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Computational issues occurring in finance industry demand high-speed computing when solving

problems such as option pricing, risk analysis or portfolio management. In order to respond adequately
on changes in the market it is necessary to evaluate information as fast as possible and to update the
appropriate portfolio changes. As a consequence at present one can observe increasing interest in the
development of multi-period models of portfolio management. These models introduce intermediate
reallocation opportunities connected to transaction costs, which affect the composition of the portfolio
at each decision instant. Stochastic programs provide an effective framework for sequential decision
problems with uncertain data, when uncertainty can be modelled by a discrete set of scenarios.
In this paper we present an algorithm for solving a three-stage stochastic linear program based on
the Birge and Qi factorization of a constraint matrix product in the frame of the primal-dual path-
following interior point method. We outline the parallelization of the method for distributed-memory
machines using Fortran/MPI and the linear algebra package LAPACK.

1. Introduction

Problems of portfolio management can be viewed as multi-period dynamic decision problems where
transactions take place at discrete points in time. At each point in time a portfolio manager has
to make the decision taking into account market conditions (e.g. exchange rates, interest rates) and
the contemporary composition of the portfolio. Using this information the manager could sell some
assets from the portfolio and using the cash from selling and other possible resources he/she buys new
assets.

We present an example of a portfolio management problem. It is a model for allocation of financial
resources to bond indices in different currencies. In each currency we have one index that consists of
bonds issued in this currency. The whole portfolio is evaluated in the base currency. The risk one
faces when making the decision is twofold: interest rate risk and exchange rate risk (future interest
rates and exchange rates are uncertain). The stochastic properties are represented in the form of
a scenario tree. The scenarios contain future possible developments of interest rates and exchange
rates. The objective is to maximize the expected value of the portfolio at the time horizon taking into
account future reallocation opportunities connected to transaction costs. When one deals with several
currencies, the realistic scenario trees are "bushy” and the number of scenarios grows exponentially
with the number of stages. Thus, the computation of such problems could be extremely large and
computationally intractable. Approaches for solving these problems usually either take advantage the
problems’ matrix structure or decompose the problem into smaller subproblems. In the literature we
can also see a considerable research efforts to develop efficient parallel methods for solving this problem
on parallel computer architectures [1],[2],[3],[4]. In our paper we demonstrate a parallel interior point
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algorithm (IPM) for solving three-stage stochastic linear problem which comes from a three-period
models of portfolio management.

The paper is organized as follows: Section 2 establishes the problem formulation. Section 3 presents
the application of the IPM to the three-stage stochastic programs. The last section discuss the issues
of parallel implementation.

2. Problem formulation

The stochastic properties are represented in the form of a scenario tree. Denote by F, 1 <7< T
the set of nodes at time 7. For any w € F,, 1 <7 < T, there is a unique element a(w) = w' € F,_1,
which is the unique predecessor of w.

Denote the decision variables of this process as

B\ (w7 , w" € Fr: The amount of the index j bought in period 7,
J
sg.T)(wT), w”™ € F,: The amount of the index j sold in period T,
hy) (w™), w™ € Fr: The amount of the index j held in period 7,
and constants as
¢(9): Initial cash available,
hg-o): Composition of the initial portfolio,
'yj(.T) (w™), w™ € Fr: The exchange rate base currency/ j-th currency (v, () — 1 V1),
v](-T) (wT), w” € F,: The value of the j-th index in the j-th currency,

§](.T) (w™), w™ € Fr: Bid price of the j-th index in the base currency computed by
(m PN C)) (m) bid

fj (W) = Uy (wT)’Yj (W = 53'1 )s

X;.T) (w™), w™ € F,: Ask price of the j-th index in the base currency computed by

X @) = 0 @) W) (1 + 6258,

(62% > 0 and 6% > 0 are transaction costs for buying and selling).
Constraints

The amount of bought and sold units of index should be nonnegative. We forbid short positions.
Therefore the number of hold units is nonnegative. bg.T)(wT) > 0, sg-T) (wT) > 0, hg-T) (wT) >
0 V1I<7<Tandw™ € F,.

Possible restrictions for selling

A typical investor is conservative. He/she is not willing to sell a big part of the portfolio. Therefore
we add constraints allowing to sell only § part of any asset or  part of the whole portfolio.
Inventory balance and cash-flow accounting for the Period 1

R N 7

€0+ DD = Z Nl
J

Inventory balance and cash—ﬂow accounting for the Period T, where 1 < 7 < T:
(r—1) T (), 7 (), 7y — (r)¢, 7 T :
h; (a(w ))+bj (w )—sj (w") = h; (W") VYw" e F, Vi
Z §J(-T) (wT)sg-T)(wT) = Z X(T) b(T) ) VW e F.
J

Risk reduction
The terminal wealth calculation is given by:

ng M V(W) YT € Fr.



To reduce the risk one can add the constraint forbidding the terminal wealth to fall below some proper
constant C:

WTw”)>C VY7 e Fr.

Objective function

The objective function maximizes the expected terminal wealth. It can be written as:

Maximize Z ™ (wT)WT(wT):
wT eFr

where 7(w7) is the probability of the scenario w7 .

Now, if we express the objective function in the form c” z, where x is the vector of all decision variables.
Our aim is to find the solution of the problem
Maximize ¢'z, subj. to A®)z =b.

In the three-stage stochastic model the constraint matrix of the whole problem A®) and the corre-
sponding vector b have the following form:

A9
¥ AP b(()z)
(3) (2) b{?
A®) T2<3) & ) b bs?
= T A3 » U= 2 )
) 2) bivte
T AN

where the matrices Af),k = 1,2,..N® represent a two-stage problem in the frame of the whole

three-stage problem. The right-hand side vector b is split on sub-vectors in accordance with matrix
AB) The k-th two-stage problem determined by the matrix Ag), k=1,2,...,N® has the form

3 1
T’E’zli AS“’% (1)
Tk 2 Ak,2

A§c2) — 7(3) AS; ,

2) L
Ty ar, Ap

where Agf()) is an mgf()) X ngczg) matrix and AS; are mfcl; xngz matrices. We suppose also that mgj < nfcl;

for all matrices A;clg., 7 =1,2,... M. Matrices T,§2j) have the size conformable to matrices Af()) and
Ag’; We assume moreover, that the matrices A(()3), Agj()) and all matrices Ag; have full row rank and

mgz < ngz for every k and j.

3. Application of the Interior Point Method

One approach for solving the problem defined above is to use the interior-point method (IPM). We
have chosen the Mehrotra’s Predictor Corrector algorithm MPC defined in [5], p.198. This algorithm,
since 1990, has been the basis for most interior point software.

Given (20,99, 2°) with 2° > 0, 20 > 0, it finds the iterates (z*+1,y**1 2k+1) k£ =0,1,2..., by solving
the system
0 AT I Ageff Te
A 0 O Ay ff =1 »r |, (1)
Z 0 X Azeft Ty



where r, = b— Az, r. = c— 2z — ATy, r, = —XZe; X and 7 are diagonal matrices with diagonal
entries x and z, respectively. Calculating the centering parameters

o7 = argmas{a € [0, ;o +adat! > 0},

ag#z = argmaz{a € [0,1]; 2F + aAz%f > 0},

tagr = (" + ai?ifo“ff)T(zk +al Az n

and setting 0 = (uqazs/p)?, where u = z7 2 /n, the linear system (1) is solved again with the right-hand
side ry =0, 7. =0, 7, = ope — AX/AZ3 /e for the solution (Azc, Ayc, Az°°).
Computing the search direction and step to boundary from

(A-’Ek,Ayk,Azk) — (A:Eaff,Ayaff,Azaff) + (AmCC,AyCC,Az“),
abe, = argmaz{a > 0;z* +alAz® > 0}
adil = argmaz{a > 0;2* + aAz* > 0}

and setting the o™ = min(0.99%a27i 1), afv = min(0.99xa%% 1), the values of (zF+1, y#+1, Zh+1)
are established as
P e S azriAxk
(YL, 2 = (g, k) + aduel (Agk, AZ).
From the computational point of view the most time consuming part of this algorithm is solving of

the system (1) with different right-hand sides. Therefore an effective parallelization of this process is
very suitable. With respect to this, let us express (1) as follows:

Ayl = (ADAT) Yy + AZ N Xr. —1,)),
Azt = 7YX AT Ay T 4 ry, — Xre),
AP = X_lru — X" 1ZAz%],

where D = Z~'X. The crucial step for finding the unknown vectors is to solve the first equation. For
our three-stage stochastic problem, it means to solve

(AODO (AO)) Ay = (ry + AO 27 (X, — 1)) =, @)

where matrix A®®) stands as matrix A. It has been proven in [6] that the inversion of the matrix
ABGI DG (AG)E can be computed by the Sherman-Morrison-Woodbury formula as follows:

(AB DB (ACHE) =L = (RE))=1 _ (ROHY=IUG) (GG~ (V) (RE)-L (3)
where
R = Diag(I,, ), R® RY, .., RY,),
AP 1w
0
) G PO @y (3) \
v = | 7® (VO = ( (A457) (Iy7) (1) oo (This) )
Ty
- (G, Y,
—A§ 0
and
N3
G = (D) + (AP A + (@ ED) T,
k=1

RY = APDp® )
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Figure 1. Execution times of experiments where the matrix A® has on the main diagonal N®) =9
block matrices Agf). Every matrix Ag‘)), k=1,2,..N® has again M = 9 matrices Ag) of the size
3x6,j=1,2,..M}, on the main diagonal. The size of the linear system (2) in was in this case
273 x 546.

Thus, the solution (A®) D®)(A®)t) Ay = (3 can be expressed by the inversion on the basis of the
validity (3) as Ay = p® — 5(3) while

ROPB = ), (4)
GPg® = (VOB (5)
ROIB) = yB¢B), (6)

The equations (4)-(6) represent the decomposition of the original problem into three sub-problems.
An advantage of such a decomposition is that R(®) is the block-diagonal matrix, where the diagonal
matrix element R,(f) with corresponding right-hand side represent the basic equation of the two-stage
stochastic problem [7], [1]. The parallel three-stage procedure has been summarized in the paper [6].
The detail parallel procedure for solving the system (2) has been published in [8].

4. Parallel implementation

The implementation of the IPM method based on three-stage algorithm rely on basic algorithms
of linear algebra: Cholesky decomposition, solving a system of linear equations, matrix-vector and
matrix-matrix multiplication, and summation of matrices or vector, respectively. These algorithms
are in the core of every multistage stochastic model and have a profound influence on the performance.
For solving of linear algebra problems we have used the program package LAPACK [9], because the
LAPACK library has been designed for high-performance workstations and shared-memory multipro-
cessors [10]. Parallel implementation of the three-stage algorithm in the frame of the IPM method is
based on the Message Passing Interface (MPI) [11].

The solving of the system (2) is targeting distributed-memory parallel computers and relies on the
Single Program Multiple Data (SPMD) model. The computational structure of both three-stage
and two-stage algorithms for solving the above metioned system of linear equations, is very similar.
Most computations are independent and can be performed in parallel. Collective communications
are required only in two computational steps in every two-stage linear system and also twice in the
three-stage linear system, where the collective gathering from all processes takes place. The careful
analysis of the parallel three-stage algorithm is shown and explicitly described in the paper [8]. As
it is shown there, all ”block” rows j = 1,2,..., M} in solving the two-stage procedure Ag), can be
processed in parallel. The same is true for k =1,2,..., N®) "block” rows in the matrix A®) so two
levels of parallel processing are possible. The above mentioned paper presents also the performance



results achieved by experiments on the Beowulf cluster, University of Vienna. The algorithm based
on the parallel BQ decomposition used in the frame of the MPC algorithm for three-stage stochas-
tic problems, was implemented in the Fortran 90 programming language and executed on cluster of
SMP’s. The performance results of one of the experiments are illustrated on the Fig.1. Almost linear
speed-up can be observed for smaller number of processors; the slow-down achieved for 16 processors
was caused by increasing overhead. The size of the test problem was too ”small” for this number of
processors and the overhead overcame the execution. The performance results for larger problems
and further implementation details will create the subject of our next paper.

5. Conclusions

We have presented a parallel method used for solving of the linear programs raised from portfolio
management problems. The algorithm is based on the BQ factorization technique for three-stage
stochastic programs in the context of the interior point method. Because the structure of the corre-
sponding matrix for both three-stage and two-stage stochastic problems is regular, parallel execution
in both hierarchical levels is possible. The algorithm is scalable and enables to solve large linear
programs raising from the portfolio management problems.
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