Slowly traveling waves, blow-up at spatial infinity and homoclinic orbits in nonlinear parabolic equations of fast diffusion type

Michael WINKLER

(Universität Duisburg – Essen)

We consider the nonlinear diffusion equation $u_t = u^p u_{xx}$ for p > 0. We construct positive classical solutions which are of the form

$$u(x,t) = (-t)^{-\frac{1}{p}} F(x + \frac{1}{p\alpha} \ln(-t)), \qquad x \in \mathbb{R}, \ t < 0,$$

with arbitrary $\alpha > 0$, by solving an associated ODE for F. These 'ancient slowly traveling wave solutions' have the following properties:

- 1.) If $p \leq 2$ then u blows up at time t = 0 with empty blow-up set.
- 2.) If p > 2 then for each $\tau > 0$, $u|_{\mathbb{R} \times (-\infty, -\tau)}$ can be extended so as to become an entire positive classical solution \bar{u} , defined on $\mathbb{R} \times \mathbb{R}$, such that $\bar{u}_x > 0$ on \mathbb{R} and

$$\bar{u}(x,t) \to 0$$
 as $t \to \pm \infty$,

locally uniformly with respect to $x \in \mathbb{R}$.