sequence ug.

Definition 2.3. Take uy € L1(X) with ug > 0. Define
C={z: ZPkuo(x) =o0},D=X\C

By [2] this definition is independent of the choice of wuy.
Theorem 2.1. If0 <u € Li(X) then

ZP’“ ) < o0 forx € D, ZP’“ ) =0 or oo forx € C.
k=0

Definition 2.4. A function K(z,y) > 0 defined on XxX which is jointly measur-
able with respect to its variables is called a kernel. If [, K(z,y)dz = 1, then K is
called a stochastic kernel. Stochastic kernel defines an operator on L (X) :

- /X K(2,9)f (y)dy

with [|K || = 1. So (X, %, m, K) is a Markov process.

Definition 2.5. Let P be an integral Markov operator, then (X, X, m, P) is said
to be a Harris process if X = C.

Theorem 2.2. Let K be an integral Markov operator and a Harris process. Then
there exists 0 < u < oo such that Ku = u (a o-finite invariant measure).

Theorem 2.3. Let P be a Markov process with X = D. Then there exists 0 < g <
oo such that Pg < g.

Proof: Let 0 < up € L1(X). Set g = 4o, PFuo.
Definition 2.6. Let P be a Markov process. Define operators Po, Pp:

Pc : Li(C) = L+(C), Pof = (Pf) | C,

where the symbol | denotes the restriction to the set C, f is the function f extended
by 0 on D, ~
Pp : Li(D) - Li(D),Ppf =(Pf) | D

where f is the function f extended by 0 on C.
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Theorem 2.4. Let P be a Markov process. If supp f C C, then supp Pf C C.
(supp [ =A{z: f(z) #0})
Corollary 2.1. Let K be an integral Markov operator. Then

(072 roam fCaKC)

is a Harris process. (5 | C denotes the o-algebra restricted to the space C, m | C
denotes the measure m restricted to the space X3 | C).

Proof: By Theorem 2.4. supp f C C implies supp Kf C C. By Theorem 2.1.
for u >0on C,u=0on D:

o= Khru(z)=> K&ulC)()
k=0

k=0
for every x € C.
Corollary 2.2. Let P be a Markov process on L1(X). Then

Pp(f 1 D)= (Pf)ID.
Proof: f = fp + fo, where fo = fle,fp = flp. By Theorem 2.4.
(Pfc) | D =0, hence
(Pf)I D= (Pfp) | D= Pp(fID).
Corollary 2.3. PL(f [ D)= (P"f) D
Corollary 2.4. Let P be a Markov process on X, let u >0 on D. Then

o
Z Ppu < oo.
n=0

Proof: Let @ be a function on X such that « [ C = 0,u [ D = u. By

Corollary 2.3.
» Ppu=()_Pri) | D.
n=0 n=0

By Theorem 2.1. (3°7 P™u) | D < oo.

3. THE FOGUEL ALTERNATIVE FOR INTEGRAL
MARKOV OPERATORS OF THE FORM (1.2.)

Definition 3.1. Let a family A C X be given. A Markov process is called sweeping
with respect to A, if
lim P"fdm =10
n—oo A
for Ac Aand fe D (D={f e Li(X),|fll=1,f>0})
In the sequel we shall assume that A satisfies the following properties:
(1)) 0 <m(A) <oofor Aec A
(Z’L) Al, A, e A implies AiUA, e A
(797) There exists a sequence {A,} C A such that UA,, = X.
A family satisfying (i) — (444) will be called admissible.
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Definition 3.2. Let (X,3,m) and an admissible family A C 3 be given. A
measurable function f: X — R is called locally integrable, if

/\f\dm<ooforA€.A.
A

The following theorem is proved in [4].

Theorem 3.1. Let a measure space (X,%, m), an admissible family A and an
integral Markov operator K be given. If K has no invariant density but there exists
a positive locally integrable function f, subinvariant with respect to K, then K is
sweeping.

Remark 3.1. Theorem 3.1. was proved in [4] for stochastic kernel operators
([x K(z,y)dz = 1). But the proof is completely same for integral Markov op-
erators.

Let K be an integral Markov operator. Recall the definition of K¢ and Kp (see
def. 2.6.). By Corollary 2.1. K¢ is a Harris process and by Corollary 2.4. Kp is
dissipative (X = D). By Theorem 2.2. and Theorem 2.3. there exist go, gp such
that Kcge = gc and Kpgp < gp. The following two lemmas (3.1. and 3.2.) claim
that gc, resp. gp are locally integrable in all points y € C, (resp. y € D) such that

/ Keo(z,y)dm(x) > 0 (resp. / Kp(z,y)dm(z) >0 ).
c D

Denote by Rt the set [0,00) and by T the Euclidian metric topology on RY.

Lemma 3.1. Let K be an integral Markov operator of the form (1.2.), let y € RT.
Let 0 < g < oo and Kog < g. Let

/ Keo(z,y)dm(xz) >0 .
c
Then there exists an open neighbourhood Uy of y such that

/ g(z)dz < oo .
UoNC

Proof: Let

/ g(z)dz =00 VYU, € T such that y € U, .
U,NC

Let B={z € C:K(z,y) > 0}. Let EC B and m(E) > 0. Then

/Eg(l‘)dﬁiz/E/Uymcg(z)K(a:,z)dzdx:
(3.1.) :/Uymcg(z)/EK(x,z)dxdz.

Since

K(z,y) = ¢(A(2))- A (2)h(Q(A(z)) = Q(y))
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and Q(y) is absolutely continuous,

/E K (, 2)ds = /Q RGO

is continuous with respect to z. By the assumption there exists € > 0 such that

/K(m,y)dw>6>0.
E

Since [, K(z,z)dz is continuous with respect to z, there exists U, € T such that
y € Uy and

/K(w,z)dm>€ VzeU, .
E

Now (3.1.) and nyng(z)dz = oo imply that

[Eg(x)da: =00 .

E C B was arbitrary, so g(z) = oo on the set B. But by the assumption 0 < g <
oco. O

Lemma 3.2. Let K be an integral Markov operator of the form (1.2.), let y € R .
Let 0 < g < oo and Kpg < g. Let

/DKD(x,y)dm(:v) >0.

Then there exists an open neighbourhood Uy of y such that

/ g9(z)dz < oo .
UonD

The proof of Lemma 3.2. is the same as the proof of Lemma 3.1..

Theorem 3.2.. Let K be an integral Markov operator of the form (1.2.). Let A be
the family of compact subsets of RT (with respect to the Euclidian metric topology).
If K has no stationary density, then K is sweeping with respect to A.

Proof: Denote ~ ~
Kcf=(Kf)1lc, Kpf=(Kf).1p

fe=flc, fp=flp.

Now
|IKS foll = |IKKS foll = |Ke Kb foll + |1K5 ol
hence o 3 ~
|KcK5 foll = |1Ksfoll — 1K5 foll
(3.2.) Z |KcKhfoll = IKS foll - 1K™ foll

=k
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Lemma 1. Let y € RT. Then there exists U, € T such that y € U, and

lim K™ fdm =0
n—>00 UyﬂD
for every f € Ly(D).
Proof (of Lemma 1.): By Corollary 2.4.

o0
0< ZKI”)u(ac) < 00

n=0

for u > 0, hence the process Kp is dissipative. By Theorem 2.3. there exists a
o -finite subinvariant measure A equivalent to m [ D.
Let Ay be the family of all sets of finite measure (with respect to m) such that

d
/ —dm < oo VA € A,.
Adm

Since % < oo, the family A, is admissible. Kp is dissipative, hence by The-

orem 3.1. Kp is sweeping with respect to Ay. Let y be such that for every

neighbourhood U € T of y the set D N U has positive measure. Denote g = 42,

dm
Let
/ K(z,y)dz >0 .
D

By Lemma 3.2. there exists U, € T such that

/ g(z)dr < 0,
U,ND

hence
U,ND e Ay, lim Kpfdm =0 .

n—o0 Uy nD

Let [, K(z,y)dz = 0. Let

lim Kp3(f 1 D) #0

n—o0 UyﬂD

for all U, € T such that y € U, and some f € Li(R"). Now [, K(z,y)dz = 1.
Since [, K (z,y)dz is continuous with respect to y (see the proof of Lemma 3.1.),
there exists U, € T such that y € U, and

/K(a:,z)da:>€>0 Vze U, .
c

By the assumption there exists 6 > 0 such that

| EpriD)>s
U,ND
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for infinitely many n. By Corollary 2.3.
K} (f 1 D)= (Kpfp) I D

Then
/chﬁfp(x)dxz// K(z,2)KD fp(z)dzde =
c cJu,nD
— [ Rpin@ | Ko 2)dedz>
U,ND c
> 8/ K3 fp(2)dz > .6
U,ND

for infinitely many n. Hence
NI EDS / RoRp fo(@)dz = oo
n=0 n=0"C

which contradicts (3.2.). O

Lemma 2. Let y € R*, let Ko has no stationary density. Then there exists
U, € T such that y € Uy and

lim Kéfdm =0
n—oo Uymc
for every f € L1(C).

Proof (of Lemma 2.): By Corollary 2.1. and Theorem 2.2. K¢ is Harris and
there exists a function g, 0 < g < oo such that K¢g = g.

Let y be such that for every neighbourhood U € 7T of y the set C N U has a
positive measure. Since [p, K(z,y)dz = 1 and by Corollary 2.2 K(z,y) = 0 for
zeD, yeC,

/CK(:v,y)d:v —1.

By Lemma 3.1. there exists U, € 7 such that y € U, and

(3.3.) /U ncg(x)dx <00 .

Let A, be the family of all sets of finite measure such that

/gdm<oo VAec A, .
A

Since g < oo, the family A, is admissible. By (3.3.) U, N C € A, and by Theo-
rem J.1.

/ KB fdm —0 Vf € Ly(C) . O
Uu,NC

Y
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Lemma 3. Let Ko has no stationary density, let A € A. Then

(3.4.) lim KZfidm =0, lim K7 fodm =0

for every f1 € L1(C), f2 € L1(D).
Proof (of Lemma 3.): Let y € Rt. By Lemma 1. there exists U; € T such that
y € Uy and

lim K?)fzdm =0 sz € Ll(D)

n—oo UlnD
By Lemma 2. there exists Us € T such that y € Us and
n—oo Uzmc
Set Uy = U1 N Ug. Then
(3.5.) lim K& fidm =0, lim K7, fadm =0
Tn—>00 Uync n—0o0 UyﬂD
Thus we have proved that for every y € Rt there exists U, € T such that y € U,
and (3.5.) holds. Finally (3.4.) follows from compactness of A. [
Proof (of Theorem 3.2.): By Lemma 3. K is sweeping, K¢ is sweeping or has
a stationary density. )
Let K¢ have a stationary demsity f. Let f. be a function on R* such that
f+ 1C=1Ff, fo I D=0.Then
(Kf) 1 C = (K(filc)) [ C+ (K(fulp)) | C = Kof = J.

By Corollary 2.2. (Kfy) | D = Kp(f« [ D) = 0, hence Kf, = f.. Let K¢ be
sweeping. We shall prove that K is sweeping.
Let f S L1(R+), then f = fc + fD, where fc = f.lc, fD = f.lD. By Corol-
lary 2.3.
(K™fo) | D =0, (K"f) | D = Kp(f | D).

By Lemma 3.

K" fdm — 0 for every A € A.
AND

Now it is enough to prove that
/ K"fdm — 0 for A € A.
ANC

Clearly
Kof =Ke(fe+ fp), Kf =Kcf + Kpf,
Ko(Kf)=K¢fo+ K&fp+ KoKpfp
Ko(K?f) = K¢ fc+ Kéfp+ KEKpfp + KcKp fp

K'flc=Ko(K"if) =
=K.fo+Kafp+KE 'Kpfp+-...

+ K2 *RE fp+ -+ Ko K5 Y fp.
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Take 1 < k < n and define:

Mynf=Kbfc+ K&fp+ K: 'Kpfp+---+ KR *KE L fp
Rinfp =Ky K fp+- -+ KcK5 ' fp.

K¢ is contraction, hence

By

IRknfoll < IK& KD fol + -+ [KcKp ol <
< |KeKpfoll+- -+ KKy foll

(3.2, ) )
|Rinfoll < | KB foll - IKB fol|-

The sequence {||K%,f||} is nonincreasing for Kp being contraction. Thus

~ ~ €
IR ol ~ KD foll < 5 for n,k 2 noe), n k.

Now fix k > ng(e), A € A. K¢ be sweeping implies

13
My fdm < &
ANC 2

for n sufficiently large, hence

K"fdm —-0for Ac A. O
ANC

REFERENCES

K. Baron, A. Lasota, Asymptotic Properties of Markov Operators Defined by Volterra Type
Integrals, (preprint).

S. R. Foguel, The Ergodic Theory of Markov Processes, Van Nostrand-Reinhold, New York,
1969.

J. Komornik, I. Melicherc¢ik, The Foguel Alternative for Integral Markov Operators, (in print).
T. Komorowski, J. Tyrcha, Asymptotic Properties of Some Markov Operators, Bulletin of the
Polish Academy of Sciences Mathematics 37 (1989), 221-228.

A. Lasota, J. Myjak, Generic Properties of Stochastic Semigroups, Bulletin of the Polish
Academy of Sciences Mathematics 40 (1992), 283-292.

A. Lasota, M. C. Mackey, and J. Tyrcha, The Stastical Dynamics of Recurrent Biological
Events, Journal of Mathematical Biology 30 (1992), 775-800.

J. Tyrcha, Asymptotic Stability in a Generalized Probabilistic/Deterministic Model of the
Cell Cycle, Journal of Mathematical Biology 26 (1988), 465-475.

65



