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INVESTMENT STRATEGIES IN DEFINED-CONTRIBUTION

PENSION SCHEMES

I. MELICHERČÍK, G. SZŰCS and I. VILČEK

Abstract. We present a dynamic model for optimal investment decisions in defined
contribution pension plans. The model determines an optimal fraction of pensioner’s

savings to be invested in an equity fund, with the rest invested in a bond fund.

Since it is difficult to estimate the model parameters exactly, we present sensitivity
analysis with respect to various relevant parameters and stress-testing of optimal

investment decisions under different equity return scenarios. The model is applied

to the actual Slovak DC scheme.

1. Introduction

In recent decades numerous OECD countries introduced privately managed defined
contribution (DC) pension plans into their pension systems to complement or
replace already existing public schemes. Privately managed DC schemes work
on a basis of regular contributions of individual workers to their own pension
accounts. The wealth accumulated via these contributions is continually managed
by pension funds, which invest in the financial assets such as equities, bonds or
cash. Some countries such as Slovakia, Poland or Hungary have actually cut
contribution rates in DC schemes or in some way disadvantaged the DC plans as
a response to the crisis in 2008. The main goal of this paper is to analyze the
level of pensions from the second pillar of the Slovak pension system according to
the last legislative changes. Especially, the decrease of the contributions to the
funded pillar in Slovakia from 9 % to 4 % induced a necessity of new calculations.
We use the dynamic stochastic accumulation model introduced firstly in [7] and
later generalized in [9]. The model determines the optimal fraction of savings to
be invested in the equity fund (with the rest in the bond fund), given specific time
to retirement, level of accumulated wealth and actual short-term interest rate.
Authors in [9] assumed existence of two funds – the bond fund, represented by
1-year zero coupon bonds and the equity fund whose risk-return characteristics
corresponded to the US stock index S&P500 during 1996–2002. We generalize the
model from [9] to account for any duration of the bond fund. Next, we conduct
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a sensitivity analysis of the model outcomes to all relevant parameters. Most
importantly, we perform stress-testing with respect to the most sensitive as well
as the most unpredictable parameter – equity returns. To achieve this we utilize
real historical stock index scenarios as well as artificially created ones. We present
our results on the current Slovak DC scheme and calibrate all our models by latest
available data. The achieved levels of savings are recalculated to the replacement
rates using non-indexed annuities.

2. Model

Suppose that a future pensioner deposits once a year a τt-part of his/her yearly
salary wt to a pension fund with a δ-part of assets in stocks and a (1− δ)-part of
assets in bonds, where δ ∈ [0, 1]. Denote by st, t = 1, 2, . . . T, the accumulated sum
at time t, where T is the expected retirement time. Then the budget-constraint
equations read as follows:

st+1 = δst exp(Rs(t, t+ 1)) + (1− δ)st exp(Rb(t, t+ 1)) + wt+1τt+1 .(1)

For practical reasons, the quantity dt = st/wt is more appropriate (cf. [9]). It can
be easily recalculated to the replacement ratio (pension payment/salary), which
is the most important value for pensioners. Using dt instead of st, one can refor-
mulate the budget-constraint equation (1) as follows:

dt+1 = dt
δ exp(Rs(t, t+ 1)) + (1− δ) exp(Rb(t, t+ 1))

1 + βt
+ τt+1, t = 1, 2, . . . , T − 1,

where d1 = τ1 and βt denotes the wage growth wt+1 = wt(1 + βt).
The term structure development is driven by one factor Cox-Ingersoll-Ross

(CIR) short-rate model presented in [3]

drt = κ(θ − rt)dt+ σb
√
rtdZt , κ, θ, σb > 0 ,(2)

where rt stands for a short rate, Zt is the Wiener process, θ is the long term interest
rate, κ is the rate of reversion and σb is the volatility of the process. Suppose that
the bond part of the portfolio has duration Tb. The corresponding return can be
modeled using zero coupon bonds. Denote by P (t, Tb) the price (at time t) of zero
coupon bond with face value 1 and time to maturity Tb. In CIR model (see [3])
the term structure of zero coupon bonds can be expressed by explicit formula

P (t, Tb) = P (rt, t, Tb) = A(Tb) e−B(Tb)rt ,

where

A(Tb) =

(
2γ e

(κ+λ+γ)Tb
2

(κ+ λ+ γ)(eγTb −1) + 2γ

) 2κθ
σ2

,

B(Tb) =
2(eγTb −1)

(κ+ λ+ γ)(eγTb −1) + 2γ
,

γ =
√

(κ+ λ)2 + 2σ2 .
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Hence

Rb(t, t+ 1) = rtB(Tb)− ln(A(Tb))− rt+1B(Tb − 1) + ln(A(Tb − 1)) .

Using a discretization of the short rate process (2), we have (see e.g., [15] or [1])

rt+1 = g(rt,Φ) = θ + e−κ(rt − θ) +

(
σb
√
rt
2κ

(1− e−2κ)

)
Φ ,(3)

where Φ ∼ N(0, 1).
We shall assume the stock prices St are driven by geometric Brownian motion.

The annual stock return Rs(t, t + 1) = ln(St+1/St) can be therefore expressed as
Rs(t, t+1) = µst+σ

s
t Ψ , where µst and σst are the mean value and volatility of annual

stock returns in the time interval [t, t+ 1), Ψ ∼ N(0, 1) is a normally distributed
random variable. The random variables Φ, Ψ are assumed to have 2-dimensional
normal distribution with the correlation coefficient ρ = E(ΦΨ) ∈ (−1, 1).

Suppose that each year the saver has the possibility to choose a level of stocks
included in the portfolio δt(It), where It denotes the information set consisting of
the accumulated wealth dt, the history of bond and stock returns and wage growths
up to time t. We suppose that the forecast of the wage growth is deterministic,
the stock returns are assumed to be random, independent for different times and
the interest rates are driven by the Markov process (2). Then the quantities dt
and the short rate rt are the only relevant information. Hence δt(It) ≡ δt(dt, rt).
One can formulate a problem of stochastic dynamic programming

max
δ

E(U(dT ))(4)

subject to the following recurrent budget constraints

dt+1 = Ft(dt, rt, δt(dt, rt),Φ,Ψ), t = 1, 2, . . . , T − 1,(5)

where d1 = τ1,

Ft(d, r, δ, x, y)

= d
δ eµ

s
t+σ

s
t y +(1− δ) erB(Tb)−ln(A(Tb))−g(r,x)B(Tb−1)+ln(A(Tb−1))

1 + βt
+ τt+1

(6)

and the short rate process is driven by (2) and (3) with a given initial short rate
r1. We assume the stock part of the portfolio is bounded by a given upper barrier
function ∆t : 0 ≤ δt(dt, rt) ≤ ∆t. The function ∆t : {1, . . . , T − 1} 7→ [0, 1] is
subject to governmental regulations. In our modeling we use the constant relative
risk aversion (CRRA) utility function U(d) = −d1−a, d > 0, where a > 1 is the
constant coefficient of relative risk aversion. The model is a generalization of the
one presented in [9], where the bond part of the portfolio was represented by zero
coupon bonds with time to maturity Tb = 1.

Let us denote by Vt(d, r) saver’s intermediate utility function at time t defined
as

Vt(d, r) = max
0≤δ≤∆t

E(U(dT )|dt = d, rt = r) .(7)
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Then, by using the law of iterated expectations, we obtain the Bellman equation

Vt(d, r) = max
0≤δ≤∆t

E[Vt+1(Ft(d, r, δ,Φ,Ψ), g(r,Φ))](8)

for every d, r > 0 and t = 1, 2, . . . , T − 1. Using VT (d, r) = U(d), the optimal
strategy can be calculated backwards. One can prove (using the same arguments as

[9]) that there exists a unique argument of the maximum in (8) δ̂t = δ̂t(dt, rt), i.e.,

Vt(d, r) = E[Vt+1(Ft(d, r, δ̂t(d, r),Φ,Ψ), g(r,Φ))] .(9)

Since the distribution of the random vector (Ψ,Φ)> is known, the equation (9)
can be solved numerically. To be more specific, the density function parametrized
by the correlation coefficient ρ is given by

fρ(x, y) =
1

2π
√

1− ρ2
e
− (x2−2ρxy+y2)

2(1−ρ2)

and from the definition of expected value, we may rewrite (9) as

max
0≤δ≤∆t

∫
R2

Vt+1 (Ft(d, r, δ, x, y), g(r, x)) fρ(x, y)dxdy

and subsequently simplify by a substitution (x = ξ
√

1− ρ2 + ρy) to

max
0≤δ≤∆t

∫
R2

Vt+1

(
Ft(d, r, δ, ξ

√
1− ρ2 + ρy, y), g(r, ξ

√
1− ρ2 + ρy)

)
× · f0(ξ, y)dξdy .

(10)

For the sake of brevity, we do not discuss a numerical procedure for solving
equation (10) here and refer the reader to [9].

2.1. Model without future contributions

A simplified model with positive initial investment d1 > 0 and no future contri-
butions (i.e., τt = 0 for t > 1) was considered by Samuelson in [12], and more
explicitly Hakanson [5]. Furthermore, they supposed independent (in time) and
identically distributed returns of risky assets and one risk-free asset with deter-
ministic returns. Using the CRRA class of utility functions, they concluded that
optimal portfolio composition is independent of time and level of savings.

In our model, bonds are not riskless assets and their returns are not independent
in time. However, in the case of no future contributions, the optimal proportions
of assets are independent of the level of savings.

Proposition 2.1. Consider the problem (4)–(6) with d1 > 0, τt = 0 for t > 1
(i.e., there are no future contributions) and CRRA utility function U = −d1−a.
Then the value function (7) has the form

Vt(dt, rt) = Lt(rt)U(dt) .

Moreover, the optimal strategy δ̂t does not depend on the level of savings dt, i.e.,

δ̂t(dt, rt) ≡ δ̂t(rt) .
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Proof. We use the backward mathematical induction for t = T, T −1, . . . , 1. By
definition of the value function, we have

VT (dT , rT ) = U(dT ) .

Hence

VT (dT , rT ) = LT (rT )U(dT )

with LT (rT ) ≡ 1, the statement is obvious for t = T .
Suppose that Vt+1(dt+1, rt+1) = Lt+1(rt+1)U(dt+1). Using (6) with τt+1 = 0 and
(8), we have

Vt(dt, rt) = max
0≤δt≤∆t

E [Vt+1 (Ft(dt, rt,Φ,Ψ, δt), g(r,Φ))]

= max
0≤δt≤∆t

E [Lt+1(g(rt,Φ))U(Ft(dt, rt,Φ,Ψ, δt))]

= max
0≤δt≤∆t

E

[
Lt+1(g(rt,Φ))U

(
dt
δt eξt +(1− δt) eηt

1 + βt

)]
= −d1−a

t min
0≤δt≤∆t

E

[
Lt+1(g(rt,Φ))

(
δt eξt +(1− δt) eηt

1 + βt

)1−a]
= U(dt)Lt(rt),

where

ξt := µst + σst y ,

ηt := B(Tb)rt − lnA(Tb)− g(rt,Φ)B(Tb − 1) + lnA(Tb − 1) ,

Lt(rt) := min
0≤δt≤∆t

E

[
Lt+1(g(rt,Φ))

(
δt eξt +(1− δt) eηt

1 + βt

)1−a]
.

(11)

By (11) the optimal strategy δ̂t does not depend on the level of savings dt. �

3. Baseline scenario

3.1. The Slovak pension system

Pensions in Slovakia are operated by a three-pillar system:
1. the public, compulsory, non-funded first pillar (pay-as-you-go),
2. the private, voluntary, fully funded second pillar,
3. the private, voluntary, fully funded third pillar.

The contribution rate is currently set at 18 % for the first pillar (in case a pensioner
decides to stay only in the public scheme) or 14 % for the first pillar and 4 % for
the second pillar (in case a pensioner decides to save in both pillars)1. The savings
in the funded pillar are managed by pension asset managers. Each asset manager
operating in the second pillar is obliged to manage two funds – a Guaranteed

1The contribution rate to the private pillar has been recently cut from 9 % to 4 % with fu-

ture planned increase to 6 %. The development of the contribution rate according to the latest

legislative changes is presented in Tab. 1.
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Bond Fund2 and a Non-guaranteed Equity fund plus any number of additional
funds. Savers have a possibility of holding all assets in any fund of their choice
or to split the assets into two funds (one of which has to be a Guaranteed fund)
by any ratio they choose. This ratio can be changed in time and is subject to
the governmental regulations during the last years of a savings process. When
approaching retirement, the fraction of savings in a Guaranteed fund has to be
gradually increased (see Tab. 2) and is required to reach 100 % 3 years before
retirement.

Table 1. Left: Forecast of interannual gross wage growth in Slovakia. Specific values for years

2013–2015 are the average forecasts of the National Bank of Slovakia, Institute of Financial Policy

and Slovenska Sporitelna. Data for years 2016–2051 are from [8]. Right: The contribution rate as
a percentage of a gross wage. Source: Law on pension savings no. 43/2004 (as of June 1, 2014).

Year Wage growth
2013 4.37%
2014 4.75 %
2015 5.2 %

2016–2020 6.4 %
2021–2025 5.9 %
2026–2030 5.6 %
2031–2035 5.2 %
2036–2040 4.9 %
2041–2051 4.5 %

Year Contributions
2013–2016 4.0 %

2017 4.25 %
2018 4.5 %
2019 4.75 %
2020 5.0 %
2021 5.25 %
2022 5.5 %
2023 5.75 %

2024–2051 6.0 %

Table 2. Legislative restrictions on the proportion of savings in equity funds. Source: Law on
pension savings no. 43/2004 (as of June 1, 2014).

Age of saver Year of saving Maximum % of stocks ∆t

≤ 49 1.–28. 100 % 1
50–58 29.–37. 10× (59− age) % 0.1× (59− age)
≥ 59 38.–40. 0 % 0

3.2. Parameters and Data

We have supposed a saving period of T = 40 years. Parameters of the CIR model
were estimated3 using maximum likelihood method published in [2]. The specific
values of the parameters are κ = 0.8993, θ = 0.0226, σb = 0.148. It is worth to
note that estimated parameters are close to ones used in [9], which were taken
from [14]. The maturity of zero coupon bonds representing the duration of the

2Guaranteed fund is obliged to deliver a non-negative performance, net of costs, during any
rolling 10-year period.
3Daily data from period 1999-2012, source: http://www.euribor-info.com/en/eonia .

http://www.euribor-info.com/en/eonia
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guaranteed fund was set to Tb = 3. We have used the coefficient of the relative
risk aversion a = 9 (the same as [9]). Nominal wage growth in Slovakia (Tab. 1)
over the next 40 years was obtained (nominal wage growth) from the most recent
available forecasts.

The basic value of the drift µs and the volatility of the stock part of the port-
folio σs were estimated from historical annualized monthly returns of the U.S.
stock market index S&P 500 including reinvested dividends (total return)4. In our
calculations we have used value µs = 8.44 % p.a., σs = 14.17 % p.a. (estimates
from the period 1871–2012). The correlation of the stock and bond parts of the
portfolio was estimated using historical data5. In our calculations we have used
the estimate from the period between 1962–2012, ρ = −0.01082.

3.3. Results for the baseline scenario

The output of the model is the function δ̂t(dt, rt) representing the optimal propor-
tion of savings invested in equity funds, provided that we are in the t-th year of
saving, the current short rate is rt and we have already saved dt yearly salaries.
The development of the average level of savings and average proportion of the
stock investment with standard deviations for 100 000 Monte Carlo simulations
can be found in Fig 1. Using the basic model parameters, the average terminal
level of savings is relatively low (around 2.5 times of the yearly salary, see also
Tab. 3). This is mainly due to low contributions and relatively high wage growth.
The right graph shows that at the beginning of saving, the model recommends
to invest all savings in the stock fund. The reason is simple. Possible negative
return of the stock fund has a small impact on future pension since essential part
of the contributions is expected in the future. Later on, return of the stock fund
has higher impact on the final level of savings (the ratio of future contributions
to the level of savings is lower). Therefore, the decreasing tendency of stock in-
vestments is natural. The linear decrease in the last years is due to governmental
regulations. The governmental regulations supplemented with high wage growth
are the reasons of stagnant level of savings in the last years before retirement.

3.4. Sensitivity analysis

It is difficult to forecast the model parameters exactly. Therefore, we have per-
formed simulations for the following modifications (for t = 1, 2, . . . , 39) of the
baseline scenario:

(M0) Baseline scenario.
(M1) Contributions τt = 4 %.
(M2) Contributions τt = 9 %.
(M3) No governmental regulations for the stock fund, i.e., ∆t = 1.
(M4) Lower aversion to risk a = 5.
(M5) Higher duration of the bond fund Tb = 5.

4Monthly data, source: http://www.econ.yale.edu/~shiller/data.htm
5S&P 500, daily data, source: http://finance.yahoo.com/ . US short rate (Effective Federal

Funds Rate), source: http://research.stlouisfed.org/fred2/.

http://finance.yahoo.com/
http://research.stlouisfed.org/fred2/
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Figure 1. The development of the average level of savings (left) and average proportion of the

stock investment with standard deviations (right).

(M6) Lower wage growth β̃4−39 = β4−39 − 1 %.
(M7) Lower drift of the stock returns µst = 5 %.
(M8) Linear growth of the drift of the stock returns µst = 2% + 0.25(t− 1) %.
(M9) Higher volatility of the stock returns σst = 20 %.

(M10) Forbidden mixing of stock and bond funds, i.e., δt ∈ {0, 1}.
Expected values of the final level of savings E(dT ), standard deviations σ(dT ),
catastrophic scenarios represented by 5% quantiles Q5%(dT ) and certainty equiv-
alents (CE) defined as U−1[E(U(dT )] (i.e., a certain value having the same utility
as the random result of the strategy) can be found in Tab. 3. One can observe
that the final level of savings is most of all sensitive to the contribution rate and
the drift of the stock returns.

Table 3. Sensitivity analysis – comparison with the baseline scenario.

Modification E(dT ) σ(dT ) Q5%(dT ) CE
(M0) 2.4947 0.6441 1.6226 1.9304
(M1) 1.7922 0.4747 1.1454 1.3591
(M2) 4.0357 1.0757 2.5808 3.0676
(M3) 2.8063 0.8028 1.7302 2.0361
(M4) 2.9284 1.1535 1.5875 2.2103
(M5) 2.4984 0.6487 1.6195 1.9266
(M6) 2.9597 0.7774 1.8997 2.2569
(M7) 1.6873 0.2326 1.3415 1.5550
(M8) 2.2122 0.5093 1.5049 1.7900
(M9) 2.1803 0.4912 1.4893 1.7719
(M10) 2.0326 0.4924 1.4054 1.6857
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4. Stress-testing

4.1. Scenarios and strategies

It is very difficult to forecast the model parameters associated with asset returns.
Especially, the estimates of the drifts of the stock returns are usually unreliable.
Hence, we tested selected strategies against a set of different models for the equity
fund returns. The model for the bond fund was the same as the one used in the
previous section. We considered the following drift scenarios µst :

(SC1) µst = 11% during the entire saving period.
(SC2) µst = 9% during the entire saving period.
(SC3) µst = 7% during the entire saving period.
(SC4) µst = 5% during the entire saving period.
(SC5) Linear growth of the drift from 2% to 11.5 % µst = 2% + 0.25(t− 1) %.
(SC6) S&P 500 (1900–1939): growth scenario with depression at the end.
(SC7) S&P 500 (1915–1954): stagnation, boom, recession and recovery.
(SC8) S&P 500 (1950–1989): long-term healthy growth scenario.
(SC9) S&P 500 (1929–1968): recession, recovery and growth.

(SC10) S&P 500 (1880–1919): stagnation and modest growth.
(SC11) Nikkei 225 (1991–2012, 1949–1967): long-term recession and recovery.

Scenarios (SC6)–(SC11) based on historical returns of the stock indices are sum-
marized in Fig. 2. We tested 15 strategies (ST1)–(ST15) against the set of 11
scenarios (SC1)–(SC11). Strategies (ST1)–(ST11) are the optimal ones according

to our dynamic model, i.e., the optimal value δ̂t(dt, rt) for the strategy (STi) is cal-
culated supposing that the scenario (SCi) takes place. (ST12) and (ST13) invest
all the savings to bond and equity funds, respectively. Strategy (ST14) begins with
the investment in the equity fund and each year linearly moves the savings into the
bond fund, i.e., δt = max{0, 1− t−1

36 }. The last one follows a popular rule “invest
(100-age)% to stocks”. Assuming the savings period from the age 22 to the age
62, the ratio of equity investments under this strategy is δt = min{∆t, 1− t+22

100 }.

4.2. Stress-testing: The outcome

For each pair (strategy i, scenario j) 100 000 Monte Carlo simulations were per-
formed supposing that strategy i is applied and scenario j takes place. Using the
simulations, values of certainty equivalent (CE) indicator were calculated. Results
are presented in Tab. 4. One can observe that strategies (ST6)–(ST11) achieve
high values in the case when the corresponding scenarios (SC6)–(SC11) take place.
On the other hand, they are not so flexible as the other strategies in the case a
different scenario occurs.

A natural question which strategy can be regarded as the best under all circum-
stances arises. The answer to this question obviously depends on how we define an
evaluation criterion for the strategies. For some savers it could be, e.g., a strategy
that has the highest mean value of the final level of savings averaged from all
scenarios, i.e., Max-Mean approach. Risk-takers would prefer the strategy with
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Figure 2. Scenarios (SC6)–(SC11) used in stress-testing. S&P 500, daily data, source:

http://finance.yahoo.com/. Historical annual returns of the Japanese stock index NIKKEI225,

source: http://indexes.nikkei.co.jp/en/nkave/archives/data.

Table 4. Certainty equivalents CE using various strategies and scenarios.

(SC1) (SC2) (SC3) (SC4) (SC5) (SC6) (SC7) (SC8) (SC9) (SC10) (SC11)
(ST1) 2.40 2.00 1.71 1.48 1.76 1.87 1.81 1.94 2.85 1.72 2.64
(ST2) 2.37 2.01 1.73 1.50 1.78 1.83 1.87 2.01 2.72 1.77 2.58
(ST3) 2.28 1.99 1.74 1.54 1.77 1.82 1.94 2.05 2.48 1.77 2.30
(ST4) 2.05 1.87 1.70 1.56 1.70 1.76 1.90 1.95 2.13 1.70 1.92
(ST5) 2.29 1.99 1.73 1.52 1.79 1.80 1.97 2.02 2.62 1.76 2.58
(ST6) 1.91 1.72 1.57 1.44 1.60 3.78 1.33 1.61 2.03 1.74 1.86
(ST7) 1.90 1.73 1.57 1.45 1.61 1.73 4.67 1.68 1.92 1.43 2.49
(ST8) 2.04 1.81 1.62 1.46 1.66 1.83 1.85 3.11 2.51 2.00 1.72
(ST9) 2.01 1.79 1.61 1.46 1.67 1.45 1.45 1.83 4.39 1.41 3.11
(ST10) 1.89 1.72 1.57 1.45 1.60 1.88 1.81 1.93 2.09 2.69 1.38
(ST11) 1.82 1.66 1.53 1.42 1.59 1.45 1.70 1.63 2.26 1.25 6.98
(ST12) 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40
(ST13) 2.38 1.99 1.69 1.46 1.76 1.90 1.76 1.91 2.89 1.68 2.58
(ST14) 1.95 1.78 1.64 1.53 1.63 1.73 1.77 1.82 2.05 1.67 1.87
(ST15) 2.16 1.90 1.70 1.53 1.76 1.73 1.88 1.96 2.44 1.68 2.40

the highest value of the CE indicator for the best scenario, i.e., Max-Max crite-
rion. Risk averse investors would probably use Max-Min approach (maximizing
the value for the worst scenario). The best strategies using mentioned criteria are
following: for the Max-Min criterion, strategy (ST4) is optimal for the Max-Mean
approach, (ST11) should be used. This is mainly due to high value of the indicator
in the case scenario (SC11) occurs. It is in accord with the fact that (ST11) is the
winning strategy for the Max-Max criterion as well.
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5. Annuities from the second pillar

Consider a person of age x years. Denote the probability that this person dies
within the next year by qx. One-year probabilities of death qx are usually given in
life tables. By kpx denote the probability that the person of age x will survive at

least k consecutive years. Then kpx =
∏k−1
h=0(1− qx+h) for k = 1, 2, . . . . Consider

a life annuity-due which provides for annual payments of 1 unit as long as the
beneficiary lives (payments are made at the end of each year). Denote by ax the
net present value of the annuity payments. Then ax =

∑∞
k=1 kpx(1 + i)−k, where

i represents the annual technical interest rate. In reality pension benefits are not
paid annually, but usually with a monthly frequency. In this case one has

a(12)
x ∼

( ∞∑
k=1

kpx(1 + i)−k

)
+

11

24
,

where a
(12)
x represents the net present value of an annuity of 1 unit per year payable

12 times per year (1/12 unit per month) until the policyholders death (cf. [4]).
Denote byM the annual annuity payment payed monthly expressed as a fraction

of the last yearly salary wT before retirement. This value is called replacement
rate. Based on the assumption of net premium principle, we have

dT = Ma(12)
x →M =

dT

a
(12)
x

∼ dT

(
∑∞
k=1 kpx(1 + i)−k) + 11

24

.

In Tab. 5, we present replacement rates M for different levels of savings and
technical interest rate. The calculations were performed for x = 62. We applied
current probabilities of death drawn from [13] (static unisex life tables, year 2012).
To illustrate the calculated levels of replacement rates, let us consider a person

Table 5. Replacement rates M for different levels of savings and technical interest rate without

the longevity assumption.

dT /i 0.00 % 0.50 % 1.00 % 1.50 % 2.00 % 2.50 % 3.00 %
2.0 0.11 0.11 0.12 0.13 0.13 0.14 0.15
2.5 0.13 0.14 0.15 0.16 0.17 0.17 0.18
3.0 0.16 0.17 0.18 0.19 0.20 0.21 0.22
3.5 0.19 0.20 0.21 0.22 0.23 0.24 0.26
4.0 0.21 0.23 0.24 0.25 0.27 0.28 0.29

contributing to the second pillar 6 % of the gross wage6 (i.e., 1/3 of old-age contri-
butions). This saver will receive 2/3 of the pension from the first pillar designed
for 50 % replacement rate. Therefore, the saving pillar is efficient for this person
if it delivers at least 17 % replacement rate. Using Tab. 5, one can see that such
a replacement rate needs at least 2.5–3 yearly salaries saved (depending on the

6The average contribution rate from Tab. 1 is 5.63 %. We used close value of 6 % for clearer

illustration.
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technical interest rate). Recall that the average level of savings using the base-
line scenario was 2.5 yearly salaries. Considering the risk associated with saving,
one can conclude that reaching the first pillar (50 %) replacement rate is quite
questionable.

When calculating the replacement rates in Tab. 5, we used current probabilities
of death, not taking into account the potential longevity of pensioners. Clearly, if
the pensioners live longer than we expect, the replacement rates will be lower. To
model the effect of longevity on replacement rates, we have applied the Lee-Carter
(LC) approach published in [10]. We prepared a database of mortality rates based
on previous life tables of Statistical Office of Slovak Republic from the years 1996
to 2013 [13]. Using the demography package [6] in statistical software R [11], we
estimated the age-specific parameters and time-varying index of LC model. Then
by using ARIMA time series, we forecasted future mortality rates for the next 40
years.

Table 6. Replacement rates M ′ for different levels of savings and technical interest rate with

respect to the Lee-Carter model of longevity.

dT /i 0.00 % 0.50 % 1.00 % 1.50 % 2.00 % 2.50 % 3.00 %
2.0 0.10 0.10 0.11 0.12 0.12 0.13 0.14
2.5 0.12 0.13 0.14 0.15 0.15 0.16 0.17
3.0 0.15 0.16 0.17 0.18 0.19 0.20 0.21
3.5 0.17 0.18 0.19 0.21 0.22 0.23 0.24
4.0 0.20 0.21 0.22 0.23 0.25 0.26 0.27

Denote by q′x+t−1(t), t = 1, 2, . . . , 40 the LC-forecasted one-year probabil-
ity of death in the t-th year of the predicted time period for an aging pen-
sioner. Analogously, let tp

′
x be the LC-forecasted survival factor defined by tp

′
x =∏t−1

h=0(1−q′x+h(h+1)) for t = 1, 2, . . . , 40. Then the net replacement rate M ′ with
respect to the Lee-Carter model of longevity with survival factors 1p

′
x, 2p

′
x, . . . , 40p

′
x

can be approximated as

M ′ ∼ dT

(
∑∞
k=1 kp

′
x(1 + i)−k) + 11

24

.

In Tab. 6, we present the replacement rates M ′ for different levels of savings and
technical interest rate. The calculations were performed (as in the previous case)
for x = 62. In comparison with Tab. 5, we received slightly lower replacement
rates.

6. Conclusions

We extended the dynamic stochastic model introduced firstly in [7] and later
generalized in [9]. The last legislative changes in Slovakia allow the pension asset
managers to increase the duration of the bond fund. Therefore, we generalized the
model to account for any duration. The model can be utilized in any other DC
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scheme. For better understanding of the results, we recalculated the final levels
of savings to the replacement rates. The achievement of the first pillar (50 %)
replacement rate is not certain. Since it is very difficult to estimate the parameters
of the model, we performed a sensitivity analysis for various parameters settings.
The final level of savings is most of all sensitive to the contribution rate and the
drifts of the stock returns. The estimates of the drifts of the stock returns are
usually unreliable. Therefore, we considered several strategies which were tested
against a set of scenarios of the drifts. For a particular investor, the optimal
strategy depends on the preferred criterion.
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