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Abstract. Some mathematical methods contemporary used in portfo-
lio management are presented. Among the oldest and still used counts
the one-period problem formulated by Markowitz ([3]). The problem is
presented with its extension concerning transaction costs. It could be
considered in a broader framework of one-period models maximizing ex-
pected utility of the wealth at a defined time horizon. Recently, an inter-
est in the development of multi-period models of portfolio management
has been observed. These models suppose portfolio rearrangement be-
fore the time horizon according to the development of asset prices. They
lead to problems of dynamic stochastic programming. In addition to a
general principle of dynamic portfolio management, the specific problem
concerning an optimal portfolio composition of a saver in the second
pillar of the Slovak pension system is presented.
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1 Introduction

Financial institutions face the problem of optimal portfolio decisions under un-
certainty. The mathematical framework for optimizing the portfolio decisions
could be found in several models.

One important class of models represent single period models based on the
idea of mean-variance optimization of Markowitz ([3]). These models quantify
the risk associated with uncertain portfolio returns by the variance of the final
wealth. Mathematically they lead to problems of quadratic programming. Mean-
variance models belong to a broader class of models maximizing the expected
utility. The utility function is different for each investor and explains better the
balance of returns and risks due to personal preferences than the expected return
of the portfolio which is the input of the mean-variance approach.

In reality asset managers think dynamically. They often rearrange managed
portfolios using a new information coming from finacial markets. The idea of
future rearrangement leads to dynamic asset allocation. In dynamic models a
decision rule indicates precisely how a portfolio has to be altered as a function



of a new information (e.g. realized asset returns). The decision takes into account
possible future asset returns and future rebalancing according to a new infor-
mation. Mathematically this approach leads to problems of dynamic stochastic
programming.

Paper is organized as follows. Section 2 explains mean-variance and utility
approach used in one-period models. In Section 3 we present a general principle
of dynamic stochastic programming used in portfolio management. Section 4
contains a dynamic model for pension savings management in the funded pillar of
the Slovak pension system. Paper is concluded with recommendation for further
reading.

2 One-period optimization

2.1 Mean-variance approach

Among the oldest and still used models of portfolio optimization counts the one-
period problem formulated by Markowitz. The optimal portfolio is characterized
by first two moments of the distribution of the end period wealth. The output
of this approach is the set of efficient portfolios. The efficient portfolio is defined
as follows: given a defined level of the expected wealth W̄ at the end of the
optimization period we choose the portfolio with minimal risk quantified by
the variance of the end-period wealth. The corresponding problem of quadratic
programming is

min
x

x>V x

s.t. x>(1 + r̄) = W̄ ,

x>1 = Wini (1)

where r̄ is the vector of expected returns, V is the covariance matrix of the
returns, x is composition of the initial portfolio, 1 = (1, 1, . . . , 1)> and Wini is
the initial wealth. Denote by u = x

Wini

the weights of assets in the initial portolio

and r̄p = W̄
Wini

− 1 the expected return of the porfolio. One can prove easily that
(1) can be formulated equivalently as

min
u

u>V u

s.t. u>r̄ = r̄p ,

u>1 = 1 . (2)

The advantage of formulation (2) is that it does not depend on the level Wini of
the initial wealth. Suppose that the covariance matrix V is regular (i.e. the asset
returns are linearly independent) and there exist two assets i, j with different
expected returns r̄i 6= r̄j . In this case one can calculate a unique solution of (2).
Denote

A = 1>V −1r̄ = r̄>V −11 ,



B = r̄>V −1r̄ > 0 ,
C = 1>V −11 > 0 ,
D = BC − A2.

One can easily calculate (see [4] for details) optimal weights up:

up = g + hr̄p (3)

where

g =
1

D
[B(V −11) − A(V −1r̄)] ,

h =
1

D
[C(V −1r̄) − A(V −11)] .

Variance of the optimal portfolio could be calculated as

Var(rp) = w>
p V wp = (g + hr̄p)

>V (g + hr̄p)

= g>V g + (h>V g)r̄p + (g>V h)r̄p + (h>V h)r̄2
p . (4)

One can see that Var(rp) is a quadratic function of r̄p. The set of optimal portfo-
lios is illustrated in Fig. 1. It is obvious, that efficient are only portfolios from the
”upper” part of the curve which is called Efficient frontier. It is worth to note,
that in practical applications short positions (ui < 0 for some i) are forbidden.
Therefore, the constraints ui ≥ 0, i = 1, 2, . . . n are added. In this case we still
have a problem of quadratic programming, but we loose the explicit solution.

Fig. 1. Efficient frontier.

Problem (1) (and equivalent formulation (2)) ignores transaction costs as-
sociated with buying and selling assets. Considering the transaction costs we



cannot ignore the composition of initial portfolio. Denote by xini the compo-
sition of initial portfolio. The portfolio consists of cash xini,0 and risky assets
xini,1, . . . , xini,n. The cash is supposed to have risk-free return r0. The assets
i = 1, 2, . . . , n have risky returns with means r̄ = (r̄1, . . . , r̄n)> and covariance
matrix V . Formulation (1) could be extended to the case with transaction costs
as follows:

min
x,v+,v−

n
∑

i,j=1

xixjVij

s.t. x0(1 + r0) +

n
∑

i=1

xi(1 + r̄i) = W̄ ,

xini,i + v+
i − v−i = xi , i = 1, 2, . . . , n ,

xini,0 −

n
∑

i=1

(1 + di)v
+
i +

n
∑

i=1

(1 − ci)v
−
i = x0 ,

v+, v− ≥ 0 (5)

where v+, v− represent the value of bought and sold risky assets respectively,
d and c the proportional transaction costs associated with buying and selling.
In the case of forbidden short positions, the constraints xi ≥ 0, i = 1, 2, . . . , n
have to be added. One can observe that (5) is (alike (1)) a problem of quadratic
programming.

2.2 Utility based approach

In the mean-variance approach risk preferences are given through the expected
return r̄p of the portfolio. The higher r̄p the lower the aversion to risk. An
alternative approach widely used in finance is the one based on utility function.
In this approach investor’s preferences are given through the utility function U .
Optimal portfolio is the one which maximizes the expected utility of the final
wealth W through all considered strategies:

max
u

E(U(W ))

W = F (Wini, u) . (6)

Here W is a random variable representing final wealth at the end of the period
depending on the initial welath Wini at the beginning of the period and a trading
strategy u.

The utility function U is usually different for different investors. It represents
the investor’s aversion to risk. One can prove that for risk averse investor the
utility function U has to be increasing and concave (see e.g. [4]). Widely used
is a standard class of utility functions with constant coefficient of relative risk
aversion (CRRA functions) C = −xU ′′(x)/U ′(x). In this case the utility function



is of the form

U(x) = −Ax1−C + B if C > 1,

U(x) = A ln(x) + B if C = 1 ,

U(x) = Ax1−C + B if C < 1 (7)

where A, B are constants and A > 0. One can easily prove that, concerning the
problem (6), the utility function is invariant to positive affine transformations,
i.e. U and K.U + L are equivalent. It is worth to note that in the case of CRRA
functions the solution of (6) does not depend on the level of initial wealth Wini.

Example 1. Consider a situation where investor has a choice of m funds with
random returns rj , j = 1, 2, . . . , m. He /she wants to invest the initial wealth
Wini to one of the funds. Using the utility based approach the investor solves
the problem

max
j∈{1,2,...,m}

E(U(Wini(1 + rj))) .

The values E(U(Wini(1+rj))) have to be calculated for all funds j ∈ {1, 2, . . . , m}.
The solution is the fund for which this value is maximal.

Example 2. As an another example suppose that investor has a choice between
a risk-free asset with value ert for t ≥ 0, where r is the risk-free rate and a risky
asset with value satisfying a stochastic differential equation

dSt/St = µ dt + σ dBt

where µ and σ > 0 are constants representing the drift and the volatility of the
asset and Bt is a standard Brownian motion (Wiener process). Consider a class
of strategies with constant proportion 0 ≤ u of the risky asset (i.e. proportion
(1 − u) is hold in the risk-free asset) in the whole period [0, T ]. Denote by Wt

value of the porfolio at time 0 ≤ t ≤ T . One can calculate

dWt/Wt = (r + u(µ − r)) dt + uσ dBt .

Using Itô’s lema we have

Wt = W0 exp((r + u(µ − r) −
1

2
u2σ2)t + uσBt) .

Suppose that investor’s preferences are represented by a CRRA utility function
with coefficient of relative risk aversion C > 1

U(W ) =
W 1−C

(1 − C)
.

Since BT has a normal distribution with zero mean and variance T one has

E(U(WT )) =
P 1−C

0

1 − C
exp((1−C)(r+u(µ−r)−

1

2
u2σ2)t+

1

2
(1−C)2u2σ2t) . (8)

Folowing standard calculations we have that (8) is maximal for

u =
µ − r

Cσ2
.



2.3 Relation between mean-variance and utility based approaches

Recall the mean-variance problem (1). Using the utility approach one can for-
mulate a similar problem:

max
x

E(U(

n
∑

i=1

xi(1 + ri)))

s.t. x>1 = Wini . (9)

Note that (9) does not contain expected return r̄p of the portfolio. The risk
preferences are included in the utility function U which is specific for a conrete
investor. The question is: What is the relation between the mean-variance and
utility approaches? The answer is that they are not in contradiction in two cases:

- the returns are normally distruted or

- the utility function U is quadratic.

We shall present only basic idea of the proof. Take a Taylor series of the utility
function in W̄ (expected value of the wealth W ):

U(W ) = U(W̄ ) + U ′(W̄ )(W − W̄ ) +
1

2
U ′′(W̄ )(W − W̄ )2 + R3

where R3 are terms of degree more than 2. Using this we have

E(U(W )) = U(W̄ ) +
1

2
U ′′(W̄ )V ar(W ) + E(R3) .

If we neglect E(R3), for fixed W̄ variance of W should be minimal. This implies
that mean-variance and utility approaches are not in contradiction. For quadratic
utility function R3 = 0. The idea of proof for normal distribution of returns is
that all higher moments of the normal distribution could be calculated from
first and second ones. The quadratic utility function is not increasing, which
is in contradiction with the basic property of utility functions. In reality the
quadratic utility function could be used if realistic values are from the region,
where U is increasing.

Fig. 2 illustrates the relation between mean-variance and utility based ap-
proaches. Indifferent curves represent portfolios with the same expected utility
E(U(W )). Curves disjoint with efficient frontier represent unreachable portfo-
lios (with given Wini and random returns ri). The common solution of mean-
variance and utility based approach is the intersection of efficient frontier and
tangent curve.
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Fig. 2. Efficient frontier with indifferent curves.

One can also formulate an equivalent of mean-variance approach with trans-
action costs (5) in the utility framework:

max
x,v+,v−

E(U(
n

∑

i=0

xi(1 + ri)))

xini,i + v+
i − v−i = xi , i = 1, 2, . . . , n ,

xini,0 −
n

∑

i=1

(1 + di)v
+
i +

n
∑

i=1

(1 − ci)v
−
i = x0 ,

v+, v− ≥ 0 . (10)

3 Multi-period asset allocation

In previous sections one-period models of portfolio management have been con-
sidered. In these models the decision (asset allocation) is done at the beginning
of the period and no future corrections are possible. However, in reality asset
managers typically suppose that the decision could be corrected in the future
using a new information from financial markets.

A model with future portfolio rebalancing could look as follows. Consider a
portfolio management problem with n assets. A manager is rebalancing (without
transaction costs) a portfolio with initial value Wini at times t = 0, 1, . . . , T − 1.
At each time t = 0, 1, . . . , T − 1 the manager applies a decision u = ut(It)
depending on information It at time t. Assets returns are supposed to be random.
Therefore, the wealth Wt+1 is a random variable depending on the wealth Wt

and the decision ut: Wt+1 = Ft(Wt, ut). The goal is to maximize the expected
utility of the wealth at time horizon T . Mathematically the problem reads as



follows:

max
u

E(U(WT ))

Wt+1 = Ft(Wt, ut) , t = 0, 1, . . . , T − 1 . (11)

One can prove that if the returns rt are independent for different times t =
0, 1, . . . , T − 1, then the only information relevant at time t is the wealth Wt.
Therefore, in this case It ≡ Wt.

The optimal strategy ut is a solution of the Bellman equation. Using the law
of iterated expectations

E(U(WT )) = E(E(U(WT )|It)) = E(E(U(WT )|Wt))

we conclude that E(U(WT )|Wt) should be maximal. Let us denote

Vt(W ) = max
ut,ut+1,...,uT−1

E(U(WT )|Wt = W ) . (12)

Then by using the law of iterated expectations

E(U(WT )|Wt) = E(E(U(WT )|Wt+1)|Wt)

we obtain the Bellman equation

Vt(W ) = max
ut

E[Vt+1(Wt+1)|Wt = W ] = max
ut

E[Vt+1(Ft(W, ut))] , (13)

for t = 0, 1, . . . , T − 1, where VT (W ) = U(W ). Using (13) the optimal feedback
strategy u can be found backwards. For complete calculations the distribution
of returns rt should be given. Next section contains a concrete application.

4 Dynamic accumulation model for the second pillar of

the Slovak pension system

Suppose that a future pensioner deposits once a year a τ -part of his/her yearly
salary Gt to a pension fund j ∈ {1, 2, . . . , m}. Denote by Wt, t = 1, 2, . . . T the
accumulated sum at time t where T is the expected retirement time. Then the
budget-constraint equations read as follows:

Wt+1 = Wt(1 + rj
t ) + Gt+1τ , t = 1, 2, . . . , T − 1 ,

W1 = G1τ (14)

where rj
t is the return of the fund j in the time period [t, t+1). When retiring the

pensioner will strive to maintain his/her living standard in the level of the last
salary. From this point of view, the saved sum WT at the time of retirement T is
not precisely what the future pensioner cares about. For a given life expectancy,
the ratio of the cumulative sum WT and the yearly salary GT , i.e. dT = WT /GT



is more important. Using the quantity dt = Wt/Gt one can reformulate the
budget-constraint equation (14):

dt+1 = Ft(dt, j) , t = 1, 2, . . . , T − 1 ,

d1 = τ (15)

where

Ft(d, j) = d
1 + rj

t

1 + %t

+ τ , t = 1, 2, . . . , T − 1 (16)

and %t denotes the wage growth defined by the equation

Gt+1 = Gt(1 + %t) .

Suppose that each year the saver has the possibility to choose a fund j(t, It) ∈
{1, 2, . . . , m}, where It denotes the information set consisted of the history
of returns rj

t′ , t′ = 1, 2, . . . , t − 1, j ∈ {1, 2, . . . , m} and the wage growth
%t′ , t′ = 1, 2, . . . , t − 1. Now suppose that the history of the wage growth %t,
t = 1, 2, . . . , T − 1 is deterministic and the returns rj

t are assumed to be ran-
dom and they are independent for different times t = 1, 2, . . . , T − 1. Then the
only relevant information is the quantity dt. Hence j(t, It) ≡ j(t, dt). One can
formulate a problem of dynamic stochastic programming:

max
j

E(U(dT )) (17)

with the following recurrent budget constraint:

dt+1 = Ft(dt, j(t, dt)) , t = 1, 2, . . . , T − 1 ,

d1 = τ (18)

where the maximum is taken over all non-anticipative strategies j = j(t, dt). Here
U stands for a given preferred utility function of wealth of the saver. Problem (17
- 18) could be solved by same method as (11). Let us define equivalent quantity
to (12):

Vt(d) = max
j

E(U(dT )|dt = d) . (19)

Using the law of iterated expectations we obtain the Bellman equation

Vt(d) = max
j∈{1,2,...,m}

E[Vt+1(Ft(d, j))] = E[Vt+1(Ft(d, j(t, d)))] , (20)

for t = 1, 2, . . . , T − 1, where VT (d) = U(d). Using (20) the optimal feedback
strategy j(t, dt) can be found backwards. This strategy gives the saver the deci-
sion for the optimal fund for each time t and level of savings dt. Suppose that
the stochastic returns rj

t are represented by their densities f j
t . Then equation



(20) can be rewritten in the form

Vt(d) = max
j∈{1,2,...,m}

E[Vt+1(Ft(d, j))]

= max
j∈{1,2,...,m}

∫

R

Vt+1

(

d
1 + r

1 + %t

+ τ

)

f j
t (r) dr

= max
j∈{1,2,...,m}

∫

R

Vt+1(y)f j
t

(

(y − τ)
1 + %t

d
− 1

)

1 + %t

d
dy

=

∫

R

Vt+1(y)f
j(t,d)
t

(

(y − τ)
1 + %t

d
− 1

)

1 + %t

d
dy (21)

where the substitution y = d (1 + r)(1 + %t)
−1 + τ has been used and R de-

notes the set of real numbers. In our calculations we consider standard class
of CRRA utility functions with constant coefficient of relative risk aversion
C = −xU ′′(x)/U ′(x).

Concerning the structure of funds we consider the situation in Slovak Re-
public after stablishing system based on three pillars (2005). According to the
adopted government regulation there were three funds (i.e. m = 3). Namely,
the Growth, Balanced and Conservative fund. The funds are assumed to have
normal distributions. Returns ri and standard deviations σi, i = 1, 2, 3, used for
the calculations could be found in Tab. 1. The data have been taken from [1].

Fund Return StdDev

F1 r1 = 0.0926 σ1 = 0.1350

F2 r2 = 0.0772 σ2 = 0.0841

F3 r3 = 0.0516 σ3 = 0.0082

Period wage growth
(1 + %t)

2006-2008 1.075

2009-2014 1.070

2015-2021 1.065

2022-2024 1.060

2025-2050 1.050

Table 1. Data used for computation. Fund returns and their standard deviations (left),
expected wage growth for the period 2006–2050 (right).

According to Slovak legislature the percentage of salary transferred each year
to a pension fund is 9%. The law sets administrative costs of the second pillar
at 1% of monthly contribution and 0.07% of the monthly asset value (i.e. 0.84%
p.a.). Therefore, we considered effective contributions τ = 8.91% (= 9% ∗ 0.99).
The value 0.84% was subtracted from the asset returns in Tab. 1. We assumed
the period of saving to be T = 40 years. The data for the expected wage growth
% are taken from [1]. The values are shown in Tab. 1.

The details of numerical approximation scheme could be found in [1]. The
output of the numerical code is a matrix allowing us to ”browse” between differ-



ent years (rows) t and different levels of d (columns). At a given cell of the table
we can read the name of fund (j = 1, ..., m) which has to be chosen. In Fig. 3 we
present a typical result of our analysis with the coefficient of proportional risk
aversion C = 9. It contains three distinct regions in the (d, t) plane determining
the optimal choice j = j(d, t) of a fund depending on time t ∈ [1, T − 1] and the
average saved money to wage ratio d ∈ [dmin, dt

max]. For practical purposes we
chose dmin = 0.0891 (the effective 2nd pillar contribution rate) and dt

max = t/2
for t ≥ 1. In each year t = 1, ..., T − 1 we invest the saved amount of money
Wt (uniquely corresponding with dt) to one of the funds j = 1, 2, 3 depending
on the computed optimal value j = j(d, t). In the first year of saving we take
d1 = dmin.

The curvilinear solid line in Fig. 3 represents the path of the mean wealth
E(dt), obtained by 10, 000 simulations and here we use C = 9. Notice that, for
t > 1, the ratio dt is a random variable depending on (in our case normally
distributed) random returns of the funds and on the computed optimal fund
choice matrix j(d, t′), t′ < t. The dashed curvilinear lines correspond to E(dt)±σt

intervals where σt is the standard deviation of the random variable dt. In Tab. 2
we present the mean final wealth E(dT ) as well as the so-called switching-times

for mean path E(dt), t ∈ [1, T − 1], and the intervals (in brackets) of switching
times for one standard deviation of the mean path.
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Fig. 3. Regions of optimal choice and the path of average saved money to wage ratio
(C = 9).

Further reading

A concise overview of sigle-period and multi-period models could be found in [6]
and [7]. Concerning single-period mean-variance and utility approach we recom-
mend [2] or [4] (in Slovak). For details of model presented in Section 4 we refer
to [1]. More general dynamic stochastic accumulation model for saving in the



mean switch switch
E(dT ) F1 − F2 F2 − F3

4.28 14 (12-16) 33 (32-35)
Table 2. Summary of computation of the mean saved money to wage ratio dT and
switching times (C = 9).

funded pillar of pension system in Slovakia with stochastic interest rates could
be found in [5].
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