A priori estimates and singularities for the viscous parabolic Hamilton-Jacobi equation

Marie Françoise BIDAUT-VERON

(Université de Tours)

in collaboration with Anh NGUYEN DAO

Here we consider the nonnegative weak solutions of the parabolic problem

(1)
$$u_t + \mathcal{A}u + |\nabla u|^q = 0 \quad \text{in } \Omega \times (0, T)$$

where Ω is a domain of \mathbb{R}^N , q > 1, and the model case of operator is $\mathcal{A} = -\varepsilon \Delta_p$, $p > 1, \varepsilon > 0$.

We show that a regularizing effect occurs for the function u in the case of the Dirichlet problem with bounded boundary data. We deduce a universal estimate, available for the function u, independent of p and ε , which is not obtained by using Bernstein techniques.

In the usual case p=2, $\mathcal{A}=-\varepsilon\Delta$, we deduce the non existence of very singular solutions of equation (1) for $q\geq\frac{N+2}{N+1}$, showing that the well known existence results for $q<\frac{N+2}{N+1}$ are optimal. We also prove that any punctual singularity at (x,t)=(0,0) is removable.