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Abstract

We present a multistage model for allocation of financial resources to bond indices in dif-
ferent currencies. The model was tested on historical data of interest and exchange rates.
We compare a two-stage and a three-stage stochastic programming model from a financial
performance point of view.

For solving two-stage and three-stage stochastic programs the interior point method
(IPM) in the frame of the primal-dual path following formulation is used. An application
of the Birge and Qi factorization to the IPM allows decomposition of large linear system to
smaller blocks allowing thus to solve it in parallel.

The parallel code is written in the Fortran programming language, using the Message
Passing Interface (MPI) for communication. Parallel and financial performance is illus-
trated on experiments executed on the IBM 1350 Linux cluster.

Keywords: portfolio management, interior point method, parallel computing, large-scale
optimization, multistage stochastic programming

Introduction

Financial institutions face the problem of optimal portfolio decisions under uncer-
tainty. This uncertainty can be represented by a set of possible scenarios of market
development. The mathematical framework for optimizing the portfolio decisions
could be found in several models. One important class of models represents single
period models based on the idea of mean-variance optimization of Markowitz [26].
The important examples are expected utility maximization of Ingersoll [21] and
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mean absolute deviation minimization of Sharpe [33], Konno and Yamazaki [23],
Zenios and Kang [36]; see, e.g., Zenios [38] for classification of these models.

Recently, an interest in the development of multiperiod models of bond portfolio
management has been observed. At this place we refer to successful and valuable
contributions of Bradley and Cane [7], Kusy and Ziemba [24], Dupačová [11],
Dantzig and Infanger [10], Mulvey [28], Hiller and Eckstein [19], Zenios [37],
Carino et al. [8], Golub et al. [13], Frauendorfer and Schürle [12].
In Holmer et al. [20] a multiperiod dynamic model for fixed-income portfolio man-
agement under uncertainty, using multistage stochastic programming was devel-
oped. The scenarios of term structure development were obtained by Monte Carlo
simulations. Their results confirmed that multiperiod models outperform single pe-
riod ones. A multiperiod dynamic model for international bond portfolios was for-
mulated in Beltratti et al. [3].

In [18] we formulated a model for allocation of financial resources to bond indices
in different currencies. Such portfolios are the subject to an interest rate risk and
an exchange rate risk. The stochastic properties of possible future development of
exchange rates and interest rates are represented in the form of a scenario tree. The
objective is to maximize the expected value of the portfolio at the defined time
horizon. Mathematically, such models lead to the multistage stochastic program-
ming. When one deals with several currencies, the number of scenarios per stage
should be sufficient to model the randomness of interest rates in each currency and
all exchange rates. Therefore, the realistic trees are ”bushy” and the number of sce-
narios grows exponentially with the number of stages. The computation of such
problems could be extremely large and computationally intractable. Therefore, the
parallel computing of such large size problem is preferred. Many studies have been
published on how stochastic programming algorithm can be parallelized, such as
[25,29,31] and [9,34,35].

We have used the interior point method in the frame of primal-dual path follow-
ing formulation, due to a good possibility for parallelization. Moreover, the recur-
sive structure of the constraint matrices for two and three stage problems and their
Birge and Qi (BQ) factorization has been exploited for modular and independent
computation. We have used the factorization technique based on the work of Birge
and Qi for two-stage stochastic program [6] and its parallelization suggested in
[22]. Pflug and Halada [30] proposed a generalization of this type of factorization
for multistage stochastic programs. The parallel computer program for three-stage
stochastic program has been proposed, implemented and tested on examples with
relative small number of scenarios in papers [4], [17]. Recent contributions to the
application of interior point method and its parallelization in multistage stochastic
programms can be found in [5], [14], [15], [16].

We have performed financial studies using historical data of interest rates and ex-
change rates. Two-stage and three-stage stochastic models with different quality of
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information about future development of financial markets have been compared.
The aim of this analysis was to verify whether higher number of stages implies bet-
ter quality of the decision process. This has been a continuation of [18] where we
performed several preliminary calculations with a low number of scenarios and dif-
ferent scenario setting. The results indicated that the increasing number of stages
could make sense and that the optimal decision is sensitive with respect to dif-
ferent generations of the scenario tree. Moreover we have augmented the existing
three-stage parallel program with the sparse matrix representation needed for solv-
ing large optimization problems. However, no financial studies were performed in
[18].

In this paper we include the existing parallel three-stage stochastic program into
a more complex code, enabling thus testing the portfolio management model on
historical data of indices. The scenarios of possible developments were generated
by using the Monte Carlo method. The parallel three-stage stochastic algorithm
based on the interior point method and using the parallel BQ factorization, allowed
us to generate trees with a large number of scenarios.

The paper is organized as follows. The problem formulation with financial instru-
ments, constraint equations and an objective function is formulated in Section 1.
We describe the multistage stochastic program used for portfolio management in
detail in Section 2. Section 3 contains the algorithm of calculation of the financial
study. Parallel BQ factorization for the three-stage stochastic program is given in
Section 4. Experimental results, parallel and financial performance of the proposed
model are demonstrated in Section 5. Section 6 contains conclusions and final re-
marks.

1 Problem formulation

The stochastic properties are represented in the form of a scenario tree. Denote by
Fτ , 1 ≤ τ ≤ T the set of nodes in period τ . For any ω ∈ Fτ , 1 < τ ≤ T ,
there is a unique element a(ω) = ω′ ∈ Fτ−1, which is the unique predecessor of
ω. Each stage has the length of one period and the decision variables of the stage
τ, 1 ≤ τ < T correspond to the beginning of the period τ .

1.1 Financial instruments

Denote the decision variables (for periods 1 ≤ τ < T ) of this process as
b
(τ)
j (ωτ), ωτ ∈ Fτ : The amount of the index j bought in period τ ,

s
(τ)
j (ωτ), ωτ ∈ Fτ : The amount of the index j sold in period τ ,

h
(τ)
j (ωτ ), ωτ ∈ Fτ : The amount of the index j hold in period τ ,
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and constants (for periods 1 ≤ τ ≤ T ) as
c(0): Initial cash available,
h

(0)
j : Composition of the initial portfolio,

γ
(τ)
j (ωτ), ωτ ∈ Fτ : The exchange rate base currency/ j-th currency (γ(τ)

1 = 1 ∀τ ),

ϑ
(τ)
j (ωτ), ωτ ∈ Fτ : The value of the j-th index in the j-th currency,

υ
(τ)
j (ωτ ), ωτ ∈ Fτ : The value of the j-th index in the base currency computed by

υ
(τ)
j (ωτ ) = ϑ

(τ)
j (ωτ ).γ

(τ)
j (ωτ) ,

ξ
(τ)
j (ωτ ), χ

(τ)
j (ωτ), ωτ ∈ Fτ : Bid and ask prices of the j-th index in the base

currency computed by

ξ
(τ)
j (ωτ) = υ

(τ)
j (ωτ )(1 − δbid

j ), χ
(τ)
j (ωτ ) = υ

(τ)
j (ωτ)(1 + δask

j ) (1)

(δask
j > 0 and δbid

j > 0 are transaction costs for buying and selling).

1.2 Constraints

The amount of bought and sold units of index should be nonnegative. We forbid
short positions. Therefore the number of hold units is nonnegative.
b
(τ)
j (ωτ) ≥ 0, s

(τ)
j (ωτ) ≥ 0, h

(τ)
j (ωτ ) ≥ 0 ∀ 1 ≤ τ < T and ωτ ∈ Fτ .

Possible restrictions for selling
A typical investor is conservative. He/she is not willing to sell a big part of the
portfolio. Therefore one can add constraints allowing to sell only β part of any
asset or β part of the whole portfolio:

∑

j

s
(1)
j ξ

(1)
j ≤ β

∑

j

h
(0)
j ξ

(1)
j

for the Period 1 and
∑

j

s
(τ)
j (ωτ)ξ

(τ)
j (ωτ ) ≤ β

∑

j

h
(τ−1)
j (a(ωτ))ξ

(τ)
j (ωτ)

for the Period τ , where 1 < τ < T .

Risk reduction
The terminal wealth calculation is given by:

WT (ωT ) =
∑

j

ξ
(T )
j (ωT )h

(T −1)
j (a(ωT )) ∀ωT ∈ FT . (2)
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To reduce the risk one can add the constraint forbidding the terminal wealth to fall
below some proper constant C:

WT (ωT ) ≥ C ∀ωT ∈ FT .

1.3 Equations

Inventory balance and cash-flow accounting for the Period 1

h
(0)
j + b

(1)
j − s

(1)
j =h

(1)
j ∀j. (3)

c(0) +
∑

j

ξ
(1)
j s

(1)
j =

∑

j

χ
(1)
j b

(1)
j . (4)

Inventory balance and cash-flow accounting for the Period τ , where 1 < τ < T :

h
(τ−1)
j (a(ωτ )) + b

(τ)
j (ωτ) − s

(τ)
j (ωτ) =h

(τ)
j (ωτ ) ∀ωτ ∈ Fτ ∀j. (5)

∑

j

ξ
(τ)
j (ωτ )s

(τ)
j (ωτ) =

∑

j

χ
(τ)
j (ωτ)b

(τ)
j (ωτ) ∀ωτ ∈ Fτ . (6)

1.4 Objective function

The objective function maximizes the expected terminal wealth. It can be written
as:

Maximize E(WT ) ,

where

E(WT )=
∑

ωT ∈FT

π(ωT )WT (ωT ) (7)

(π(ωT ) is the probability of the scenario ωT ). Using (2) the expected terminal
wealth (7) could be written in the form

E(WT )=
∑

ωT ∈FT

π(ωT )
∑

j

ξ
(T )
j (ωT )h

(T −1)
j (a(ωT ))

=
∑

ωT ∈FT

∑

j

π(ωT )ξ
(T )
j (ωT )h

(T −1)
j (a(ωT ))
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=
∑

ω(T −1)∈F(T −1)

∑

j

h
(T −1)
j (ωT −1)c̃j(ω

T −1) , (8)

where

c̃j(ω
T −1) =

∑

ωT ∈FT :a(ωT )=ωT −1

π(ωT )ξ
(T )
j (ωT ) . (9)

1.5 Scenario tree

The set of scenarios could be generated in many ways. Monte Carlo simulations of
the process with following properties is used for practical realization:

Property 1.
Between two successive periods the price process follows a log-normal process:

υ
(τ+1)
j = υ

(τ)
j exp(ν 4t + σj

√
4t Zj) , (10)

where Zj is a random variable with N(0, 1) distribution, ν an annual return and σj

a volatility of the j−th index. The correlations cor (Zi, Zj) and volatilities of the
indices are calibrated using historical data of the indices.

Property 2.
We suppose that the price process (10) between the periods τ and τ + 1 is mean
reverting to the prescribed price P

(τ+1)
j in period τ + 1:

E(υ
(τ+1)
j |υ

(τ)
j ) = P

(τ+1)
j , (11)

where P
(τ)
j , τ = 2, 3, . . . , T , are expected prices of the indices (in the base cur-

rency).
The condition (11) is fulfilled, if we take (10) with

ν = log


P

(τ+1)
j

υ
(τ)
j


 1

4t
−

1

2
σ2

j . (12)

In our calculations we used two-stage and three-stage scenario trees of types Sc1 ×
Sc2 and Sc1 × Sc2 × Sc3, respectively. The scenario tree of type Sc1 × Sc2, and
Sc1 × Sc2 × Sc3, respectively, means that there are Sc1 possibilities of the price
vector υ

(2)
i at the end of the first period, Sc2 possibilities (for each position ω2 ∈ F2)

of the price vector υ
(3)
i at the end of the second period and (in the three-stage case)
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Fig. 1. Scenario tree of type Sc1 × Sc2 × Sc3. The leaves are enumerated in this form for
computational recursivity reasons between stages.

Sc3 possibilities (for each position ω3 ∈ F3) of the price vector υ
(4)
i at the end of

the third period.

We do not generate the scenarios in the last period in the practical realization. Using
(9) and (11) one gets

c̃j(ω
T −1) = π(ωT −1)P T

j (1 − δbid
j ) . (13)

Thus, instead of generating the prices υT
j (ωT ) we use their mean values P T

j . There-
fore, hereafter we denote the types of the three-stage and two-stage trees by Sc1 ×
Sc2 × ∗ and Sc1 × ∗, respectively. Denote by n the number of indices. One has to
perform Sc1.Sc2.n

2 Monte Carlo simulations to generate a three-stage scenario tree
and Sc1.n Monte Carlo simulations to generate a two-stage scenario tree. Concern-
ing the number of variables, for each decision node one has 3n decision variables
(n indices, for each index buy, sell and hold decisions). Thus, a three-stage scenario
tree implies 3n(1 + Sc1 + Sc1.Sc2) decision variables, a two-stage scenario tree
3n(1 + Sc1) decision variables.

2 Multistage stochastic linear program

The mathematical representation of the financial problem described above leads to
the multistage stochastic linear program

maximize cT x, subj. to Ax = h . (14)

The right-hand side vector h has the form

h = (c(0),−h
(0)
1 ,−h

(0)
2 , . . . ,−h(0)

n , 0, . . . , 0)T (15)
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where c(0) is the initial cash available and h
(0)
j , j = 1, 2, . . . , n is the composition

of the initial portfolio. The time periods in the tree are arranged in the increasing
order from the root of the tree up to the leaves. While the computation is executed
recursively starting from leaves to the root, we will enumerate the computational
levels (cl) successively from the leaves to the root. As a consequence, the time peri-
ods and the computational levels have the opposite direction. A simple lattice for a
three-stage problem composed from two types of two-stage programs is illustrated
in Fig.2. BQS(2,j) represents the two-stage problem for nodes j, j = 1, 2, 3, at
the second computational level. On the basis of results proved in [30], BQS(3,1)
represents again a two-stage problem for the node at the third computational level
that can be solved by the BQ factorization when the results of the solver BQS(2,j),
j = 1, 2, 3, are available. An advantage of this model is the possibility to parallelize
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Fig. 2. Scenario tree of a three-stage program

the computation on many levels without communication.
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The matrix constraint matrix A = A(3) referring to the three-stage stochastic pro-
gram has the following form:

A(3) =




A
(3)
0

T
(3)
1 A

(2)
1

T
(3)
2 A

(2)
2

T
(3)
3 A

(2)
3

. . . . . .

. . . . . .

T
(3)
Sc1

A
(2)
Sc1




(16)

where A
(2)
k , k = 1, 2, ...Sc1, represent matrices corresponding to Sc1 two-stage

problems in the frame of the whole three-stage problem. The k-th two-stage prob-
lem, k = 1, 2, . . . , Sc1, is determined by the matrix A

(2)
k ,

A
(2)
k =




A
(2)
k,0

T
(2)
k,1 A

(1)
k,1

T
(2)
k,2 A

(1)
k,2

T
(2)
k,3 A

(1)
k,3

. . . . . .

. . . . . .

T
(2)
k,Sc2

A
(1)
k,Sc2




(17)

In the case of four indices the matrices A
(3)
0 , A

(2)
k,0, A

(1)
k,r, k = 1, 2, . . . Sc1, r =

1, 2, . . . , Sc2, have the form:



χ1 χ2 χ3 χ4 −ξ1 −ξ2 −ξ3 −ξ4 0 0 0 0

1 0 0 0 −1 0 0 0 −1 0 0 0

0 1 0 0 0 −1 0 0 0 −1 0 0

0 0 1 0 0 0 −1 0 0 0 −1 0

0 0 0 1 0 0 0 −1 0 0 0 −1




(18)

where ξj = ξ
(τ)
j (ωτ), χj = χ

(τ)
j (ωτ ), j = 1, 2, 3, 4 represent the bid and ask prices

of the indices in the corresponding nodes. The matrices T
(2)
k,r , k = 1, 2, . . . Sc1,

9



r = 1, 2, . . . Sc2, have the form:

T
(2)
k,r =




0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1




(19)

The matrices T
(3)
k , k = 1, 2, . . . Sc1 with 5 + 5Sc2 rows have the form:

T
(3)
k =




0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0

. . .

0 0 0 0 0 0 0 0 0 0 0 0




(20)

In the case of the two-stage problem (14) the constraint matrix A = A(2) has the
structure similar to A

(2)
k and the vector h has a form conforming to matrices A

(2)
k .

3 Portfolio management modeling using historical data of indices

The proposed portfolio management model was tested using historical daily data of
indices and exchange rates from January 1997 (start day: January 6, 1997) to Jan-
uary 2003 (end day: January 6, 2003). At the beginning there was a cash available
and the portfolio was bought according to the result of the multistage stochastic
program. The portfolio was then daily rebalanced according to the results of the
proposed model. The financial study is calculated using the following algorithm:

for D = start day, end day do
(i) read the values of indices in the corresponding days

(values I
(τ)
j , τ = 1, 2, 3, 4 used in (36), and values for calculation of the past

returns ρ
(−3)
j , ρ

(−2)
j and ρ

(−1)
j in (37), respectively)

10



(ii) according to equations(10), (11), (12) and (36) ((37), respectively) calculate
the expected prices in the determined time periods and generate the scenario-
tree

(iii) calculate the bid and ask prices according to (1)
(iv) calculate the vectors h and c and non-zero elements of the matrix A
(v) solve the optimization problem

maximize cT x, subj. to Ax = h (21)

(vi) determine the composition of the portfolio
(vii) read the values of the indices for D+1 and calculate the value of the portfolio
end do D

In the case of the three-stage stochastic model the matrix A = A(3) can be es-
tablished according to the equations (3) - (6). The right-hand side vector h =
(0,−x(9),−x(10),−x(11),−x(12), 0...0)T , whereby x(j), j = 9, 10, 11, 12, are
the values of the solution vector x of (14) from the previous day. At the beginning
for D = start day is the vector h = 0, except the first element h(1) = c(0) (initial
cash). The most computational demanding part of the modeling is the solving of the
optimization problem (14).

There are many possibilities how the problem (14) can be solved. We have used
the Interior Point Method (IPM) in the frame of the Mehrotra’s Predictor Corrector
algorithm MPC defined in [39], p.198. This algorithm, since 1990, has been the
basis for most interior point software. For clarity reasons we present the basic ideas
of this method, whereby the matrix A stands for the corresponding matrix A(τ),
where τ = 3 for three-stage and τ = 2 for two-stage stochastic programming
model, respectively.
Given (x0, y0, z0) with x0 > 0, z0 > 0, it finds the iterates (xk+1, yk+1, zk+1),
k = 0, 1, 2..., by solving the system




0 AT I

A 0 0

Z 0 X







∆xaff

∆yaff

∆zaff




=




rc

rh

rµ




, (22)

where rh = h − Ax, rc = c − z − AT y, rµ = −XZe; X and Z are diagonal
matrices with diagonal entries x and z, respectively, and e denotes the vector having
all entries equal one.
The solution of (22) is expressed as

∆yaff =(ADAT )−1(rh + AZ−1(Xrc − rµ)), (23)

∆xaff =Z−1(XAT ∆yaff + rµ − Xrc), (24)

∆zaff =X−1rµ − X−1Z∆xaff , (25)
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where D = Z−1X . Calculating the centering parameters αpri
aff , αdual

aff and µaff and
setting σ = (µaff/µ)3, with µ = xT z/n, the linear system (22) is solved again
with the right-hand side rh = 0, rc = 0, rµ = σµe−∆xaff∆zaffe for the solution
(∆xcc, ∆ycc, ∆zcc).
After the search direction and step to boundary is calculated

(∆xk, ∆yk, ∆zk)= (∆xaff , ∆yaff , ∆zaff ) + (∆xcc, ∆ycc, ∆zcc).

Then the proper values αpri
k and αdual

k are determined and the vectors (xk+1, yk+1, zk+1)
are established as

xk+1 =xk + αpri
k ∆xk (26)

(yk+1, zk+1) = (yk, zk) + αdual
k (∆yk, ∆zk). (27)

The crucial step for finding the vector ∆xaff in (24) is to solve the equation (23).
From the computational point of view it is the most time consuming part of the
algorithm. According to the already said, the system of the following form must be
solved two times in every iteration with different right-hand sides

(ADAT ) ∆y = b. (28)

We have used the factorization technique based on the work of Birge and Qi for
two-stage stochastic program ([6] and its parallelization suggested in [22]. Pflug
and Halada [30] proposed a generalization of this type of factorization for mul-
tistage stochastic programs. The parallel computer program for 3-stage stochastic
program and its application for parallel computer with distributed memory archi-
tecture is suggested in following paragraphs.

4 Parallel BQ factorization for three-stage stochastic programs

We describe the BQ factorization for solving the problem (28), where the matrix
A = A(3) comes from the three-stage stochastic program. As an example, the prob-
lem BQS(3,1) depicted on the Fig.2, can be described by the equation

(A(3)D(3)(A(3))T ) ∆y = b(3) (29)

using the two-stage stochastic problems BQS(2, k), k = 1, 2, . . . Sc1, defined as

(A
(2)
k D

(2)
k (A

(2)
k )T ) p

(2)
k = b

(2)
k . (30)
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For clarity reasons in the next we will denote the number of scenarios of the first
period Sc1 by N (3).

4.1 Three-stage algorithm

It has been proven in [30] that the inversion of the matrix A(3)D(3)(A(3))T can be
computed by the Sherman-Morrison-Woodbury formula as follows:

( A(3)D(3)(A(3))T )−1 = (R(3))−1 − (R(3))−1U (3) (G(3))−1 (V (3))T (R(3))−1(31)

where

R(3) = Diag(I
m

(3)
0

, R
(2)
1 , R

(2)
2 , ..., R

(2)

N(3)),

U (3) =




A
(3)
0 I

m
(3)
0

T
(3)
1

T
(3)
2

...

T
(3)

N(3)




, (V (3))T =




(A
(3)
0 )T (T

(3)
1 )T (T

(3)
2 )T . . . (T

(3)

N(3))
T

−I
m

(3)
0


 ,

G(3) =




Ĝ(3) (A
(3)
0 )T

−A
(3)
0 0


 ,

and

Ĝ(3) =(D
(3)
0 )−1 + (A

(3)
0 )T A

(3)
0 +

N(3)∑

k=1

(T
(3)
k )T (R

(2)
k )−1T

(3)
k ,

R
(2)
k =A

(2)
k D

(2)
k (A

(2)
k )T .

Thus, the solution (A(3)D(3)(A(3))T ) ∆y = b(3) can be expressed by the inversion
on the basis of the validity (31) as ∆y(3)) = p(3) − s(3) while

R(3)p(3) = b(3), (32)
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G(3)q(3) =(V (3))T p(3), (33)

R(3)s(3) =U (3)q(3). (34)

The equations (32)-(34) represent the decomposition of the original problem into
three sub-problems. An advantage of such a decomposition is that R(3) is the block-
diagonal matrix, where the diagonal matrix element R

(2)
k represents the two-stage

stochastic problem BQS(2,k), k = 1, 2, ..., N (3).
Hence, the parallel three-stage procedure can be summarized as follows :

Parallel three-stage procedure solve3(A(3)D(3)(A(3))T ; b(3))

Step 3.1 ( Solve R(3)p(3) = b(3))

p
(2)
0 = b

(2)
0

parallel do k = 1, 2, . . .N (3)

p
(2)
k = solve2 (A

(2)
k D

(2)
k (A

(2)
k )t; b

(2)
k )

end parallel do
Step 3.2 ( Solve G(3)q(3) = (V (3))T p(3))

parallel do k = 1, 2, . . .N (3)

Ḡ
(3)
k T̂

(3)
k = T

(3)
k

end parallel do
Step 3.3

Ĝ(3) = (D
(3)
0 )−1 + (A

(3)
0 )T A

(3)
0 +

∑N(3)

k=1 (T
(3)
k )T (T̂

(3)
k − T

(3)
k )

Compute Cholesky decomposition of Ĝ(3)

Compute v̂1 = (A
(3)
0 )T p

(0)
k +

∑N(3)

k=1 (T
(3)
k )T p

(2)
k

v̂2 = −p
(2)
0

Ĝ(3)B
(3)
0 = (A

(3)
0 )T

Ĝ(3)ṽ1 = v̂1

Ḡ(3) = A
(3)
0 B

(3)
0

Compute Cholesky decomposition of Ḡ(3)

Ḡ(3)q
(3)
2 = A0ṽ1 + v̂2

Ĝ(3)q
(3)
1 = v̂1 − (A

(3)
0 )T q

(3)
2

Step 3.4 ( Solve R(3)s(3) = U (3)q(3))

s
(2)
0 = b

(2)
0

parallel do k = 1, 2, . . .N (3)

s
(2)
k = solve2 (A

(2)
k D

(2)
k (A

(2)
k )t; T

(3)
k q

(3)
1 )

end parallel do
Step 3.5

parallel do k = 0, 1, 2, . . .N (3)

∆y
(3)
k = p

(2)
k − s

(2)
k

end parallel do

The output of this procedure is vector ∆y which fulfills the relation

∆y = (∆y
(3)
0 , ∆y

(3)
1 , ..., ∆y

(3)

N(3)), (35)
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where the last two vectors of (35) are the results of the Step 3.1 and Step 3.3,
respectively. They are computed by the procedure solve (A

(2)
k D

(2)
k (A

(2)
k )t; rhs) with

different vectors rhs. The basic steps of this procedure are as follows:

4.2 Parallel two-stage procedure

The problems BQS(2,j), j = 1, 2, 3, depicted on the Fig.2, are the examples of
the two-stage stochastic problems that could be described by the equation (30).
The algorithm for solving the two-stage stochastic problem has been suggested in
[6], and its parallelization in [22]. Therefore in the next we will describe only the
computational steps of the two-stage parallel procedure that could be helpful to the
reader. For clarity reasons we will denote the number of the scenarios of the second
period of the three-stage program Sc2 by N (2).

Parallel two-stage procedure solve2(A(2)D(2)(A(2))T ; b(2))

Step 2.1
parallel do j = 1, ...N (2)

Rj = A
(1)
j D

(1)
j (A

(1)
j )T

Calculate Cholesky decomposition of Rj = (Lj)(Lj)
T

Solve system of linear equations (Lj)(Lj)
T p

(1)
j = b

(1)
j

p
(1)
0 = b

(1)
0

end parallel do
Step 2.2

parallel do j = 1, ...N (2)

(Lj)(Lj)
T T̂

(2)
j (:, l) = T

(2)
j (:, l), for l = 1, ...12

Ĥ
(2)
j = (T

(2)
j )T T̂

(2)
j

tj = (T
(2)
j )T p

(1)
j

end parallel do
Step 2.3

Ĝ(2) = (D
(1)
0 )−1 + (A

(2)
0 )T A

(2)
0 +

∑N(2)

j=1 Ĥ
(2)
j

v̂1 = (A
(2)
0 )T p

(1)
0 +

∑N(2)

j=1 tj

v̂2 = −p
(1)
0

Calculate Cholesky decomposition of Ĝ(2)

Solve systems of linear equations (Ĝ(2))B(:, l) = (A
(2)
0 )T , for l = 1, 2, ...5.

Solve the system of linear equations (Ĝ(2))ṽ = v̂1

Ḡ(2) = A
(2)
0 B,

R̄(2) = A
(2)
0 ṽ + v̂2

Calculate Cholesky decomposition of Ḡ(2)

Solve Ḡ(2)q2 = R̄(2)

Ĝ(2)q1 = v̂1 − (A
(2)
0 )T q2
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Step 2.4
s
(1)
0 = (A

(2)
0 )T q1 + q2

parallel doj = 1, ...N (2)

uj = T
(2)
j q1

Rjs
(1)
j = uj

end parallel do
Step 2.5

parallel do j = 0, 1, ...N (2)

∆y
(2)
j = p

(1)
j − s

(1)
j

end parallel do

5 Experimental results

5.1 Parallel implementation and performance

Multiperiod portfolio management problems inevitably lead to the solving of large
linear systems (22). The size of the matrix depends on the number of T time periods
considered. For four currencies and the scenario tree of the size Sc1 × Sc2 × ∗, the
size of the matrix A(3) is [(Sc1 ∗ (Sc2 + 1) + 1) ∗ 5]× [(Sc1 ∗ (Sc2 + 1) + 1) ∗ 12]
in the three-stage case. As an example, for the scenario tree 300 × 300 × ∗, with
4 currencies considered, the size of the matrix A(3) is 451505 × 1 083 612 and
the linear system (23) has 451 505 unknowns. The matrix A(3) is a sparse matrix
and has only Sc1 ∗ (Sc2 + 1) ∗ 20 + 20 + 4 ∗ Sc1 ∗ (Sc2 + 1) nonzero from total
(Sc1 ∗ (Sc2 + 1) ∗ 5 + 5) × (Sc1 ∗ (Sc2 + 1) ∗ 12 + 12) elements. In the given
example it is 2 167 220 nonzero from the total 203 856 765 025 elements.

The application of the IPM method for solving the optimization problem (14) en-
ables to decompose the large three-stage stochastic problem represented by matrix
A(3) to Sc1 two-stage problems. Each of the two-stage problems determined by a
matrix A(2), is composed again of Sc2 one-stage problems represented in our ex-
periments by matrices A(1) of the size 5 × 12.
The use of the BQ decomposition for solving of the system (29) by means of the
procedure solve3() enables the decomposition of the large three-stage problem rep-
resented by matrix A(3) into Sc1 smaller problems, whereby each of them cor-
responds to one two-stage problem. As it is apparent from the designed parallel
algorithm in the procedure solve3(), the most of the computational steps (except
the Step 3.3) can be executed in parallel. The same is true for executing of the two-
stage procedure solve2(), that is called two times from solve3(), more precisely in
the Step 3.1 and Step 3.4.
This fact points out to the possibility of parallel calculations on two levels: the
higher level enabling parallel execution of all steps assigned for parallel execution
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in the procedure solve3(). On the lower level, the same holds true for each of the
Sc2 two-stage problems solved by solve2(). Also there, the most computational
steps are marked with the ”parallel do” clause.
The interprocessor communication is needed only for establishing of the matrices
Ĝ(3) and Ĝ(2), and vectors v̂1 in the Step 3.3 and Step 2.3, respectively.
Suppose, there are NPROC processors available and two integers P , Q, so that
P × Q = NPROC. The NPROC processors can be decomposed into P groups
with the rank of Q processors each. Then in the procedure solve3(), the parallel
loops are executed using the P processors, whereby Q processors are used for par-
allel computations inside the procedure call of solve2() (Step 3.1 and Step 3.4).
For example, let’s solve a three-stage stochastic problem with Sc1 = 300 and
Sc2 = 200 by NPROC = 8 processors. Let P = 4 and Q = 2. Then 4 groups
with 2 processors in each, are formed. To each group of processors is assigned
300/P = 75 two-stage problems. Each of the 300 two-stage problems is using
Q = 2 processors for parallel execution of 200 one-stage problems according to
the procedure solve2(). In this example, the ”parallel do” instruction is executed on
4 processors in solve3() and on 2 processors in solve2().
The algorithms used for solving one-stage problems are as follows: Cholesky de-
composition, solving a system of linear equations, and matrix-vector or matrix-
matrix multiplications. For these operations, performed on the matrices of the size
5 × 12, the sequential version of the linear algebra package LAPACK [1] has been
used. The LAPACK routines are called in the frame of the Fortran code using the
Message Passing Interface (MPI) [27] for interprocessor communication.
Despite the fact, that the IPM decomposition enabled to decompose the large linear
system into smaller ones, while evaluating the right-hand size of equation (23) one
cannot avoid the calculation of the matrix-vector product with the whole matrix
A(3). Due to these reasons we have stored the matrix A(3) also in a compressed row
storage form [2] and used it for a sequential sparse matrix-vector multiplication.
Other experimental details and results of the decomposition and the parallel imple-
mentation of the stochastic three-stage algorithm may be found also in our previous
papers [4], [17], [18].
In this paper we present the experiments executed on the IBM Linux cluster, Uni-
versity of Technology, Vienna, consisting of 144 Pentium 4 (3.6GHz) processors
(2 processors per node) communicating over Fast Ethernet node interconnect.
Table 1 illustrates performance results of the three-stage stochastic problems of the
size 300 × 300 × ∗. P denotes here the number of two-stage problems solved in
parallel, while Q processors were employed in the parallel computation inside ev-
ery two-stage problem. The time of execution for P = Q = 1, was 203.2 seconds.
All experiments showed, that the best performance results were achieved, when the
number P of processors designated for parallel processing of two-stage problems
in the procedure solve3() was as high as possible.
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NP PxQ

1x2 2x1 1x4 2x2 4x1 1x8 2x4 4x2 8x1

2 171.7 97.67

4 119.33 73.33 60.92

8 95.58 71.42 48.33 41.74

1x16 2x8 4x4 8x2 16x1

16 71.92 52.4 47.17 36.4 23.4

Table 1
Timing results in seconds for one model day calculations with the three-stage problem of
the size 300 × 300 × ∗. NP is the number of processors utilized, and P × Q specifies the
configuration of the virtual processor array.

5.2 Financial performance

The tests were performed on historical data from January 1997 to January 2003.
The data included prices of bond indices of 10 years government bonds in USD,
EUR, CHF and GBP and corresponding exchange rates. The domestic currency
was USD and therefore the values of portfolio were recalculated to USD. At the
beginning there was a cash in USD available and the portfolio was bought according
to the result of the multistage stochastic program. The portfolio was then daily
rebalanced according to the results of the stochastic program. The scenario tree
contained 300 scenarios per stage. We used the same time horizon of 6 weeks for
two-stage and three-stage models. This implies the period length 2 weeks in the
three-stage model and 3 weeks in the two-stage model. The important parameters
of scenarios are future expected prices of indices P

(τ)
j , τ = 2, 3, . . . , T . In our

experiments we supposed that the returns of expected prices were known future
returns of indices j = 1, 2, 3, 4 with normal perturbation:

P
(2)
j /I

(1)
j = I

(2)
j /I

(1)
j + σeZ1,j ,

P
(3)
j /P

(2)
j = I

(3)
j /I

(2)
j + σeZ2,j ,

P
(4)
j /P

(3)
j = I

(4)
j /I

(3)
j + σeZ3,j (36)

where I
(τ)
j , τ = 1, 2, 3, 4 denote the known root and future prices of indices. The

known future returns of indices are perturbated (to simulate an incomplete market
information) by mutually independent N(0,1) distributed random variables Zτ,j, σe

stands for the standard deviation of the error. Such a model of incomplete informa-
tion is inspired by modeling of asset returns with normal random variables often
used in finance. σe = 0 represents the perfect information about the future behav-
ior of the markets. The higher the σe, the worse the information about the future
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development of the markets. We have also tested a model with ”no information”.
Suppose that we are calculating the decision at time t and denote the period length
by 4t. Denote by ρ

(−3)
j , ρ

(−2)
j and ρ

(−1)
j , j = 1, 2, 3, 4, the realized returns of the

indices in the last past successive periods, i.e. [t − 34t, t − 24, t], [t − 24t, t −
4t], [t −4t, t], respectively. In the ”no information” model we suppose that

P
(2)
j /I

(1)
j =1 + ρ

(−3)
j ,

P
(3)
j /P

(2)
j =1 + ρ

(−2)
j ,

P
(4)
j /P

(3)
j =1 + ρ

(−1)
j . (37)

Using (36) or (37) one can calculate the expected future prices of indices and gen-
erate the scenario tree according to Section 1.5.

Tables Tab. 2 and Tab. 3 contain values of the portfolio at annual dates achieved
with two-stage and three-stage models for different quality of the information. The
portfolio value development for 2-stage and 3-stage models with different levels of
information could be seen in Fig. 3 and Fig. 4. One can conclude that two-stage
model is better when the information about the future development of the mar-
kets is worse (σe = 20%, No info). With better information (σe = 0, σe = 5%,
σe = 10%) the three stage model outperforms the two-stage model. One would
expect better results with more stages because of more possibilities to rebalance.
However, mathematical models in finance must be properly calibrated to deliver
acceptable results. A good example is the well-known Martkowitz portfolio selec-
tion model ([26]), which needs good estimations of the expected asset returns and
their covariances. In our model higher number of stages cannot overcome bad es-
timates of the future expectations (σe = 20%, no info). In a properly calibrated

Date σe = 0 σe = 5% σe = 10% σe = 20% No info

Jan-97 100.00 100.00 100.00 100.00 100.00

Jan-98 120.21 120.44 117.64 115.88 115.37

Jan-99 168.59 156.53 157.15 155.63 129.37

Jan-00 156.72 147.73 148.88 145.26 101.38

Jan-01 192.55 192.73 186.33 165.92 113.15

Jan-02 214.38 208.07 193.46 166.67 113.91

Jan-03 307.86 288.15 257.30 212.22 155.98
Table 2
Values of the portfolio: two-stage model

model a higher number of scenarios makes sense for two reasons. First, one cannot
estimate precisely the future development of the prices. Taking into account more
possibilities increases a chance that one of the scenarios will fit closely the future
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Fig. 3. Portfolio value development using the 2-stage model.
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Fig. 4. Portfolio value development using the 3-stage model.

20



Date σe = 0 σe = 5% σe = 10% σe = 20% No info

Jan-97 100.00 100.00 100.00 100.00 100.00

Jan-98 119.81 120.06 116.49 108.00 106.40

Jan-99 164.85 172.79 168.57 145.29 110.15

Jan-00 163.68 171.15 158.35 127.77 86.51

Jan-01 237.82 227.24 198.61 143.47 94.76

Jan-02 287.31 258.49 208.89 147.09 90.17

Jan-03 426.09 367.13 293.39 202.02 111.54
Table 3
Values of the portfolio: three-stage model
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Fig. 5. Sensitivity of the portfolio value development to the number of scenarios per stage
for the 2-stage model with σ = 10% .

real prices. Second, the increase of the number of scenarios per stage makes the dis-
crete model closer to the log-normal process (10). The sensitivity of the portfolio
value development to the number of scenarios per stage for the 3-stage and 2-stage
models with σ = 10% could be seen in Fig. 5 and Fig. 6. The results are calculated
for 100 and 300 scenarios per stage. One can see that in both models the results
are better for higher number of scenarios. Therefore, increasing the computational
performance gives the possibility of higher number of scenarios and this could (in
a properly calibrated model) imply better financial performance.
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Fig. 6. Sensitivity of the portfolio value development to the number of scenarios per stage
for the 3-stage model with σ = 10% .

6 Conclusions

We have presented a multistage stochastic model for allocation of financial re-
sources to bond indices in different currencies. The model was tested on historical
data containing the values of indices of government bonds and exchange rates. We
have compared the two-stage and the three-stage stochastic models from the point
of view of financial performance. We have showed that it make sense to increase
the number of stages if we have ”a good information” about the future development
of financial markets. Increasing the number of stages need not improve the quality
of the results in the case of a low quality of information. Furthermore, in a properly
calibrated model a higher number of scenarios could improve the financial perfor-
mance.
For solving two-stage and three-stage stochastic programs the interior point method
(IPM) was used. An application of the BQ method to the IPM allowed decomposi-
tion of the large linear system to smaller blocks. The three-stage parallel programs
were parallelized in two levels. On the higher level several two-stage problems
were processed in parallel, while on the lower level several one-stage problems
were processed in parallel. By creating a virtual processor array we have showed
that the best performance results were achieved, when the highest possible number
of processors was employed in the parallel processing of two-stage problems. The
parallel code was written in the Fortran programming language using the MPI.
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