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Abstract Traditional fire-risk rating indices are founded on
statistical relations between pre-event meteorological condi-
tions and the number of fire outbreaks observed in a forested
area. However, traditional weather-based indices cannot
render information on the spatial distribution of fire-
susceptible sites over extensive forested areas because their
only inputs are meteorological observations made at sparsely
distributed weather stations. Therefore, only an area-averaged
value of the risk of fire can be obtained from these indices.
This disadvantage can be relieved by using remote sensing
data from polar-orbiting satellites scanning the Earth's surface
in the visible and thermal spectral regions. This paper
presents a synthesis of the Nesterov Fire-rating Index, an
index extensively used in Central and Eastern Europe—and
how this was merged with the Temperature—Vegetation
Dryness Index (TVDI) derived from multispectral images
scanned by Landsat ETM+. This paper demonstrates the
methodology of how TVDI was merged with the Nesterov
Index to give a map of the spatial patterns of fire-prone sites.
The test region is located in a pine-forested (dominated by
Pinus sylvestris) area in western Slovakia. Our investigation
suggests that coupling TVDI with the Nesterov Index, or any
other weather-based fire-rating index, can become an
effective tool for delineating areas prone to fire outbreaks
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even in regions with insufficient coverage of weather
stations.
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Introduction

The likelihood that a fire will break out in a forest is
traditionally assessed by deploying empirical indices using
basic meteorological data. There are several indices in use
worldwide, e.g., the Nesterov Index (in Russia), Angstom
Index (Northern Europe), Baumgartner Index (Germany),
and the Canadian Fire Weather Index. The fundamental
feature of weather-based indices is that they are based on
simplified statistical relationships between the reported
number of fire events and several weather data characterizing
the pre-event weather conditions. However, weather-based
indices can provide only an area-averaged risk of fire, as their
only input (weather data) is acquired from point measure-
ments taken at representative weather stations. The climate,
topography, and the type of vegetation are recognized as
additional factors modulating the fire potential and the rate of
spread (Skvarenina et al. 2004). Microclimatic conditions,
i.e., temperature of the forest floor along with other favorable
conditions (high air temperature, low air humidity, direct
solar radiation, and wind) are the main factors facilitating
ignition and rapid spread of fire in forests (Tanskanen et al.
2005; Bowyer and Danson 2004). There is evidence that fuel
moisture content and surface soil moisture are both controlled
by the amount of water vapor in the air, rainfall interception,
and direct solar heating. Tesaf et al. (2006) showed that the
density of a forest overstory directly affects the surface
radiation balance and surface temperature of the forest floor.
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There is evidence that surface moisture and temperature in
large gaps are both controlled primarily by direct solar
heating and evaporation. Enhanced ventilation in gaps and
thin forests further contributes to drying of litter in addition
to the direct solar heating and evaporation. Forest microcli-
mate is controlled also by the species composition and the
vertical structure of canopy by affecting the intensity of light
penetrating the canopy and vertical fluxes of heat and vapor.
The vertical structure of forest has been recently modeled by
means of LIDAR as an innovative approach (Richardson et
al. 2009) with promising implication to fire-risk modeling.
Generally, Scots pine (Pinus sylvestris) creates stand structures
allowing wind and sun radiation to penetrate tree canopy
making this specie more prone to fire than, e.g., Norway
spruce (Picea abies), (Tanskanen et al. 2005; Tanskanen and
Venalainen 2008).

Generally, two types of flammable fuel are considered in
fire-risk modeling: dead fuel and live fuel (i.e., green vital
leaves, branches, etc.). While live fuel plays an essential
role in crown fire development and the rate of its spread
(Garcia-Martin et al. 2008; Peterson et al. 2008; Chuvieco
et al. 2004), dead fuel (i.e., dry branches, shrubs, and litter)
serve as the primary fuel material for human-caused fire
ignitions. As Bowyer and Danson (2004) emphasize, LFM
varies both in space and time and is driven primarily by the
available soil moisture, the type of the underlying soil, and
most importantly, the microclimate within the forest
canopy. Dead forest fuel is moistened by precipitation that
falls on the forest floor after passing through the canopy
(“throughfall”). However, it has to be noted that the
temporal variability of precipitation is a matter of season,
but high variability may occur within a single storm as well.
Distribution of rainfall varies with storm type, rainfall
intensity, duration, and time of year (Bedient et al. 2008).
Since rainfall is principal source of moisture for forest fuel,
spatial variability of precipitation plays a significant role in
the spatial distribution of fire-prone sites.

The advent of remote sensing made it possible to obtain
spatial characteristics of forest biomass and surface moisture
conditions. Vegetation indices (VIs) derived from remotely
sensed data have been used to assess the state of vegetation by
diagnosing its spectral features in the visible and the near-
medium infrared regions of the electromagnetic spectrum.
Estimation of soil moisture, which is an important driver of
water vapor fluxes and heat transport in forests, has been
shown to be retrievable from VIs (Wang et al. 2007). In fire-
related studies, VIs derived from satellite data have been
used to map extensive areas of dry vegetation. A strong
linkage was found between crown biomass derived from
Landsat images and burnt severity (Garcia-Martin et al.
2008). With decreasing content of water in fuel, spectral
characteristics of the biomass change as a response to water
deficiency, since leaf reflectance is controlled mainly by
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water content, pigments (such as the chlorophyll-a and
chlorophyll-b), and dry matter. Vs are sensitive to changes
in vegetation chlorophyll absorption and leaf area index
(LAI), which co-occur with changes in water stress (Hardy
and Burgan 1999). Because soil moisture is partially driven
by vegetation cover, Normalized Differential Vegetation
Index (NDVI; along with other vegetation indices) are useful
for assessing the spatial variability of soil and fuel moisture
(Danson and Bowyer 2004). Nemani et al. (1993) and Park
et al. (2004) demonstrated the existence of a close
relationship between soil moisture and NDVI. Wang et al.
(2007) investigated the time lag of NDVI behind decreasing
soil water content. For humid regions, this time lag may be
more than 10 days, while in semi-arid regions NDVI may
start to respond to water stress earlier (<5 days). Significant
correlation was found between NDVI and shallow soil
moisture at a depth of 50 mm (Wang et al. 2007).
Considering the dead fuel and shallow soil horizons are
closely interlinked in their water—energy balance, the
reported correlation between NDVI and soil moisture in the
most upper horizon of the soil may bear some information
on the state of fuels. Hernandez-Leal et al. (2008) used the
NDVI scanned by AVHRR-NOAA and Terra-MODIS
channels to track seasonal changes in the vegetation status
in order to assess the risk of fire in Spain. Hernandez-Leal et
al. (2008) worked toward developing a Dynamic Fire-Risk
Index that would incorporate NDVI into a Static Fire Index,
i.e., an index utilizing factors such as proximity to main
roads, type of vegetation cover, insulation hours, slope,
aspect, and elevation of the terrain. A similar fire-risk zone-
mapping methodology based on topographic and land-use
maps was proposed by Xu et al. (2005).

The major limitation of relying merely on VIs in fire-
related studies is that VIs may only slowly respond to water
deficiency. Combining images taken in visible, near and
mid-infrared, and thermal domains may capture changes in
water deficiency faster than single VIs. The attempt to
merge the thermal spectral region with visible and infrared
spectral bands resulted in the temperature—vegetation space,
also known as the Temperature—Vegetation Scatterplot.
Sandholt et al. (2002) modified the Temperature—Vegetation
Scatterplot to identify soil moisture conditions. The
modification resulted in the Temperature—Vegetation-
Differential Index (TVDI), which is based on relating
NDVI to surface temperature in a number of discrete steps.

The primary motivation of this paper is to show how the
Nesterov Index can be used in synergy with remotely
sensed data, particularly the Temperature—Vegetation Dryness
Index—TVDI derived from four Landsat ETM+ images and
is used to assign a spatial attribute to the Nesterov Index by
differentiating between areas of high, medium, and low risk of
fire. The partial goals are: (1) to calculate the Nesterov Index;
(2) to process and analyze four Landsat ETM+ images, and to
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Fig. 1 Orthophoto-map of the investigated area. Locations of the
weather stations at Malacky and Senica are indicated with rectangles
(true-color composite RGB, created from Landsat imagery)

derive NDVI and surface brightness temperatures; and (3) to
create maps of TVDI for the investigated area delineating sites
with low, medium, and high risk of fire.

Data and methodology
Study site

The geographical setting of the region of interest is
illustrated in Fig. 1. This area is located between 48°20'
N17°E and 48°50'N17°30'E, northerly of the capital city of
Bratislava, Slovakia. This region is dominated by vast areas
(~44,000 ha) of coniferous monocultures (Scots pine)
growing on sandy soils (90% quartz). Some 35% of the
forested area is formed by natural stands, and 65% occupy
cultural forest plantations. The prevailing northwestern
winds (annual average, 2.8 m/s), and low annual precipi-
tation rates (~583 mm) make these forests sensitive to fire

events. As for the fire statistics in Slovakia, the year 2003
experienced 872 forest fire events with a total burnt area of
1,567 ha (European Commission, Report No. 5, 2004). The
growing season in the investigated region lasts ~250 day,
and the average air temperature during the peak growing
season (June) is 19.6-20.2°C.

Nesterov Index

In 1949, Nesterov (Shetinsky 1994) proposed a fire-risk
rating index to be used in the former Soviet Union. This
index establishes a range of discrete fire-risk levels. The
Nesterov Index is calculated as follows:

w

NE=" (T =T8T, (1)

i=1

where NI denotes the Nesterov Index; w is the number of
days since the last rainfall exceeding 3 mm/day, T; is the air
temperature (°C) on a given day; and 7%Vis the dew point
temperature (°C). Once the daily rainfall (a cumulative
value) exceeds 3 mm per day, the Nesterov Index has to be
reset to “zero” (Shetinsky 1994; Skvarenina et al. 2004).

Satellite image processing

The satellite images used in this study were acquired on
days with clear skies. Four Landsat ETM+ images were
processed and analyzed. The dates of acquisition were:
May 1, 2000; May 14, 2000; August 2, 2000; and August
24, 2002. More detail on the satellite images are provided
in Table 1. Supervised classification was used to create
maps of forest-only areas in the ENVI 4.3 software
package. Landsat ETM+ scenes contain three visible bands
(band 1 through band 3), three near and medium infrared
bands (bands 4, 5, and 7) with a spatial resolution of 30 m,
and one thermal band with a resolution of 60 m (band 6),
(Landsat Handbook, http://landsathandbook.gsfc.nasa.gov/
handbook.html). First, maps showing forest-only areas
were extracted from raw satellite images by the supervised
classification algorithm based on the maximum likelihood
classification technique. Training pixels were collected
from pre-selected regions of interest using all three visual
bands (TM1-3), one near-infrared band (TM4), and the
thermal band (TM6). The created classified image was then

Table 1 Earth—sun position

characteristics on the acquisition Date Azimuth Sun elevation a values b values Tomin (K)

dates and TVDI parameters

(a and b in Eq. 2) May 1, 2001 148.2 52.8 305.83 -25.7 299.2
May 14, 2000 145.1 57.4 312.43 -15.9 298.9
August 2, 2000 143.6 54.0 309.48 -14.2 302.0
August 24, 2002 147.8 48.3 304.42 -13.3 299.8
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Table 2 Nesterov Index (NI) calculated for the dates of satellite
image acquisition for the two weather stations (N/yiatacky and Nlgenica)

Date NIMalacky NIScnica *W

May 14, 2000 5,156 (H) 1,224 (M) 3,190 (M)
August 2, 2000 404 (L) 351 (L) 377.5 (L)
May 1, 2001 1,175 (M) 920 (L) 1,047.5 (M)
August 24, 2002 731 (L) 1,252 (M) 991.5 (L)

The average index for the whole region (Malacky+Senica) is
calculated as an arithmetic average NI. The level of risk obtained
from the Nesterov Index is indicated as L low risk, M medium risk,
and H high risk (see Fig. 3)

*—
NI = 1/2 (N]Malacky + NISenica)

used for binary masking to exclude areas other than
coniferous forests from analysis.

Temperature/vegetation dryness index

To establish a spatially variable attribute of the Nesterov
Index, we focused on the work of Sandholt et al. (2002).
The concept of “Ts-Vegetation Space” was originally
proposed to assess the soil moisture status of vegetation.
In principle, the Ts-Vegetation Space represents a scatter-
plot of remotely sensed surface temperature and NDVI
collected form a sample area with a broad range of moisture
conditions. Goward et al. (1985) demonstrated a strong
negative relationship between radiometric surface temperature
and NDVI, which was explained by evaporative cooling of
green live biomass. When surface conditions become drier,
vegetated areas transpire less water, and, when a drought
period prevails for a sufficiently long time, NDVI values
decrease and surface temperature tends to increase due to
hindered evaporative cooling. Figure 4 explains the underlying
principles of the Temperature/Vegetation Dryness Index
(TVDI) in detail. Calculation of the Temperature/Vegetation

Remote sensing data
NDVI & hrightneas temperaturs) ||

| e | 1 i
! Weather-based i | Spatial | !
F.i.r‘:_.%m.i.r_’% Index dvera ged [ ] attribute | 0. $|

Ground network of
| | weather-stations

Fig. 2 Description of data sources used in creating a map of fire-
prone areas. The lefi-hand side box shows data acquired from ground
observations (meteorological data) determining the risk of fire through
the use of traditional weather-based indices (e.g., the Nesterov Index).
The right-hand side box shows the remotely sensed information used
to delineate dry and hot pixels within a satellite image using the
Temperature—Vegetation Dryness Index (TVDI). Both data sources are
merged into a map of fire-prone areas
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Fig. 3 Refinement of the discrete values of the Nesterov Index
obtained from Eq. 1 by the spatially variable Temperature—Vegetation
Index—TVDI (Eq. 2). Three intervals of TVDI are considered: 0-0.33;
0.33-0.66; and 0.66-1.0

TVDI NI

Dryness Index is based on the following equation (Sandholt et
al. 2002):
T s — T. S_min

TVDI = 2
a+bx NDVI — T _min ()

Where T, is the surface temperature; T i, is the
minimum surface temperature in the triangle necessary to
define the “wet edge”; NDVI is the normalized differencial
vegetation index; a and b are parameters derived from a
linear fit to Ty max=a+bNDVI.

Note that the triangle in Fig. 4 is enclosed by two curves:
the upper curve, called the “dry edge”; and the lower curve,
called the “wet edge”. The “wet edge” and “dry edge” in
the triangle (Fig. 4) represent the TVDI boundary values.
TVDI equals zero on the wet edge and unity (1) on the dry
edge. All TVDI values between these two edges may
therefore take values only in the range 0—1.

Retrieval of normalized differential vegetation index

NDVI was calculated as the difference between NIR and
Red spectral regions, normalized to the sum of the NIR and
Red spectral band (Eq. 1):

NDVI — PNIR — PRed (3)
PNIR T PRed
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Fig. 4 Explanatory plot of the Temperature—Vegetation Dryness
Index “TVDI” (adopted and partially modified from Sandholt et al.
2002)
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Where pnir is the spectral radiance detected in the near-
infrared band (760-900 nm); pgreq is the spectral radiance
detected in the red band (630690 nm). The range of NDVI
values can yield values only between —1 and 1. As a rule of
thumb, higher NDVI values characterize green and healthy
biomass. For healthy coniferous forests (no or negligible
water deficiency), NDVI may be within the range of 0.2-0.8,
depending on the sensor view angle and the Sun position.

Land surface temperature

Brightness temperatures (temperature of surface as “seen”
by the satellite sensor) were extracted from the processed
satellite scenes following the conventional algorithms for
surface temperature retrieval (http://landsathandbook.gsfc.
nasa.gov/handbook.html).

ka

ErET)
Rc

(4)

Where Tg is the surface temperature (K); k; and k, are
calibration constants (k;=666.09 W/m? sr um; k=
1,282,71 K); Rc is the at-sensor radiance.

The thermal data were corrected for atmospheric effects.
This step is essential in absolute temperature studies (Barsi

et al. 2003). The Radiative Transfer Model available as a web-
based tool (Barsi et al. 2003; http://atmcorr.gsfc.nasa.gov/) was
used to estimate the transmission, upwelling, and downwel-
ling radiance. The input data for the Radiative Transfer Model
were acquired at the weather station at Malacky (Fig. 1). It
would be outside the scope of this study to go into much
detail concerning the temperature retrieval mechanism, and
therefore, the reader is encouraged to consult appropriate
literature covering this topic (e.g., Barsi et al. 2003; Sobrino
and Caselles 1991; Sobrino et al. 1991; Qin et al. 2001).

Results

Raw satellite images were processed to obtain the NDVI
and surface temperature applying Eq. 3 and Eq. 4, to be
later used for the calculation of the TVDI according to
Eq. 3. The unknown parameters (a, b, Ts min) in Eq. 2 were
identified iteratively in Solver MS Excel after setting the
objective function (7VDI_max) equal to unity. The derived
parameters “a” and “b” of Eq. 2 are listed in Table 1. Four
Landsat ETM+ images were used to derive the TVDI index.
Figure 6 shows the final product, i.e., maps of TVDI for the
processed images. Note that the TVDI index exhibits a
pronounced variability within a single scene (Fig. 6a, c).
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Fig. 6 Distribution of TVDI on e
a May 1, 2001; b May 14, 2000; a
¢ August 2, 2000; d August 24,
2002. For clarity, non-forest
areas were masked out. TVDI
levels are differentiated by =
color: red (0.66<TVDI<1.0);
orange (0.33<TVDI<0.66);
and pink (0<TVDI0.33). The
map scale is the same as in o o
Fig. 1. Levels of fire risk for i
the individual scenes f

(calculated as Nesterov Index) < b g R

are indicated in Table 2

4

=0.33

0.33-0.66

. 20:58

This variability suggests that the forest vegetation is not
evenly moistened or is under different levels of fuel
dryness. As shown in Table 2, NI may differ between two
weather stations despite the relative short distance between
them (~40 km). This difference may be explained by the
fact that precipitation is a highly variable phenomenon, i.e.,
there may be summer storm formation in one area, while a
few kilometers away there is no rainfall. For example, on
May 14, 2000, the NI calculated for the Malacky station
(Fig. 1) was 5,156, while, at the Senica Station, the NI was
as low as 1,224. Therefore, relying merely on the NI
derived from only one weather station may lead to
misleading levels of fire risk, if the spatial character of the
index is not taken into account. Using the Nesterov Index,
or any other fire-rating index based on meteorological data,
in synergy with the TVDI may be beneficial in terms of
assigning each pixel in a satellite image an intrinsic fire-risk
value. Figure 2 illustrates how traditional ground measure-
ments of meteorological conditions can be merged with
data from remote sensing. Note that the TVDI index can
yield values only between zero and unity (Eq. 2). Dividing
this interval into three subintervals (0-0.33, 0.33-0.66, and
0.66—1.0) made it possible to roughly differentiate between
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pixels with “low” to “moderate” and “high” risk of fire
outbreak. It should be noted that the choice to use only
three intervals was rather arbitrary; certainly, one can divide
the entire range of TVDI values into a finer subintervals.
Calculating the Nesterov Index for the dates of the satellite
image acquisition enabled us to assign the NI a spatial
attribute when used with the spatially varying TVDI
(Fig. 3). Sites with higher TVDI show where the risk of
fire occurrence is more “likely” (Figs. 4 and 5). Sub-images
of the area of interest (Fig. 6a—d) show the distribution of
the TVDI on the dates of satellite overpass. On the other
hand, the remaining TVDI maps (Fig. 6b—) seem to be
invariant with respect to the TVDI values; however, closer
examination reveals that higher values of TVDI are present
at forest edges. This is not surprising because experimental
evidence exists that a canopy located at forest edges dries
more quickly than the canopy within the forest owing to the
enhanced evapotranspiration and decreased water storage
near forest edges (Klaassen et al. 1996). Enhanced
ventilation at the forest edges may also play a role.
However, suspicion may arise in terms of incorrect
interpretation of the forest edge effect, i.e., misclassification
of mixed pixels. Generally, the higher the value of the
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TVDI the drier the conditions that are present within the
analyzed pixels, hence, a higher chance of fire outbreak exists
in areas where the TVDI exhibits elevated values. However, it
should be noted here that TVDI values are independent of the
Nesterov Index (or any other fire-risk rating index derived
from weather data). Similar values of TVDI may be obtained
on 2 days with different values of the Nesterov Index. In
essence, TVDI serves as an “alert indicator” showing areas
with a higher potential of fire outbreaks.

Conclusions

The presented technique may be of advantage especially in
areas where weather stations are spread across long
distances. It was shown that the Nesterov Index (Table 2)
may substantially differ over short distances because
precipitation is a highly variable phenomenon. In such
instances, the calculated Nesterov Index (or any other
weather-based index) may yield misleading results in terms
of its spatial representativeness. The unknown perimeter
within which a weather station accurately represents a
studied area is the main limitation of all weather-based
indices. Remotely sensed data may be used as supplemen-
tary attribute to traditional weather-based indices and serve
as a useful tool for delineating sites with dry fuel conditions.
‘We have shown that using traditional weather-based indices in
synergy with satellite observations has important implications
for fire management and prevention strategies in remote and
vast forests with only limited fire-fighting resources and low
coverage of meteorological stations.
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