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Dynamic Accumulation Model for the Second Pillar of the Slovak Pension

System

Abstract

Since January 2005, pensions in Slovakia are operated by a three-pillar system pro-
posed by the World Bank. The paper concentrates on the mandatory, fully funded
second pillar. We present a dynamic accumulation model for determining the optimal
switching strategy between pension funds with different risk profiles. The resulting
strategies depend on individual risk preferences of future pensioners. Our results illus-
trated the fact that gradual decreasing of the risk during the saving for future pension
is rational. Furthermore, we present several simulations of optimal fund switching
strategies for various model parameter settings.

Od januára 2005 je na Slovensku 3-pilierový dôchodkový systém navrhnutý Sve-
tovou Bankou. Článok sa zameriava na druhý (sporivý) pilier. Predkladáme dynam-
ický model sporenia, ktorého výsledkom sú stratégie optimálneho preṕınania medzi
dôchodkovými fondami s rôznymi mierami rizika. Výsledné stratégie závisia na vzt’ahu
jednotlivých sporitel’ov k riziku. Naše výsledky naznačujú, že zákonné obmedzenia
smerujúce k postupnému znižovaniu rizika pred dôchodkom sú rozumné. Ponúkame
tiež simulácie preṕınaćıch stratégíı pre rôzne nastavenia modelu.

1. Introduction

Before January 2005, pensions in Slovakia were operated by the unfunded pay-as-you-go
system. Mainly because of high unemployment and low contributions paid on behalf of
unemployed by the government as well as high contribution evasions, the system generated
deficits. The demography crisis was supposed to generate further pressure on the balance of
the pay-as-you-go system. In April 2003 the government passed the Principles of the Pension
Reform in the Slovak Republic. The goals of the pension reform were to secure a stable flow
of high pensions to the beneficiaries, and sustainability and overall stability of the system.
Corresponding legislation, as passed in December 2003, established a system based on three
pillars:

1. the mandatory non-funded first pillar (pay-as-you-go pillar)

2. the mandatory fully funded second pillar

3. the voluntary fully funded third pillar

The contribution rates were set for the first pillar at 19.75% (old age 9%, disability and
survival 6% and reserve fund 4.75%) and for the second pillar 9%. The total rate is about
0.75% higher than the old one. A thorough description of the Slovak pension reform with
calculations of the balance of the pension system and expected level of pensions in the new
system could be found in (Goliaš, 2003), (Melicherč́ık & Ungvarský 2004), (Thomay 2002).

2



Fund Stocks Bonds and money
type market instruments

Growth Fund up to 80% at least 20%

Balanced Fund up to 50% at least 50%

Conservative Fund no stocks 100%

Table 1: Limits for investment for the pension funds

Compared to Poland and Hungary, the Slovak second pillar is more substantial. Con-
tribution rates are higher in Slovakia - compared to 7.3% in Poland and 6% (with possible
future increase to 8%) in Hungary. A thorough description of the pension reforms in Hungary
and Poland could be found in (Benczúr 1999), (Chlon et al. 1999), (Fultz 2002), (Palacios
& Rocha 1998) and (Simonovits 2000).

The savings in the second pillar are managed by pension asset administrators. Each
pension administrator manages three funds: Growth Fund, Balanced Fund and Conservative
fund, each of them with different limits for investment (see Tab. 1). At the same time instant
savers may hold assets in one fund only. In the last 15 years preceding retirement, the saver
may not hold assets in the Growth Fund and in the last 7 years all assets must be in
the Conservative Fund. Even with these restrictions the contributors have some space for
individual decisions which fund is optimal in a specific situation (the age of the contributor,
the saved amount, the past performance of the pension funds). The aim of this paper is
to study whether the above restrictions for the funds can be illustrated by a mathematical
model and to calculate optimal strategies of switching between the pension funds (Growth,
Balanced and Conservative) having in mind the risk preferences of the contributors. Our
model indicates that adopted pension fund regulations can be supported by means of a
dynamic accumulation model.

The paper is organized as follows: In Section 2 we present a simple example supporting
the idea of gradual decreasing of the risk during the saving for future pension. We also
give a motivation for studying the dynamic accumulation models. Section 3 contains the
formulation of the dynamic stochastic programming accumulation model and the numerical
scheme for finding a solution of this model. In Section 4 we present the calculated results
and we discuss sensitivity of fund switching strategies with respect to various scenarios
of development of financial markets, wage growth development as well as individual risk
preferences. At the end of the section we compare dynamic and static strategies using the
mean-variance framework. The last section contains final remarks and conclusions.

2. First run a risk then secure savings

Pension funds usually hold portfolio consisting of bonds and equities. Limits for their weights
in the portfolio may differ across the countries. In Slovakia, each pension company manages
three funds: Growth Fund, Balanced Fund and Conservative fund, each of them with differ-
ent limits for investment (see Tab. 1). As it was already mentioned in Introduction, instant
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savers may hold assets in one fund only and they may not hold assets in the Growth Fund
in the last 15 years preceding retirement. Moreover, all assets should be held in the Con-
servative Fund in the last 7 years preceding retirement. The intention of these restrictions
and government regulations was to lower the risk of the value of savings to fall substantially
shortly before retirement.

For the sake of simplicity let us consider a plain 2-period model of saving (the length of
each period 1 year). At the beginning of each year the saver deposits an amount A. Suppose
that the returns of the deposits are r1 and r2 in the first and second year, respectively. The
saved amount M after 2 years is

M = A(1 + r1)(1 + r2) + A(1 + r2) = A(2 + r1)(1 + r2) .

Then for the sensitivity of M with respect to r1 and r2 we have

∂M

∂r1

= A(1 + r2) ,
∂M

∂r2

= A(2 + r1)

and therefore
∂M

∂r2
>

∂M

∂r1
(1)

for realistic asset returns r1 and r2. This is in accord with intuition that the saved amount
is more sensitive to later returns than to earlier ones. If the individual made just a single
contribution at the start of his/her working career, the impact on his/her final pension
wealth would be the same regardless of whether the asset price fall occurred early in life
or just before retirement. But if a series of contributions throughout one’s life is made, a
fall in assets value early in life does not affect the future contributions, i.e. only part of
one’s future pension wealth is affected, while if it occurs close to retirement it affects all past
accumulated contributions and returns on them, i.e. most of one’s pension wealth.

Let us consider two funds:

1. a risky fund with normally distributed return with average 10% and standard deviation
10%

2. a secure fund with a certain return 5% .

Suppose that the saver deposits 1 unit in the first and 1 unit in the second period. Tab. 2
and Fig. 1 demonstrate a risk-return analysis of 5 different strategies. Strategy 1 assumes
that in both periods the savings are invested to the secure fund. Strategy 2 is the most
risky one - in both periods the savings are invested to the risky fund. This strategy has the
highest expected value of the savings at the end of the second period E(M) but also the
highest standard deviation σM .

To decrease the risk, Strategies 3 and 4 invest into the secure fund in one of the periods.
According to (1) the level of final savings is more sensitive to the second period asset returns.
Therefore the risk (see the last 3 columns of the Tab. 2) connected with Strategy 4 (first
year secure fund, second year risky fund) is higher than the risk connected with Strategy 3
(first year risky fund, second year secure fund).

Strategy 5 is a dynamic strategy where in the first year the savings are deposited to the
risky fund and the decision in the second year is conditional: if the return in the first year is
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No. r1 r2 σ1 σ2 E(M) σM E(M) − σM E(M) − 2σM

1 5% 5% 0% 0% 2.1525 0.00% 2.1525 2.1525

2 10% 10% 10% 10% 2.3100 23.73% 2.0727 1.8354

3 10% 5% 10% 0% 2.2050 10.50% 2.1000 1.9950

4 5% 10% 0% 10% 2.2550 20.50% 2.0500 1.8450

5 10% cond. 10% cond. 2.2753 18.73% 2.0880 1.9007

Table 2: Risk - return analysis of different strategies
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ΣM H%L
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2.3
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H1L
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Figure 1: Risk - return analysis of different strategies

more then 15% then the secure fund is chosen in the second period, otherwise the risky fund
is chosen again. Comparing to Strategy 4, this strategy is more efficient (see Tab. 2 and
Fig. 1). Hence, by using closed-loop strategies, both the risk and return parameters could
be improved.

3. The dynamic stochastic programming accumulation model

Suppose that the future pensioner deposits once a year a τ -part of his/her yearly salary wt

to a pension fund j ∈ {1, 2, . . . , m}. Denote by st, t = 1, 2, . . . T the accumulated sum at
time t where T is the expected retirement time. Then the budget-constraint equations read
as follows:

st+1 = st(1 + rj
t ) + wt+1τ , t = 1, 2, . . . , T − 1 ,

s1 = w1τ (2)

where rj
t is the return of the fund j in the time period [t, t+1). When retiring the pensioner

will strive to maintain his/her living standard in the level of the last salary. From this
point of view, the saved sum sT at the time of retirement T is not precisely what the future
pensioner cares about. For a given life expectancy, the ratio of the cumulative sum sT and
the yearly salary wT , i.e. dT = sT /wT is more important. Using the quantity dt = st/wt one
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can reformulate the budget-constraint equation (2):

dt+1 = Ft(dt, j) , t = 1, 2, . . . , T − 1 ,

d1 = τ (3)

where

Ft(d, j) = d
1 + rj

t

1 + %t

+ τ , t = 1, 2, . . . , T − 1 (4)

and %t denotes the wage growth defined by the equation

wt+1 = wt(1 + %t) .

Suppose that each year the saver has the possibility to choose a fund j(t, It) ∈ {1, 2, . . . , m},
where It denotes the information set consisted of the history of returns rj

t′ , t′ = 1, 2, . . . , t−1,
j ∈ {1, 2, . . . , m} and the wage growth %t′ , t′ = 1, 2, . . . , t− 1. Now suppose that the history
of the wage growth %t, t = 1, 2, . . . , T − 1 is deterministic and the returns rj

t are assumed
to be random and they are independent for different times t = 1, 2, . . . , T − 1. Then the
only relevant information is the quantity dt. Hence j(t, It) ≡ j(t, dt). One can formulate a
problem of dynamic stochastic programming:

max
j

E(U(dT )) (5)

with the following recurrent budget constraint:

dt+1 = Ft(dt, j(t, dt)) , t = 1, 2, . . . , T − 1 ,

d1 = τ (6)

where the maximum is taken over all non-anticipative strategies j = j(t, dt). Here U stands
for a given preferred utility function of wealth of the saver. Using the law of iterated
expectations

E(U(dT )) = E(E(U(dT )|It)) = E(E(U(dT )|dt))

we conclude that E(U(dT )|dt) should be maximal. Let us denote

Vt(d) = max
j

E(U(dT )|dt = d) . (7)

Then by using the law of iterated expectations

E(U(dT )|dt) = E(E(U(dT )|dt+1)|dt)

we obtain the Bellman equation

Vt(d) = max
j∈{1,2,...,m}

E[Vt+1(Ft(d, j))] = E[Vt+1(Ft(d, j(t, d)))] , (8)

for t = 1, 2, . . . , T − 1, where VT (d) = U(d). Using (8) the optimal feedback strategy j(t, dt)
can be found backwards. This strategy gives the saver the decision for the optimal fund for

6



each time t and level of savings dt. Suppose that the stochastic returns rj
t are represented

by their densities f j
t . Then equation (8) can be rewritten in the form

Vt(d) = max
j∈{1,2,...,m}

E[Vt+1(Ft(d, j))]

= max
j∈{1,2,...,m}

∫

R

Vt+1

(

d
1 + r

1 + %t

+ τ

)

f j
t (r) dr

= max
j∈{1,2,...,m}

∫

R

Vt+1(y)f j
t

(

(y − τ)
1 + %t

d
− 1

)

1 + %t

d
dy

=

∫

R

Vt+1(y)f
j(t,d)
t

(

(y − τ)
1 + %t

d
− 1

)

1 + %t

d
dy (9)

where the substitution y = d (1 + r)(1 + %t)
−1 + τ has been used and R denotes the set of

real numbers.

3.1. The constant relative risk aversion (CRRA) utility function

An important part of the problem (5)-(6) is the choice of the utility function U . The util-
ity function varies across the investors and represents their attitude to the risk. A key
role in defining the utility function plays the coefficient of relative risk aversion C(x) =
−xU ′′(x)/U ′(x). Constant relative risk aversion implies that people hold a constant propor-
tion of their wealth in any class of risky assets as their wealth varies (see e.g. (Friend &
Blume 1975), (Pratt 1964) and (Young 1990)). In this case the utility function is of the form

U(x) = −Ax1−C + B if C > 1,

U(x) = A ln(x) + B if C = 1 ,

U(x) = Ax1−C + B if C < 1 (10)

where A, B are constants and A > 0. One can easily prove that, concerning the problem
(5)-(6), the utility function is invariant to positive affine transformations, i.e. U and K.U +L
are equivalent.

In our case constant relative risk aversion implies that the utility functions U(d) and
U(κd) where κ is a constant lead to the same strategies. We use the constant relative risk
aversion (CRRA) utility function

U(d) =
1

1 − a

(

(κd)1−a − 1
)

(11)

where a > 0 is the constant coefficient of relative risk aversion. Using κ = 1/12 the utility
function is ”steeper” for reasonable values and the numerical procedure is more stable.
Problem (5)-(6) then maximizes the expected utility of savings (compared to the last yearly
salary) corresponding to 1/12 of the yearly benefits (i.e. the benefits for 1 month). It is
clear that maximizing monthly benefits or yearly benefits should lead to the same strategy
and therefore we can utilize the CRRA utility function.

The coefficient of relative risk aversion a plays an important role in many fields of eco-
nomics. There is a consensus today, that the value should be less than 10 (see e.g (Mehra
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and Prescott 1985)). In our typical results we considered values close to 9. It should be prob-
ably lower for lower equity premium. However, our goal was to formulate the mathematical
model and to manage the numerical procedure. The reader can change the parameters and
calibrate the model in his/her own way.

4. Pension portfolio simulations. Numerical experiments

The purpose of this section is to present results of pension portfolio simulations. The numer-
ical approximation scheme is discussed in Appendix. The output of the numerical code is a
matrix of size (T = 40) × (k = 200) allowing us to ”browse” between different years (rows)
t and different levels of d (columns). At a given cell of the table we can read the name of
fund (j = 1, ..., m) which has to be chosen. Plots of computed output matrices adjusted to
the domain {(d, t), t ∈ (0, T ), d ∈ (dmin, t/2)} are depicted in this section.

Our results will be summarized in graphical plots of the so-called optimal choice function
j = j(t, d) as well as several tables discussing computed results of optimization. The role of
the optimal choice function j = j(t, d) is to provide an information when to switch between
different funds for a given level of the ratio d of saved money and wage. We focus on two
basic questions and problems: 1) what are the regions of constant values of j(t, d); 2) what
is the path of expected values of dt.

Before presenting results of simulation we have to discuss input data such as e.g. fund
structures and characteristics, the wage growth %. Concerning the structure of funds we
consider the present situation in Slovak Republic According to the adopted government reg-
ulation there are three funds (i.e. m = 3). Namely, the Growth, Balanced and Conservative
fund (see Tab. 1). Hereafter, we shall suppose that these three funds are constructed from
stocks (S) and secure bonds (B) where stocks are represented by S&P Poor’s Index (Jan 1996
- June 2002) with average return rs = 0.1028 and standard deviation σs = 0.1690 whereas
the secure bonds are represented by 10 years US government bonds (Jan 1996 - June 2002)
with the average return rb = 0.0516 and standard deviation σb = 0.0082.1 Using the histor-
ical data, the estimate of correlation between stocks and bonds is -0.1151. Stochastic asset
returns are assumed to have normal distributions.2

We shall suppose that the structure of funds (F1 = Growth fund, F2 = Balanced fund,
F3 = Conservative fund) of the second pension pillar in Slovak Republic is as follows:

F1 = 0.8 × S + 0.2 × B
F2 = 0.5 × S + 0.5 × B
F3 = B

(12)

Both returns ri and standard deviations σi, i = 1, 2, 3, of the above funds can be easily
calculated from returns rs, rb, standard deviations σs, σb and the estimated correlation (see

1We considered the estimated asset returns only for illustration of the model capability. We do not have
an ambition to estimate future asset returns. However, in Section 4.3 we present a sensitivity analysis for
different asset returns.

2The normal distribution is a simplification. There is a well known empirical evidence that stock returns
exhibit asymmetry and heavy tails. However, the model presented in Section 3 allows different distributions.
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Fund Return StdDev

F1 r1 = 0.0926 σ1 = 0.1350

F2 r2 = 0.0772 σ2 = 0.0841

F3 r3 = 0.0516 σ3 = 0.0082

Period wage growth
(1 + %t)

2006-2008 1.075

2009-2014 1.070

2015-2021 1.065

2022-2024 1.060

2025-2050 1.050

Table 3: Data used for computation. Fund returns and their standard deviations (left), expected
wage growth for the period 2006–2050 (right).
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Figure 2: Regions of optimal choice and the path of average saved money to wage ratio (a = 9).

Tab. 3).
According to Slovak legislature the percentage of salary transferred each year to a pen-

sion fund is 9%. The law sets administrative costs of the second pillar at 1% of monthly
contribution and 0.07% of the monthly asset value (i.e. 0.84% p.a.). Therefore, we consid-
ered effective contributions τ = 8.91% (= 9% ∗ 0.99). The value 0.84% was subtracted from
the asset returns in Tab. 3. We assumed the period of saving to be T = 40 years. The data
for the expected wage growth % are taken from Slovak Savings Bank (SLSP).3 The values
are shown in Tab. 3.

4.1. Description of computed results and simulations

In Fig. 2 we present a typical result of our analysis with the coefficient of proportional risk
aversion a = 9. It contains three distinct regions in the (d, t) plane determining the optimal
choice j = j(d, t) of a fund depending on time t ∈ [1, T − 1] and the average saved money to
wage ratio d ∈ [dmin, dt

max]. For practical purposes we chose4 dmin = 0.0891 and dt
max = t/2

for t ≥ 1. In each year t = 1, ..., T − 1 we invest the saved amount of money st uniquely
corresponding with dt to one of the funds j = 1, 2, 3 depending on the computed optimal

3The data were provided by the analysts of SLSP: Martin Barto and Juraj Kotian
4dmin = 0.0891 because 8.91% is the effective 2nd pillar contribution rate.
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mean switch switch
E(dT ) F1 − F2 F2 − F3

4.28 14 (12-16) 33 (32-35)

Table 4: Summary of computation of the mean saved money to wage ratio dT and switching times
(a = 9).
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d
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Figure 3: Cumulative distribution function 1 − F (left). Histogram of simulations and density
function (right). Sample mean E(dT ) = 4.28 and standard deviation of dT = 0.82

value j = j(d, t). In the first year of saving we take d1 = dmin.
The curvilinear solid line in Fig. 2 represents the path of the mean wealth E(dt), obtained

by 10, 000 simulations and here we use a = 9. Notice that, for t > 1, the ratio dt is a random
variable depending on (in our case normally distributed) random returns of the funds and
on the computed optimal fund choice matrix j(d, t′), t′ < t. The dashed curvilinear lines
correspond to E(dt)±σt intervals where σt is the standard deviation of the random variable
dt.

In Tab. 4 we present the mean final wealth E(dT ) as well as the so-called switching-times

for mean path E(dt), t ∈ [1, T − 1], and the intervals (in brackets) of switching times for one
standard deviation of the mean path. The normalized histogram resp. distribution function
of the simulated final wealth is very similar to a normal distribution, as can be seen in Fig. 3.

In the next sections we pay our attention to the sensitivity of results when some param-
eters are changing.

4.2. Sensitivity analysis for varying risk aversions

Let us consider different risk aversion parameters a in the utility function: a = 3, 5, 8, 9, 10.
It should be obvious that increasing risk aversion leads to a choice of less risky fund. Indeed,
based on our computations, one can observe that increasing a (increasing risk aversion)
causes that the switches between funds are shifted to an earlier time, i.e. we switch from
F1 to F2 sooner, as well as from F2 to F3. Obviously, for higher values of the risk aversion
parameter a we obtain lower levels of the final wealth. Results for the experiments are
displayed in Fig. 2, Fig. 4, Tab. 4 and Tab. 5.

The relation between different values of risk aversion parameter a ∈ (0, 25) and the final
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Figure 4: Sensitivity of regions of optimal choice with respect to different risk aversion values of
the parameter a = 3, 5, 8, 10.
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Figure 5: Relation between the risk aversion parameter a and the level of mean saved wealth
E(dT ).

a mean switch switch
E(dT ) F1-F2 F2-F3

3 6.29 35 (32-38) never

5 5.42 23 (20-26) never

8 4.67 15 (13-18) 37 (36-38)

10 4.04 13 (11-15) 30 (29-32)

Table 5: Results for fixed wage growths, fixed returns and standard deviations (see values in Tab.
3), different risk aversion parameter a.

mean wealth to last wage ratio is shown in Fig. 5. We can see that the curve can be divided
into three segments where the kinks separate ranges of the parameter a for which there are
no switches, one switch, and two switches between funds in the optimal strategy.

One can see that results partially in accord with law regulations are reached for a = 9.
This value is relatively high (see e.g. Mehra and Prescott, 1985). In the next section we
show that the results are highly sensitive to asset returns and for lower stock returns the
”typical” value of a should be lower.

4.3. Sensitivity analysis for various stock and bond returns

Now, let us examine the impact of the change in returns of funds on the optimal strategy
and results. One can expect that if for example the return of stocks becomes higher, it will
be more favorable to ”stay” in F1 or F2 for a longer period. In our computations, we first
fix the bond return and increase/decrease the stock return (a = 9 and other parameters are
fixed). This change mirrors in the returns of the funds F1 and F2. The results obtained
show that a higher return of stocks implies a later switch from more risky to less risky funds.
The wealth in the final period of savings is higher too. Secondly, we fix the stock return and
increase/decrease the bond return. A higher return of bonds implies an earlier switch from
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a) lower stock return rs = 0.0828 b) higher stock return rs = 0.1228

and fixed bond return rb = 0.0516
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Figure 6: Sensitivity of regions of optimal choice for various expected values of stock and bond
returns.

more risky to less risky funds.5 For overview of all results see Fig. 6 and Tab. 6.

4.4. Sensitivity analysis with respect to varying wages

Finally, we consider different wage growth rates. The intuition says that one can expect
lower saved money to wage ratio dt for higher wage growth %.6 To examine the influence
of this parameter on results, we considered the wage growth being raised (uniformly for all
time periods) and lowered by 1 percentage point. We denote by %(+1pp) (%(−1pp)) the wage
growth development derived from Tab. 3 where %t has been increased by 1 pp (decreased
by 1 pp) for each of five periods in Tab. 3. As we can see in Fig. 7 and Tab. 7, a higher
wage growth leads to a lower wealth to last wage ratio, guided by shifting the switch-times

5We have merely varied means of returns distributions up or down, but kept standard deviations un-
changed. As a result, the coefficient of variation (= standard deviation/mean) changes. If riskiness changed
proportionately with returns, the results would differ much less.

6Although this increases the contributions (contribution rate τ unchanged), there is a steeper wage profile
and hence lower savings to last wage ratio.
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Stock & Bond Fund mean switch switch
returns returns E(dT ) F1-F2 F2-F3

rs = 0.1028 r1 = 0.0926
rb = 0.0516 r2 = 0.0772 4.28 14 33

r3 = 0.0516 (12-16) (32-35)

rs = 0.0828 r1 = 0.0766
rb = 0.0516 r2 = 0.0672 3.29 8 21

r3 = 0.0516 (7-9) (19-23)

rs = 0.1228 r1 = 0.1086
rb = 0.0516 r2 = 0.0872 6.70 18 never

r3 = 0.0516 (16-20)

rs = 0.1028 r1 = 0.0896
rb = 0.0366 r2 = 0.0697 4.69 19 never

r3 = 0.0366 (17-22)

rs = 0.1028 r1 = 0.0956
rb = 0.0666 r2 = 0.0847 4.48 7 22

r3 = 0.0666 (6-8) (20-24)

Table 6: Results for fixed wage growths, fixed a = 9, fixed standard deviations σ1 = 0.1350, σ2 =
0.0841, σ3 = 0.0082, and various bond and stocks returns rb and rs, resp.

wage mean switch switch
growth E(dT ) F1-F2 F2-F3

%(−1pp) 5.10 12 (10-14) 32 (30-34)

% 4.28 14 (12-16) 33 (32-34)

%(+1pp) 3.63 16 (14-18) 34 (33-36)

Table 7: Results for fixed returns and standard deviations (see values in Tab. 3), fixed a = 9, and
different wage grow rates.

to later moments.

4.5. The comparison of dynamic and static strategies

One can think about static strategies where the time instants where a contributor switches
between the funds are determined at the beginning of the saving. The most risk averse
contributor deposits the savings all the time to the Conservative Fund. The least risk averse
investor contributes to the risky funds as long as the law permits it: in the first 25 years of
saving to the Growth Fund (the total period of saving 40 years supposed), next 8 years to
the Balanced Fund and the last 7 years to the Conservative Fund.

To compare the performance of dynamic and static strategies we have chosen two repre-
sentatives of the static ones:

1. The most risky (accepting the law regulations) strategy with switching times 25 (F1 −
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Figure 7: Sensitivity of regions of optimal choice for various wage growth % scenarios.
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a) switching times 25, 33 b) switching times 14, 33

Figure 8: Static strategies - the development of savings.

F2) and 33 (F2 − F3).

2. The strategy with switching times 14 and 33 similar to a typical representative of
dynamic strategies with the risk aversion parameter a = 9.

In Fig. 8 one can see the average dt development and E(dt) ± σt intervals for chosen static
strategies. The strategy with switching times 14 and 33 has the same E(dT ) = 4.67 com-
paring to a dynamic one with a = 8 but significantly higher the standard deviation of dT ,
σT = 1.41 (comparing to 1.10 for the dynamic strategy with a = 8). A mean-variance
analysis of dynamic strategies with different risk aversion (represented by the curve - effi-
cient frontier) and the two static ones is depicted in Fig. 9. The static strategies are clearly
inefficient.
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Figure 9: Mean-variance analysis of dynamic and strategic strategies .

5. Conclusions

We have presented a dynamic accumulation model for determining optimal switching strate-
gies for choosing pension funds with different risk profiles. It turned out that dynamic
strategies could be more efficient comparing to static ones. The results of simulations of
a mathematical model have illustrated that gradual decreasing of the risk (incorporated in
the corresponding legislation) is reasonable and can be supported by means of a dynamic
accumulation model. The resulting strategies depend on individual risk preferences of the
future pensioners represented by their individual utility functions. In accord with common
intuition, a higher wage growth implies lower performance of the funded pillar relative to the
pay-as-you-go pillar. Since it is very difficult to predict the future asset returns, the results
were calculated for various means of asset returns distributions.

Appendix: Numerical approximation scheme

In this section we discuss a numerical approximation scheme we used in our pension port-
folio simulations. The principal difficulty in computing the Bellman integral (9) is due to
significant oscillations in the integrand function. More precisely, it may attain both large
values as well as low values of the order one. Therefore a scaling technique is needed when
computing the integral (9). The idea of scaling is rather standard and is widely used in
similar circumstances.

Let Ht(d) be any bounded positive function for t = 1, 2, ..., T . We scale the function Vt

by Ht, i.e. we define a new auxiliary function

Wt(d) = Ht(d)Vt(d) .

Clearly, the original function Vt(d) can be easily calculated from Wt(d) as follows: Vt(d) =
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Wt(d)/Ht(d). Then, for each time step t from t = T down to t = 2 we have

WT (d) = HT (d)VT (d) and

Wt−1(d) = Ht−1(d)Vt−1(d)

= max
j∈{1,2,...,m}

∫

R

Ht−1(d)Vt

(

d

1 + %t

(1 + r) + τ

)

f j
t (r)dr (13)

= max
j∈{1,2,...,m}

∫

R

Ht−1(d)Wt

(

d
1+%t

(1 + r) + τ
)

Ht

(

d
1+%t

(1 + r) + τ
) f j

t (r)dr

= max
j∈{1,2,...,m}

∫

R

Ht−1(d)Wt(y)

Ht(y)
f j

t

(

(y − τ)
1 + %t

d
− 1

)

1 + %t

d
dy .

It is worthwhile noting that any choice of the family Ht, t = 1, ..., T, of positive bounded
scaling function does not change the result. It may however significantly improve the stability
of numerical computation.

In order to capture both large and small values of Vt we recursively define the scaling
functions Ht, t = T, T − 1, ..., 2, 1, depending on the previously computed solution Vt+1 as
follows:

HT =
1

√

1 + V 2
T

, and Ht =
1

√

1 + V 2
t+1

for t = T − 1, ..., 1 . (14)

In our algorithm we compute values of the function Wt = Wt(d) for discrete values of
d from the time dependent interval d ∈ (dmin, t/2), where we use dmin = 0.0891. The
upper bound t/2 has been chosen with respect to maximal expected values of the savings to
yearly salary ratio d. In each time level t = T down to t = 1 we choose a uniform spatial
discretization of the interval (dmin, t/2) consisting of k = 200 mesh points. Stochastic fund
returns rj

t were assumed to have normal distributions with densities f j
t having constant in-

time means r̄j and standard deviations σj, j = 1, ..., m. In order to compute numerically the
Bellman type integral with normal distribution densities f j

t we used the Simpson rule with
11 equidistant grid points covering the essential interval (r̄j − σj, r̄j + σj).
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ideas that significantly improved the quality of this paper.

References
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