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INTRODUCTIONTHE CLASSICAL PATLAK -KELLER-SEGEL SYSTEM

DIFFUSION vs SELF-ATTRACTION

GENERAL MODEL

∂ρ

∂t
= ∆(ρm)− div (ρ∇K ∗ ρ) in (0,+∞)× R

d , (1)

where K is a given attractive interaction potential.

Remark:
∫

Rd
ρ(x, t) dx =

∫

Rd
ρ0(x) dx =: M

In dimension 2, take K := − 1

2π
log | · |, the Poisson kernel:

THE CLASSICAL PATLAK -KELLER-SEGEL SYSTEM























∂ρ

∂t
= ∆ρ− div(ρ∇Φ) in (0,+∞)× R

2

∆Φ = −ρ in (0,+∞)× R
2 ,

ρ(t = 0) = ρ0 ≥ 0 in R
2 .

(KS)
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INTRODUCTIONTHE CLASSICAL PATLAK -KELLER-SEGEL SYSTEM

KNOWN RESULTS FOR THE CLASSICALPKS SYSTEM

KNOWN RESULTS[B., BILER, DOLBEAULT, CARLEN, CARRILLO , FIGALLI , KARCH, JAGER,
LUCKHAUS, MASMOUDI, NAGAI , NAITO , NADZIEJA, PERTHAME, SENBA, V ÉLAZQUEZ, ...]

Under the assumptions

ρ0 ≥ 0 , ρ0 ∈ L1(R2) , |x|2ρ0 ∈ L1(R2) and ρ0 log ρ0 ∈ L1(R2) . (H)

If M < 8π, solutions to (KS) exist globally in time and converge exponentially fast to the
self-similar profile.

If M = 8π, solutions to (KS) exist globally in time and blowup as a Dirac mass of mass 8π
centred at the centre of mass in infinite time.

If M > 8π, solutions to (KS) blowup in finite time.

Open questions:

How does the solution blowup? [Herrero & Vélazquez, Kavallaris & Souplet, Suzuki, Raphael
& Schweyer, ...],

What happens after blowup [Vélazquez, Dolbeault & Schmeiser, ...],

Can this model be useful for (more) realistic biological problems [Calvez, Meunier, Perthame,
...].
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INTRODUCTIONTHE CLASSICAL PATLAK -KELLER-SEGEL SYSTEM

MAIN TOOLS

THE FREE ENERGY FUNCTIONAL

FPKS[ρ] =

∫

R2
ρ(x) log ρ(x) dx +

1

4π

∫∫

R2×R2
ρ(x) log |x − y |ρ(y) dx dy .

If ρ is a smooth solution to (KS) then

d

dt
FPKS[ρ(t)] = −

∫

R2
ρ |∇ (log ρ− c)|2 dx ≤ 0 .

LOGARITHMIC HARDY-L ITTLEWOOD-SOBOLEV’ S INEQUALITY [CARLEN-LOSS, 1992]

Let f ∈ L1
+(R

2) such that f log f and f log(1 + |x|2) are bounded in L1(R2). If
∫

R2 f dx = M, then

∫

R2
f log f +

2

M

∫∫

R2×R2
f (x) log |x − y |f (y) dx dy ≥ −C(M) . (logHLS)

Let λ ≥ 0, the minimisers of (logHLS) are the translations of

ρ̄λ(x) :=
M

π

λ
(

λ+ |x|2
)2

.

Key estimate:
(

1 − M

8π

)∫

R2
ρ log ρ ≤ FPKS[ρ0] + C(M)

M

8π
<∞ if M < 8π.
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INTRODUCTIONTHE CLASSICAL PATLAK -KELLER-SEGEL SYSTEM

THE MINIMISING SCHEME

In the Wasserstein metric the solution to the system (KS) is a gradient flow of the free energy:

ρt = −∇WFPKS[ρ(t)] .

THE JORDAN-K INDERLEHRER-OTTO (JKO) SCHEME

Given a time step τ , we define the solution by the minimising scheme:

ρk+1
τ ∈ argminρ∈K

[

W2
2 (ρ, ρ

k
τ )

2τ
+ FPKS[ρ]

]

,

where S := {ρ :
∫

R2 ρ = M,
∫

R2 ρ log ρ <∞ and
∫

R2 |x|2ρ(x) dx < ∞}.

Push-forward: T transports µ onto ν and denote T#µ = ν if
∫

R2
ζ[T (x)] dµ(x) =

∫

R2
ζ(x) dν(x) ∀ζ ∈ Cb

0 (R
2) .

WASSERSTEIN DISTANCE

W2
2 (µ, ν) := inf

T : ν=T#µ

∫

R2
|x − T (x)|2 dµ(x) .
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INTRODUCTIONTHE NON-LINEAR KELLER-SEGEL MODEL

THE NON-LINEAR PKS SYSTEM IN HIGHER DIMENSIONS

THE NON-LINEAR PKSSYSTEM IN DIMENSIONd ≥ 3 [BEDROSSIAN, BERTOZZI, B., CARRILLO ,
CHAVANIS , LAURENÇOT, OGAWA , RODRIGUEZ, SIRE, SUGIYAMA , SUZUKI , TAKAHASHI , YAHAGI , ...]











∂ρ

∂t
= ∆(ρm)− div(ρ∇Φ) in (0,+∞)× R

d

∆Φ = −ρ in (0,+∞)× R
d ,

(NKSd)

which corresponds to (1) with the kernel

Y0 = cd
1

|x|d−2
where cd :=

Γ(d/2)

2 (d − 2)πd/2
.

The diffusion and interaction term “balance” if

m = md := 2 − 2

d
∈ (1, 2) .

KNOWN RESULTS[SUGIYAMA , 2006 & 2007]

if m > md then all the solutions to (NKSd) exist globally in time,

if m < md then there are solutions to (NKSd) blowing-up in finite time and there are
global-in-time solutions.
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INTRODUCTIONTHE NON-LINEAR KELLER-SEGEL MODEL

MAIN RESULTS

In the case m = md .

MAIN THEOREM: CRITICAL MASS [B., CARRILLO , LAURENÇOT, 2009]

Under the assumptions

ρ0 ≥ 0 , ρ0 ∈ L1(R2, (1 + |x|2) dx) and ρ0 ∈ Lm(R2) . (H’)

There exists a constant Mc such that

if M < Mc , solutions exist globally in time and there is a radially symmetric compactly
supported self-similar solution,

if M = Mc , solutions exist globally in time. There existare global in time solutions not
blowing-up in infinite time. There are infinitely many compactly supported stationary solutions,

if M > Mc , there are solutions which blowup in finite time and self-similar blowingup solutions.

Open questions:

M < Mc : does the self-similar solution attract all the solution? [Yao for radially symetric
solutions, ...]

M = Mc : Are they blowingup solutions? When the solutions do not blowup are they attracted
by the stationary solutions? [Bedrossian, ...]

M > Mc : Do all the solution blowup in finite time? Are they blowingup solutions with positive
energy [Bedrossian & Kim for radially symetric solutions, ...]?
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INTRODUCTIONTHE NON-LINEAR KELLER-SEGEL MODEL

MAIN IDEA

THE FREE ENERGY

G[ρ] :=
∫

Rd

ρm(t, x)

m − 1
dx − cd

2

∫∫

Rd×Rd

u(t, x) u(t, y)

|x − y |d−2
dx dy .

The free energy t 7→ G[ρ(t)] is non-increasing along the flow of (NKSd).

VARIANT TO THE HARDY-L ITTLEWOOD-SOBOLEV (VHLS) INEQUALITY [∼ L IEB, 1983]

CHLS := sup















∫

Rd
h(x) (Y0 ∗ h)(x) dx

‖h‖m
m ‖h‖2/d

1

: h ∈ (L1 ∩ Lm)(Rd ), h 6= 0















<∞ . (2)

CRITICAL MASS

Define

Mc :=

[

2

(m − 1)CHLS cd

]d/2

. (3)

Key estimate:

G[ρ] ≥ CHLS

2

(

1 − M

Mc

)

‖ρ‖m
m .
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MAIN RESULTS

THE PARABOLIC-PARABOLIC KS SYSTEM

Let m = md . Consider






∂t u = div [∇um − u∇v ] ,

τ∂t v = ∆v − α v + u ,
(t, x) ∈ (0,∞)× R

d , (4)

MAIN RESULTS WHENd = 2

When d = 2.

All the solutions to (4) exists globally in time if M < 8π [Calvez & Corrias, 2008],

For any M, there exists τ such that they are global-in-time solution to (4) [Biler, Corrias &
Dolbeault, 2011].

By a change of variable we imposed M = 1 and the chemo-sensitivity χ plays the role of M is the
previous results.

THE PARABOLIC-PARABOLIC KELLER-SEGEL SYSTEM[B ILER, B., CALVEZ , CORRIAS, DOLBEAULT,
ISHITA, KUNII , LAURENÇOT, SENBA, MONTARU, SUGIYAMA , SUZUKI , YOKOTA...]







∂t u = div [∇um − χu∇v ] ,

τ∂t v = ∆v − α v + u ,
(t, x) ∈ (0,∞)× R

d , (5)
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MAIN RESULTS

MAIN RESULT

We define

χc :=
2

(m − 1)CHLS
, (6)

GLOBAL EXISTENCE [B. & L AURENÇOT, 2012]

Let τ > 0, α ≥ 0, u0 be a non-negative function in L1(Rd , (1 + |x|2) dx) ∩ Lm(Rd ) satisfying
‖u0‖1 = 1 and v0 ∈ H1(Rd ).
If χ < χc then there exists a weak solution (u, v) to the parabolic-parabolic Keller-Segel
system (5), that is, for all t > 0

u(t) ≥ 0, ‖u(t)‖1 = 1,

u ∈ L∞(0, t; L1(Rd , (1 + |x|2) dx) ∩ Lm(Rd )), um/2 ∈ L2(0, t;H1(Rd )),

v ∈ L∞(0, t;H1(Rd )) ∩ L2(0, t;H2(Rd )) ∩ W1,2(0, t; L2(Rd)), v(0) = v0,

and for all t > 0 and ξ ∈ C∞
0 (Rd ),

∫

Rd
ξ (u(t) − u0) dx +

∫ t

0

∫

Rd

(

∇(um)− χ u ∇v
)

· ∇ξ dx ds = 0 ,

τ ∂t v = ∆v − α v + u a.e. in (0, t) × R
d .

Open questions:

Are they blowingup solutions?

Are they global-in-time solutions for any mass?
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IDEA OF THE PROOF+ REVISITING RESULTS ONKSMAIN TOOLS

THE FREE ENERGY

FREE ENERGY FUNCTIONAL

Eα[u, v ] :=
∫

Rd

{ |u(x)|m
χ(m − 1)

− u(x) v(x) +
1

2
|∇v(x)|2 +

α

2
v(x)2

}

dx ,

Let

Yα(x) :=
∫ ∞

0

1

(4πs)d/2
exp

(

−|x|2
4s

− αs
)

ds , x ∈ R
d ,

For u ∈ L1(Rd ), Sα(u) := Yα ∗ u solves −∆Sα(u) + αSα(u) = u in R
d .

HARDY-L ITTLEWOOD-SOBOLEV INEQUALITY FOR THE BESSEL KERNEL

For α > 0,

sup















∫

Rd
h(x) (Yα ∗ h)(x) dx

‖h‖m
m ‖h‖2/d

1

: h ∈ (L1 ∩ Lm)(Rd ), h 6= 0















= CHLS .

Key estimate:

Eα[u, v ] ≥
CHLS χc

2χ

(

1 − χ

χc

)

‖u‖m
m and ‖∇v‖2

2 + α‖v‖2
2 ≤ 4 Eα[u, v ] + C1 ‖u‖2/d

1 ‖u‖m
m .
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IDEA OF THE PROOF+ REVISITING RESULTS ONKSMAIN TOOLS

THE MINIMISING SCHEME

Introduce the set
K := (P2 ∩ Lm)(Rd )× H1(Rd )

Given (u0, v0) ∈ K and h > 0, we define:

M INIMISING SCHEME







(uh,0, vh,0) = (u0, v0) ,

(uh,n+1, vh,n+1) ∈ Argmin(u,v)∈KFh,n[u, v ] , n ≥ 0 ,
(7)

where

Fh,n[u, v ] :=
1

2h

[

W2
2 (u, uh,n)

χ
+ τ ‖v − vh,n‖2

2

]

+ Eα[u, v ] ,

THE KS SYSTEM AS A GRADIENT FLOW CIRM – 10-14 SEPT. 2012 15 / 28



IDEA OF THE PROOF+ REVISITING RESULTS ONKSMAIN TOOLS

EULER-LAGRANGE EQUATION

Let (u, v) be the minimiser of Fh,n in K.
Let ζ ∈ C∞

0 (Rd ;Rd ) and w ∈ C∞
0 (Rd ). For δ ∈ (0, 1), define Tδ := id + δ ζ and

uδ := Tδ#u , (perturbation in the ”optimal transport” sense)
vδ := v + δ w (perturbation in the usual L2-sense) .

We want to compute

lim
δ→0

Fτ [uδ, vδ] −Fτ [u, v ]

δ
(≥ 0)

All the term are standard, except
∫

Rd

u v − uδ vδ
δ

=

∫

Rd
u

v − vδ(id + δζ)

δ
=

∫

Rd
u
[

v − v(id + δζ)

δ
− w(id + δζ)

]

,

since
v − v ◦(id + δζ)

δ
⇀ −ζ · ∇v in L2(Rd ),

whereas u is only in (L1 ∩ Lm)(Rd ) and m < 2.

MAIN DIFFICULTY

Improve the regularity of u.
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IDEA OF THE PROOF+ REVISITING RESULTS ONKSMAIN TOOLS

MATTHES-MCCANN-SAVAR É’ S TECHNIQUE: PHILOSOPHY

Preliminary remark: consider the two ordinary differential equations describing gradient flow:

ẋ(t) = −∇Φ[x(t)] and ẏ(t) = −∇Ψ[y(t)]

Differentiate each function along the other’s flow:

d

dt
Φ[y(t)] = −〈∇Φ[y(t)],∇Ψ[y(t)]〉

d

dt
Ψ[x(t)] = −〈∇Ψ[x(t)],∇Φ[x(t)]〉

Let us consider the following variational problem:

Find uh,n which minimises u 7→ 1

2h
W2

2 (u, uh,n−1) + F [u] (i.e. ut = −”∇W”F [u])

Imagine now that we can find a displacement convex functional V such that the dissipation of F
along the flow SV :

DVF [µ] := lim sup
t→0

F [µ]− F [SV
t µ]

t
(”= − d

dt
F [SV

t µ]|t=0
”)

is non-negative. By the preliminary remark

DVF [uh,n] = lim sup
t→0

V [uh,n−1] − V [uh,n]

t

And as V is displacement convex, the above the tangent formulation gives:

DVF [uh,n] ≤
V [uh,n−1]− V [uh,n]

h
.
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IDEA OF THE PROOF+ REVISITING RESULTS ONKSMAIN TOOLS

MATTHES-MCCANN-SAVAR É’ S TECHNIQUE: IDEA OF THE PROOF

By definition of the minimising scheme, for any u ∈ K

1

2h
W2

2 (uh,n, uh,n−1) + F [uh,n] ≤
1

2h
W2

2 (u, uh,n−1) + F [u] (8)

Choosing u = SV
t (uh,n) in (8) we obtain

F [uh,n]− F [SV
t uh,n] ≤

1

2h

(

W2
2 (S

V
t uh,n, uh,n−1)−W2

2 (uh,n, uh,n−1)
)

Dividing by t and letting t → 0, (9) with u = uh,n and v = uh,n−1 yields

DVF [uh,n] ≤
V [uh,n−1]− V [uh,n]

h

Because V is displacement convex and SV is the associated semigroup means

1

2

d+

dt
W2

2 (S
V
t u, v) ≤ V [v ]− V [SV

t u] (9)
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IDEA OF THE PROOF+ REVISITING RESULTS ONKSAPPLICATION TO THE CLASSICAL KELLER-SEGEL SYSTEM

A SECONDLYAPUNOV FUNCTIONAL: FOR THE CFD EQUATION

FRAMEWORK

Consider the classical parabolic-elliptic Patlak-Keller-Segel system when M = 8π and the
2-moment is unbounded.

THE “ CRITICAL” NONLINEAR FOKKER-PLANCK EQUATION











∂u

∂t
= ∆

(√
u
)

+
1√
2λ

div(x u) t > 0 , x ∈ R
2 ,

u(0) = u0 ≥ 0 x ∈ R
2 ,

(10)

Define

FAST DIFFUSION FUNCTIONAL

Hλ[u] :=
∫

R2

(√
u −√

ρ̄λ
)2

√
ρ̄λ

dx

It follows that for classical solutions u of (10) ,

d

dt
Hλ[u(t)] = −

∫

R2
u(t, x)

∣

∣

∣

∣

∇
(

1√
ρ̄λ

− 1√
u

)∣

∣

∣

∣

2

dx ≤ 0 .

The ρ̄λ are stationary solutions of (KS).
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IDEA OF THE PROOF+ REVISITING RESULTS ONKSAPPLICATION TO THE CLASSICAL KELLER-SEGEL SYSTEM

A SECONDLYAPUNOV FUNCTIONAL: FOR THE PKS SYSTEM 8π CASE

If ρ is the smooth solution to (KS) with M = 8π we obtain

D[ρ(t)] :=
d

dt
Hλ[ρ(t)] = −8

∫

R2
|∇(ρ1/4)|2 dx +

∫

R2
ρ3/2 dx .

GAGLIARDO-NIRENBERG-SOBOLEV INEQUALITY, [DEL PINO, DOLBEAULT ]

For all functions f in R
2 with a square integrable distributional gradient ∇f ,

π

∫

R2
|f |6 dx ≤

∫

R2
|∇f |2 dx

∫

R2
|f |4 dx ,

and there is equality if and only if f is a multiple of a translate of ρ̄1/4
λ for some λ > 0.

DISSIPATION OFHλ

For all solution ρ to (KS) of mass M = 8π,

d

dt
Hλ[ρ] = D[ρ(t)]≤ 0 ,

and moreover, there is equality if and only ρ is a translate of ρ̄λ for some λ > 0.
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IDEA OF THE PROOF+ REVISITING RESULTS ONKSAPPLICATION TO THE CLASSICAL KELLER-SEGEL SYSTEM

DISPLACEMENT CONVEXITY OFHλ[u]

The displacement convexity of Hλ is formally obvious from the fact that

Hλ[u] =
∫

R2

(

−2
√

u(x) +

√

1

2λ

|x|2
2

u(x)

)

dx + C .

where −
√

u(x) and |x|2u(x) are displacement convex.

Using the MMS technique gives

ABOVE THE TANGENT FORMULATION

Hλ[un]−Hλ[un+1] ≥
1

2

∫

R2

[

√

1

2λ
x +

∇un

u3/2
n

]

· (∇ψ(x) − x) un dx .

where ∇ψ is such that ∇ψ#un = un+1.
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IDEA OF THE PROOF+ REVISITING RESULTS ONKSAPPLICATION TO THE CLASSICAL KELLER-SEGEL SYSTEM

MAIN THEOREM

GLOBAL EXISTENCE AND LARGE TIME BEHAVIOUR

Given any density ρ0 with total mass 8π such that there exists λ > 0 with

Hλ[ρ0] < ∞.

Then there exists ρ ∈ AC0([0,T ],P2(R
2)), with ρ(t) ∈ L1(R2) for all t ≥ 0 being a global-in-time

weak solution of (KS). Moreover, the solutions constructed satisfy

FPKS[ρ(t)] ≤ FPKS[ρ0] ,

and

Hλ[ρ(t)] +
∫ t

0
D[ρ(t)] dt ≤ Hλ[ρ0] .

Furthermore,
lim

t→∞
FPKS[ρ(t)] = FPKS[ρ̄λ] lim

t→∞
‖ρ(t) − ρ̄λ‖L1(R2) = 0 .

And the system satisfies the hypercontractivity property i.e. for any t∗ > 0, the constructed
solution ρ is bounded in L∞(t∗,∞, Lp(R2)), for any p ∈ (1,∞).

Talagrand’s inequality:
W2

2 (ρ, ρ̄λ) ≤ 2
√

2λ Hλ[ρ] .

Basin on attraction: If λ 6= µ then

W2(ρ̄µ, ρ̄λ) =
1

2

∫

R2

∣

∣

∣

∣

λ

µ
x − x

∣

∣

∣

∣

2

ρ̄µ = +∞ .
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IDEA OF THE PROOF+ REVISITING RESULTS ONKSMAIN IDEA OF THE PROOF

EXTENSION OFMMS’ S TECHNIQUE I

MAIN DIFFICULTY

Above the choice of the auxiliary gradient flow naturally comes from the existence of another
Liapunov functional which is different from the energy. Such a nice structure does not seem to be
available for our problem.

Let (u, v) be a minimiser of Fh in K. Introduce the solutions U and V to the initial value problems

{

∂t U −∆U = 0 in (0,∞)× R
d , U(0) = u in R

d ,

∂t V −∆V + αV = 0 in (0,∞)× R
d , V (0) = v in R

d .
(11)

Classical results ensure that (U(t), V (t)) belongs to K for all t ≥ 0 and therefore

Fh[u, v ] ≤ Fh[U(t),V (t)] , t ≥ 0 .

Let us compute
Fh[U(t),V (t)] − Fh[u, v ] .
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EXTENSION OFMMS’ S TECHNIQUE II

• We compute
d

dt
Eα[U,V ] = −D +R ,

where

D(t) :=
4

mχ
‖∇
(

Um/2(t)
)

‖2
2 + ‖(∆V − αV + U)(t)‖2

2 , t > 0 ,

and

R(t) := ‖U(t)‖2
2 − α

∫

Rd
(UV )(t, x) dx , t > 0 .

Whence

Eα[U(t),V (t)] − Eα[u, v ] ≤ −
∫ t

0
D(s) ds +

∫ t

0
R(s) ds , t > 0 .

• As the linear heat equation (11) can be interpreted as the gradient flow of the functional
H =

∫

u log u for the Kantorovich-Wasserstein distance W2 in P2(R
d ):

1

2

d

dt
W2

2 (U(t), u0) ≤ H[u0]−H[U(t)] , t > 0 .

We obtain, by monotonicity of s 7→ H[U(s)]

W2
2 (U(t), u0)−W2

2 (u, u0) ≤ 2
∫ t

0
(H[u0]−H[U(s)]) ds ≤ 2t (H[u0]−H[U(t)])

• Furthermore, it readily follows

‖V (t) − v0‖2
2 − ‖v − v0‖2

2 ≤ t
(

‖∇v0‖2
2 + α ‖v0‖2

2 − ‖∇V (t)‖2
2 − α ‖V (t)‖2

2

)

(12)

for all t > 0.
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EXTENSION OFMMS’ S TECHNIQUE III

Combining the above estimates gives, for t > 0,

0 ≤ Fh[U(t),V (t)] − Fh[u, v ]

≤ t

hχ
(H[u0]−H[U(t)]) −

∫ t

0
D(s) ds +

∫ t

0
R(s) ds

+
τ t

2h

(

‖∇v0‖2
2 + α ‖v0‖2

2 − ‖∇V (t)‖2
2 − α ‖V (t)‖2

2

)

,

which also reads
1

t

∫ t

0
D(s) ds ≤ Ah(t) +

1

t

∫ t

0
R(s) ds , t > 0 , (13)

where

Ah(t) :=
H[u0]−H[U(t)]

hχ
+

τ

2h

(

‖∇v0‖2
2 + α ‖v0‖2

2 − ‖∇V (t)‖2
2 − α ‖V (t)‖2

2

)

.

We can control R and let t → 0 to obtain

4

mχ
‖∇(um/2)‖2

2 + ‖∆v − αv + u‖2
2 ≤ 2Ah(0) + C2

(

Eα[u0, v0] + Eα[u0, v0]
1/(m−1)

)

(14)

FURTHER REGULARITY OF THE MINIMISERS

Let χ ∈ (0, χc), (u0, v0) ∈ K, h ∈ (0, 1), and consider a minimiser (u, v) of Fh in K. Then
u ∈ L2(Rd ).
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Arrigato gonzaimasu

Merci pour votre attention
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