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ABSTRACT

A class of Markov operators satisfies the Foguel alternative if its members are
either sweeping or have stationary densities. New sufficient condition for this property
is given.

1. Introduction

We shall consider Markov operators K : L;(X) — L1 (X) of the form :

K () = /X K(z,9)f)dy .

where K (z,y) defined on XxX is a kernel. Such operators were intensively studied.
In 1,487 some sufficient conditions for sweeping (see def.3.1.) and asymptotical
stability were given. It was proved in 4 that, under the assumption of having subin-
variant locally integrable function, the alternative of sweeping or having stationary
density holds. The main result of this paper is the proof of this alternative without
the assumption of having subinvariant locally integrable function (Th.3.2.).

In the section 2., some necessary results of ? are presented. In the section 3., the
main result is proved. Section 4. contains an application of Theorem 3.2. to the

class of Markov operators appearing in the mathematical theory of the cell cycle.



2. Some properties of Markov processes and integral Markov operators
Theorems 2.1 - 2.4. are proved in 2.

Definition 2.1. A Markov process is defined to be a quadruple (X,X,m,P) ,
where (X, X,m) is a o— finite measure space with positive measure and where P is
an operator on L;(X) satisfying

(i) P is a contraction : ||P]| <1

(¢4) P is positive : if 0 <u € L1(X) then Pu >0

Definition 2.2. If u is an arbitrary non-negative function, set Pu := limy_, o, Pug
for 0 < up € Li(X),ur, / u, where the symbol * denotes monotone pointwise
convergence almost everywhere. The sequence Puy, is increasing so that limy Puy,
exists (it may be infinite). By ? the definition of Pu is independent of the particular
sequence uy.

Definition 2.3. Take ug € L1 (X) with ug > 0. Define
oo
Cz{x:ZPkuo(x)zoo}, D=X\C
k=0

By 2 this definition is independent of the choice of uq.

Theorem 2.1. If0<wu € Li(X) then

o0 oo
ZPku(x) < oo forzeD, ZPku(m) =0oroo forzeC .
k=0 k=0

Definition 2.4. A function K(z,y) > 0 defined on XxX which is jointly measur-
able with respect to its variables is called a kernel. Let [, K(x,y)dx < 1. Define
an operator K on L;(X):

Kf(z) = /X K(2,9)f()dy -

Then ||K || <1 and K is called an integral Markov operator.

Definition 2.5. Let P be an integral Markov operator, then (X, X, m, P) is said
to be a Harris process if X = C.

Theorem 2.2. Let K be an integral Markov operator and a Harris process. Then
there exists 0 < u < oo such that Ku = u (a o-finite invariant measure).
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Theorem 2.3. Let P be a Markov process with X = D. Then there exists 0 < g <
oo such that Pg < g.

Proof: Let 0 < ug € Li(X). Set g =Y ooy Prug. O
Definition 2.6. Let P be a Markov process. Define operators Pg, Pp:

Pe:Li(C) = Li(C) , Pof = (Pf) 1 C,

where the symbol | denotes the restriction to the set C, f is the function f extended
by 0 on D,

Pp:L(D)— Li(D), Pbof=(Pf) | D,
where f is the function f extended by 0 on C.

Theorem 2.4. Let P be a Markov process. If supp f C C, then supp Pf C C.
(supp f=A{z: f(z) #0})

Corollary 2.1. Let K be an integral Markov operator. Then

(C,21C,m | C Kc)

is a Harris process. (% | C denotes the o-algebra restricted to the space C, m | C
denotes the measure m restricted to the space ¥ | C).

Proof: By Theorem 2.4. supp f C C implies supp K f C C. By Theorem 2.1.
foru>0on C,u=0on D:

00 =Y Kru(z) = iKg(u I O)(z)
k=0 k=0

foreveryx € C. O
Corollary 2.2. Let P be a Markov process on Li(X). Then

Pp(fID)=(Pf)ID .

Proof: f = fp + fco, where fo = flo,fp = f.lp. By Theorem 2.4.
(Pfc) I D =0, hence

(Pf)I'D=(Pfp) | D=Pp(fID). O

Corollary 2.3. PR(f D)= (P"f)ID .
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Corollary 2.4. Let P be a Markov process on X, let u > 0 on D. Then
oo
Z Phu < o0 .
n=0
Proof: Let 4 be a function on X such that & [ C = 0,4 [ D = u. By

Corollary 2.3.
Y Ppu=()_P"a)[D.
n=0 n=0

By Theorem 2.1. (3°.° ,P™4) | D < oo . O

3. The Foguel alternative for integral Markov operators

Definition 3.1. Let a family A C X be given. A Markov process is called sweeping
with respect to A, if
lim / P"fdm =0
n—o00 A
for A€ Aand f €D (D ={f € LuX),lIfll = 1,f > 0})
In the sequel we shall assume that 4 satisfies the following properties:
(()0<m(A) <ocofor Ae A
(’L’L) Al,Az eA 1mphes Al U A2 eA
(i4i) There exists a sequence {4, } C A such that UA,, = X.
A family satisfying (i) — (44¢) will be called admissible.

Definition 3.2. Let (X,X,m) and an admissible family A C X be given. A mea-
surable function f : X — R is called locally integrable, if

/|f|dm<ooforA€A.
A

Theorem 3.1. Let a measure space (X,X,m), an admissible family A and an
integral Markov operator K be given. If K has no invariant density but there erists
a positive locally integrable function f. subinvariant with respect to K, then K is
sweeping.

Remark 3.1. Theorem 3.1. was proved in * for stochastic kernel operators
([x K(z,y)dx = 1). But the proof is completely same for integral Markov op-
erators.

We say that an integral Markov operator K : L, (X) — L;(X) satisfies a property
(P) with respect to topology 7 on X, if

(Vy € X)(3B € X with m(B) > 0 such that ((Vz € B)QU, € T,
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gz > 0 such that y € Uy, and Vz € U : K(x,2) > €.)))

Theorem 3.2. Let K be an integral Markov operator satisfying property (P) with
respect to a topology T . Let the measure m be locally finite (with respect to T ). Let
the sets of A be compact. If K has no stationary density, then K is sweeping with
respect to A.

Proof: Denote ~ .
Kcf=(Kf)lc, Kpf=(Kf).1lp
fe=flc, fop=flp.
Now _ ~ o _
Kb foll = IKKL foll = 1Ko Kb foll + 1KG foll

hence o 3 )
IKcKpfoll = IKpfoll - 1K foll

n
> IKeKpfoll = IKpfoll = IK5 foll 3.1)
=k

Lemma 1. Lety € X. Then there exists Uy € T such thaty € U, and

lim K% fdm =0
n—00 U,ND

for every f € Li(D).
Proof (of Lemma 1.): By Corollary 2.4.

oo
0< Z Kpu(z) < oo
n=0

for u > 0, hence the process Kp is dissipative. By Theorem 2.3. there exists a
o -finite subinvariant measure A equivalent to m | D.
Let Ay be the family of all sets of finite measure (with respect to m) such that

/ﬂdm<oo VA€ A, .
Adm

Since % < 00, the family A, is admissible. Kp is dissipative, hence by Theo-

rem 3.1. Kp is sweeping with respect to A.
Let y be such that for every neighbourhood U € T of y the set DNU has positive
measure. By the assumption there is a set B (m(B) > 0) such that for every x € B
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there is U] € T such that K(z,2) > e, on U;. No loss of generality we may assume
that the sets Uy have finite measure.
Let m(BND) > 0. ThenVz € BND

o@) > [ K@@z [ el

hence

z

1
/ 9(2)dz < L g(z) < o0
UznD

for every x € BN D and Uy N D € Ay, lim, Juenp KB fdm = 0 for every

z e BND.
Let m(BN D) = 0. Let lim, 00 [y7orp KB (f I D) # 0 for some f € L;(X) and

every ¢ € B. By Corollary 2.3.
Kp(f1D)=(Kpfp) I D .

Then
[ Rpioe) > 6,50
UznD

for some ¢, and infinitely many n,
Ve € B KoK} fp(x) > 640

for infinitely many n. By the Lebesgue Monotone Convergence Theorem

o0 o
0o =Y KcKpfoll =Y IKcKpfoll,

n=0 n=0

which contradicts (3.1.). O

Lemma 2. Lety € X, let Kc has no stationary density. Then there exists Uy € T
such that y € Uy and

lim K2 fdm =0

n—=00 Jy o
for every f € Li(C).

Proof (of Lemma 2.): By Corollary 2.1. and Theorem 2.2. K¢ is Harris and
there exists a function g, 0 < g < oo such that Kcg = g.
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Let y be such that for every neighbourhood U € T of y the set C NU has a
positive measure. By the assumption there is a set B such that for every x € B
there is Uy € T such that K(z,2) > e, on U;. By Corollary 2.2. K(z,z) = 0 for
z €D, z€ C, hence BC C. Now

0@ [ K@aeedz [ g,

hence )
/ 9(2)dz < —g(z) <
UsnC 2

for some x € B. Let A, be the family of all sets of finite measure such that
/gdm<oo VAe A, .
A

Since g < oo, the family A, is admissible. Then U7 NC € A, and by Theorem 3.1.
/ Kifdm —0 Vf € Li(C) . O
U;ﬂc

Lemma 3. Let K¢ has no stationary density, let A € A. Then

lim K&fidm =0, lim K3 fodm =0 (3.2,
for every fi1 € L1(C), f2 € Li(D) .
Proof (of Lemma 3.): Let y € X. By Lemma 1. there exists U; € T such that
y € Uy and
lim K}’_%dem =0 sz S Ll(D) .

n—oe UND

By Lemma 2. there exists Uy € T such that y € Us and

lim K& fidm =0 Vf, € Li(C) .

n—o Jy,nc
Set Uy = U; NUy. Then
lim KZfidm =0, lim K3 fadm = 0 (3.3.)

n—= Jy. ne n—= Jy.nD
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Thus we have proved that for every y € X there exists U, € T such that y € U,
and (3.3.) holds. Finally (3.2.) follows from compactness of A . O

Proof (of Theorem 3.2.): By Lemma 3. K is sweeping, K¢ is sweeping or has
a stationary density.

Let K¢ have a stationary density f. Let f. be a function on X such that
f«1C=f, fo!D=0. Then

(Kf)1C=(E(f1)) I C+ (K(fulp)) 1 C=Kof = f .

By Corollary 2.2. (Kfy) | D = Kp(f« | D) = 0, hence Kf, = f.. Let K¢ be
sweeping. We shall prove that K is sweeping.

Let f € Li(X), then f = fo + fp, where fo = f.1¢, fp = f.1p. By Corol-
lary 2.3.

(K"fe) I D=0, (K"f) | D=Kp(f D).
By Lemma 3.
/ K"fdm — 0 for every A€ A .
AND

Now it is enough to prove that
/ K"fdm —0for Ae A.
AnC

Clearly

Kof =Ko(fo+ fp), Kf =Kcf +Kpf ,
Kco(Kf) =K fc+Kifp+ KcKpfp
Ko(K*f)=Kifc+ K&fp+ KeKpfp + KcKpfp

K'flec = Rc(Kn_lf) =
=K&fo+K:fp+ K2 'Kpfp+...
+ f(gfkf(ng 4+ .4 Rc_kgilfp .

Take 1 < k < n and define:

Mynf =K2fo+ K2 fo+ K Kpfp +---+ K1 KE L fp

Rk,nfD = f{gikf{gfp +---+ R—cf(gilfp .
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K¢ is contraction, hence

Rk nfoll < NKG*Kpfoll + -+ | KcKp foll <
<KeKpfoll+-- + KKy foll -
By (3.1.) } }
| Re,nfoll < IKBfoll = IK3 foll -
The sequence {|| K% f||} is nonincreasing for Kp being contraction. Thus
~ ~ €
KB foll = 1KBfoll < 5 forn k> mno(e), n>k .
Now fix k > ng(e), A € A. K¢ be sweeping implies
My nfdm < <
AnC 2
for n sufficiently large, hence
K'fdm —-0for Aec A. O
AnC

4. Application

In the mathematical theory of the cell cycle an important role is played by the
class of integral Markov operators of the form:

A(z)
Kf(z) = | K(z,y)f(y)dy ,

where

A(z)
K(z,y) = —% exp{—/ q(z)dz} .

Assume the following conditions:

(i) A : Rt — RY is continuosly differentiable. Moreover,

N(z) >0 for z >0, M\0) =0, and lim,_, o, A(z) = oo.

(ii) The function ¢ : R* — RT is locally integrable and [ g(z)dz = occ.

Let 7 be the Euclidian metric topology, A the family of compact subsets of R*.
Then it is quite easy to prove that K satisfies the property (P) with respect to 7:

A(z)
K(z,y) = N (@)g(\(z)) exp{— / a(z)dz} ,
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M(z) > 0 for every z. Let yo € RT, let
B={x: q(A(z)) >0,\z) > yo} -

m(B) > 0 follows from [;* q(2)dz = oc. Further

A(z) A(z)
/ a(2)dz < / ¢(2)dz < o0 ,
Yy 0

hence
A(z)
exp{- [ 4z} 2 00) >0,
and
K(z,y) > N (2)g(Mz))d(z) =e(z) >0 (4.1)

on the set {z : ¢(A(z)) > 0}. Now set U; = [0,A(z)) and the property (P) is
fullfilled. By Theorem 3.2. K is sweeping with respect to A or has a stationary
density.

Let K has stationary density f.. We show that K is asymptotically stable.
Denote C = supp f.. Lemma 4.1. was proved in 1.

Definition 4.1. We say that a Markov process P overlaps supports if for every
two densities f, g there is a positive integer ng = ng(f, g) such that

p(supp P™ f Nsupp P™g) >0 .

Lemma 4.1. Let K : L1(X,2,m) — L1(X, %, m) be a stochastic integral Markov
operator which overlaps supports and has the invariant density f.. Denote C =
supp f«. If there is a § > 0 such that

sup/ K"fdm > 6
n Jo

for every density f, then K is asymptotically stable.

Since A@)
K(z,y) = N(2)-4(A\(2))- exp{~ / a()dz} |

g(\(z)) > 0 on C follows from

A(z)
fu(z) = | K(z,y) f«(y)dy
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Let
mo = inf{z : m((0,2) N C) > 0} ,
mi = A" (mo)
me = A"t(my) .
Then the set
((m1,00) N{z: g(A(2)) > O0})\ C
has measure zero, since by (4.1.)

A(z)

A(z)
K@= [ Kl o> / e(@)fu(y)dy > 0

on the set (m1,00) N {z : g(A(z)) > 0}.
Now (0,m1) U C D supp K f for every density f, and

[ [ ([ Kenrioa) -
- /C ( /(WUc K(w,y)Kf(y)dy) d =
=/0m1 (/CK(IC,y)dm> K f(y)dy

‘. ( Lo & (ﬂf,y)Kf(y)dy) dr
By (4.1.)

/0m1 (/C K(:L",:U)da:) Kf(y)dy > /Om (/Cm(moo)a(x)dx> Kf(y)dy >

mi

>0 [ Kiwdy. (4.2)

For Markov operators supp f C C implies supp Kf C C, if C is support of
invariant density, hence

/C </C\<o,m1)K(x’y)Kf(y)dy> dx = /X (/C\(O’ml)K(:c,y)Kf(y)dy> do =

= [ [ Kydsk sy =
C\(0,m1) /X

= / K f(y)dy . (4.3.)
» C\(0,m1)



Finally (4.2.) and (4.3.) imply that

/K2f(a:)da:2(5 Kf(m)dm:é/ Kf(z)dr =46
(] (0,m1)uC X

for every density f. By Lemma 4.1. it is enough to prove that K overlaps supports.

By (4.1.)
Y K(z,y) >e(x) >0

on the set

S ={z:q(\(=)) >0} .

Since fooo g(z)dz = oo and ¢ is locally integrable, the set (k,o0) NS has positive
measure for every k > 0. If f, g are arbitrary densities such that the sets

(0,k)N supp f and (0,k)N supp g

have positive measures, than on the set

A L(k),00)N S

Kf>0 and Kg > 0, hence K overlaps supports. O
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