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DIFFUSION VS SELFATTRACTION

GENERAL MODEL

% = A(p™) — div (pVK  p) in (0, +o0) x RY 1)

where K is a given attractive interaction potential.

Remark:

/Rd p(x,1) dx = /Rd po(x) dx =: M

. . 1 .
In dimension 2, take K := o log| - |, the Poisson kernel:
iy

THE CLASSICALPATLAK -KELLER-SEGEL SYSTEM

% = Ap —div(pV®) in (0, +00) x R?
AD = —p in (0, +o0) x R? (KS)
p(t=0)=pp >0 in R? .
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KNOWN RESULTS FOR THE CLASSICAIPKS SYSTEM

KNOWN RESULTS[B., BILER, DOLBEAULT, CARLEN, CARRILLO, FIGALLI , KARCH, JAGER,

LUCKHAUS, MASMoUDI, NAGAI, NAITO, NADZIEJA, PERTHAME, SENBA, VELAZQUEZ, ...]

Under the assumptions

po >0, po€lL(R?), [x|?pp € L}(R?) and pglogpg € L*(R?) . (H)

e If M < 8, solutions to (KS) exist globally in time and converge exponentially fast to the
self-similar profile.

@ If M = 8, solutions to (KS) exist globally in time and blowup as a Dirac mass of mass 8
centred at the centre of mass in infinite time.

e If M > 8, solutions to (KS) blowup in finite time.

Open questions:
@ How does the solution blowup? [Herrero & Vélazquez, Kavallaris & Souplet, Suzuki, Raphael
& Schweyer, ...],
@ What happens after blowup [Vélazquez, Dolbeault & Schmeiser, ...],
@ Can this model be useful for (more) realistic biological problems [Calvez, Meunier, Perthame,

"
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MAIN TOOLS

THE FREE ENERGY FUNCTIONAL

Focslel = [, 00100 08+ 2= [ o010k~ yloty) ey

If p is a smooth solution to (KS) then

d
S Feulp(0] = = [ IV (ogp— o) dx <o0.
It RZ

LOGARITHMIC HARDY-LITTLEWOOD-SOBOLEV'S INEQUALITY [CARLEN-LOSS 1992]

Letf € L1 (R?) such that f logf and f log(1 + [x|2) are bounded in L1(R2). If [, f dx = M, then

2
/szlogf i //}RZXRZf(x)Iog X —ylf(y)dxdy > —C(M) . (logHLS)

Let A > 0, the minimisers of (logHLS) are the translations of

= (X) oy M#
P = ()\+|X‘2)2 .

Key estimate:

M M .
(1——)/ plogp < Fekslpo] + C(M)— < oo ifM < 8.
87 ) Jr2 87
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THE MINIMISING SCHEME

In the Wasserstein metric the solution to the system (KS) is a gradient flow of the free energy:

pt = —VwFpks[p(t)] -

THE JORDAN-KINDERLEHRER-OTTO (JKO) SCHEME

Given a time step 7, we define the solution by the minimising scheme:

W2(p, p¥)

> + Fekslol |
-

k+1 ;
Pyt € argmin, [

where S:={p : [rap=M, [raplogp<oco and f[p [x|2p(x)dx < oco}.

Push-forward: T transports u onto v and denote T #u = v if

/C[T(X)]du(X)=/ () dv(x) V¢ eCH(R?).
R2 R2

WASSERSTEIN DISTANCE

W)= int =T 00? du)
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THE NON-LINEAR PKS SYSTEM IN HIGHER DIMENSIONS

THE NON-LINEAR PKSSYSTEM IN DIMENSION > 3 [BEDROSSIAN BERTOZZI, B., CARRILLO,

CHAVANIS, LAURENCOT, OGAWA, RODRIGUEZ, SIRE, SUGIYAMA , SUZUKI, TAKAHASHI, YAHAGI, ...]

ap : .

= = A(p™) — div(pVP in (0, +o0) x R

ot (™) (pV ) ( ) (NKSd)
AP =—p in (0, +00) x RY |

which corresponds to (1) with the kernel

r(d/2)

1
=Cqy —— Where ¢4 i = — "~ .
Yo =Cd a2 47 2(d - 2) nd/2

The diffusion and interaction term “balance” if

2
m=my ::2756(1’2)'

KNOWN RESULTS[SUGIYAMA , 2006 & 2007]

¢ if m > my then all the solutions to (NKSd) exist globally in time,

¢ if m < my then there are solutions to (NKSd) blowing-up in finite time and there are
global-in-time solutions.
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MAIN RESULTS

In the case m = my.

MAIN THEOREM: CRITICAL MASS [B., CARRILLO, LAURENCOT, 2009]

Under the assumptions
po >0, po€LM(R? (L+ |x[*) dx) and pg € L™(R?). (H)

There exists a constant M such that

9 if M < Mc, solutions exist globally in time and there is a radially symmetric compactly
supported self-similar solution,

9 if M = Mc, solutions exist globally in time. There existare global in time solutions not
blowing-up in infinite time. There are infinitely many compactly supported stationary solutions,

e if M > Mc, there are solutions which blowup in finite time and self-similar blowingup solutions.

Open questions:
@ M < Mc: does the self-similar solution attract all the solution? [Yao for radially symetric
solutions, ...]
@ M = Mc: Are they blowingup solutions? When the solutions do not blowup are they attracted
by the stationary solutions? [Bedrossian, ...]
@ M > Mc: Do all the solution blowup in finite time? Are they blowingup solutions with positive
energy [Bedrossian & Kim for radially symetric solutions, ...]?
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MAIN IDEA

._ m(t X) u(t,x)u(t,y)
Q[P]~—/ m_ /Aded |X_|d2ddy'

The free energy t — G[p(t)] is non-increasing along the flow of (NKSd).

VARIANT TO THE HARDY-LITTLEWOOD-SOBOLEV (VHLS) INEQUALITY [~ LIEB, 1983]

/d h(x) (Vo * h)(x) dx
Chis = sup{ =B 27 che(rnL™)(RY),h#£0p < oo. ®)
[IhII7 lIh]l3
Define
> d/2
Me i= | i . 3
¢ {(mfl)CHLst} ( )1

Key estimate:

Vv

C M
gt = % (1= ) iR
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THE PARABOLIC-PARABOLIC KS SYSTEM

Letm = my. Consider

6u = div[Vu™ —uVvv],
(t,x) € (0,00) x R?, )
TV = AV —aV + U,

MAIN RESULTS WHENd = 2

When d = 2.
@ All the solutions to (4) exists globally in time if M < 87 [Calvez & Corrias, 2008],

¢ For any M, there exists 7 such that they are global-in-time solution to (4) [Biler, Corrias &
Dolbeault, 2011].

By a change of variable we imposed M = 1 and the chemo-sensitivity x plays the role of M is the
previous results.

THE PARABOLIC-PARABOLIC KELLER-SEGEL SYSTEM[BILER, B., CALVEZ, CORRIAS, DOLBEAULT,

ISHITA, KUNII, LAURENCOT, SENBA, MONTARU, SUGIYAMA , SUZUKI, YOKOTA...]

Gu = div[Vu™ — xuVvv] ,
(t,x) € (0,00) x RY, ®)
TV = AV —aV + U,
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MAIN RESULT

We define
2

~ (m-1)Chs ’

GLOBAL EXISTENCE[B. & L AURENCOT, 2012]

Let~ > 0, a > 0, up be a non-negative function in L*(RY, (1 + |x|?) dx) N L™(RY) satisfying
||U0||1 =1landvg € Hl(Rd).

If x < xc then there exists a weak solution (u, v) to the parabolic-parabolic Keller-Segel
system (5), that is, for allt > 0

o u(t) >0, [ju®)ll. =1,

o u € L=, LYRY, (1 4 [x]?)dx) NLM(RY)), u™/2 € L2(0,t; HL(RY)),

e v € L>®(0,t; HY(RY)) N L2(0,t; H3(RY)) N WL2(0, t; L3(RY)), v(0) = vo,
and forallt > 0 and £ € C§°(RY),

Xc : (6)

t
/]chg(u(t)—uo)dx—i-/0 /1;@ (V(u™) —xuWVv) Védxds =0,

TOV=AV—av-+u ae.in (0,t)xRY.

Open questions:
@ Are they blowingup solutions?
@ Are they global-in-time solutions for any mass?
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THE FREE ENERGY

FREE ENERGY FUNCTIONAL

aluv]i= [ {0 —u6ove0 + 3 19veo + v | e

Let
Ix|2

— ~ 1 d
ya(x) —‘/0 Wexp (—E—as) ds, xeR",

Foru € LY(RY), Sq(U) := Y * U solves —AS,(u) + aSq(u) = u in RY,

HARDY-LITTLEWOOD-SOBOLEV INEQUALITY FOR THE BESSEL KERNEL

For a > 0,

/ h(X) (Ve * h)(x) dx

che(L*nLm)(RY),h 0 = Chs .
bl by 3/

Key estimate:

ChLs X X 2/d
Ealu,v] > THEAE (7 Yo fullly and [[VV[5 + allv]|5 < 4 Eafu,v] + Cy |lul] [T/l

2x
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THE MINIMISING SCHEME

Introduce the set
K := (P, nLM)(RY) x HY(RY)

Given (ug, Vp) € K and h > 0, we define:
{ (Un,0; Vh,0) = (Uo, Vo),

(Uh,n+17Vh,n+l) € Argmin(uyv)e){jfh,n[uvv]ﬂ n>0,

@)

where

Finlusv] = o= +7 IV = Vhal3 | +Ealu,vl,

" 2h

1 |:W22(u7uh,n)
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EULER-LAGRANGE EQUATION

Let (u,v) be the minimiser of 7y, , in KC.
Let¢ € Cg°(RY;RY) and w € Cg°(RY). For 6 € (0, 1), define Ts :=id + §¢ and

us = Ts#u, (perturbation in the "optimal transport” sense)
Vs =V +dw (perturbation in the usual L2-sense) .

We want to compute

lim fT[u5vv5] - fT[U,V]

>0
5—0 4 (=0

All the term are standard, except

Uv —usVs v —vs(id +6¢) v—v(id+6{)_ . }
Lo [ S W[ ]

since
v —vo(id + §¢)

)
whereas u is only in (L* NL™)(RY) and m < 2.

Improve the regularity of u.

— —¢-Vv inL?RY),
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MATTHES-MCCANN-SAVARE'S TECHNIQUE PHILOSOPHY

Preliminary remark: consider the two ordinary differential equations describing gradient flow:
X(t) = =Vex(t)] and y(t) =-VV[y(t)]

Differentiate each function along the other’s flow:

%¢[Y(t)] = —(Vely®)], VVly(®))
j:‘l’[x(t)] = —(VVx(®)], Vex(®))

Let us consider the following variational problem:
. . I 1 )
Find up , which minimises ~ u %sz(u,uh,n,l) + Flul (e u=—"Vy"Flu])

Imagine now that we can find a displacement convex functional ¥ such that the dissipation of F
along the flow SV:

Flpl — FIs¥ul

t 0=~ S FISVHlL)

DY F[u] := limsup
t—0

is non-negative. By the preliminary remark

Vupna] =V
DY Flup,qa] = limsup Vlun,n—1] = V[n,n]
t—0 t

And as V is displacement convex, the above the tangent formulation gives:

V[up n_1] — V[unnl .

DY Flupn] < -
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MATTHES-MCCANN-SAVARE'S TECHNIQUE IDEA OF THE PROOF

By definition of the minimising scheme, for any u € K
1,2 1,2
%Wz(uh,m Unn—1) + Flunn] < %Wz(U, Upn—1) + F[u] (8

Choosing u = S¥(un n) in (8) we obtain

Flunnl = FISPunn] < - (Wz(st Uh,ns Un,n—1) — sz(uh,muh,n—l))
Dividing by t and lettingt — 0, (9) with u = u , and v = uy, 1 yields

V[uhn—1] — V[un n]

DY Flupn] < H

Because V is displacement convex and SV is the associated semigroup means

1df

> ot Wz(st u,v) < V[v] - V[Su] )]
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A SECONDLYAPUNOV FUNCTIONAL: FOR THECFD EQUATION

Consider the classical parabolic-elliptic Patlak-Keller-Segel system when M = 87 and the
2-moment is unbounded.

<

THE “CRITICAL” NONLINEAR FOKKER-PLANCK EQUATION

ou 1

— = A (Vu) + —— div(xu t>0, x eR?,

= (V) + == div(x u) 10
u(0) =up >0 x € R?,

Define

FAST DIFFUSION FUNCTIONAL

—\ 2
Hofu] = /Rz %dx

It follows that for classical solutions u of (10) ,

GOl = - [ uex

()

The g, are stationary solutions of (KS).
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A SECONDLYAPUNOV FUNCTIONAL: FOR THEPKS SYSTEM 87 CASE

If p is the smooth solution to (KS) with M = 87 we obtain

MWﬂ:gﬂﬂmH:$4JWﬁWVW+AyMW-

GAGLIARDO-NIRENBERG-SOBOLEV INEQUALITY, [DEL PINO, DOLBEAULT]

For all functions f in R? with a square integrable distributional gradient V1,

7r/ |f|6dx§/ |Vf|2dx/ If[4 ax ,
R2 R2 R2

and there is equality if and only if f is a multiple of a translate of ﬁi“ for some A > 0.

DISSIPATION OFH. )

For all solution p to (KS) of mass M = 8,

a1l = Dlp(V]< 0,

and moreover, there is equality if and only p is a translate of 5, for some A > 0.
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DISPLACEMENT CONVEXITY OFH ) [u

The displacement convexity of H  is formally obvious from the fact that

2
Halu] = /Rz (—2\/u(x)+ \/szlu(x)> & +C.

where —,/u(x) and |x|?u(x) are displacement convex.

Using the MMS technique gives

ABOVE THE TANGENT FORMULATION

1 Vun

Halun] — Halunta] > %/]RZ [ — X+

2 W] - (V(x) —x) un dx .

where V1 is such that Viy#un = upig.
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MAIN THEOREM

Given any density pp with total mass 8= such that there exists A > 0 with
Hlpo] < oo.

Then there exists p € AC°(]0, T], Po(RR2)), with p(t) € L1(R2) for all t > 0 being a global-in-time
weak solution of (KS). Moreover, the solutions constructed satisfy

Fexslp(t)] < Feksleo] ,
and

t
Halo()] + /o Dlp(t)] dt < Ha[po]

Furthermore,
lim Feks[p(t)] = Frsloal lim {lp(t) = Axllrey =0
t— o0 t—o0

And the system satisfies the hypercontractivity property i.e. for any t* > 0, the constructed
solution p is bounded in L (t*, co, LP(R?)), for any p € (1, c0).

Talagrand’s inequality:
W3(p, 5x) < 2V2X Halp] -

Basin on attraction: If A # p then

\ 2

;X — X ﬁl" = +o00.
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EXTENSION OFMMS’S TECHNIQUEI

Above the choice of the auxiliary gradient flow naturally comes from the existence of another
Liapunov functional which is different from the energy. Such a nice structure does not seem to be
available for our problem.

Let (u, v) be a minimiser of 7y, in K. Introduce the solutions U and V to the initial value problems
&U—AU =0 in(0,00) x RY, Uu(©) =u inRY,
{ &V —AV +aV =0 in(0,00) x RY, V() =v inRY. a
Classical results ensure that (U(t), V(t)) belongs to K for all t > 0 and therefore
Falu,v] S AU, V)],  t>0.

Let us compute
FalU(t), V()] = Fulu,v] .
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EXTENSION OFMMS’S TECHNIQUEII

e \WWe compute

d
—&a[U,V]=-D+R,
g EolUVI +

where 4
D(t) == —|[V (U™2(0)) 5 + AV —aV + U)W, t>0,
X
and
R(t) == U2 —a/d(UV)(t,x)dX, t>0.
R
Whence

EalU(0),V(1)] = Ealu,v] < —/t D(s)ds—i—/t R(s)ds, t>0.
0 0
e As the linear heat equation (11) can be interpreted as the gradient flow of the functional
‘H = [ ulogu for the Kantorovich-Wasserstein distance W in Po(RY):
1d
2 dt
We obtain, by monotonicity of s — #[U(s)]

W2(U(t), up) < Hlug] — H[U(t)], t>0.

t
WE(U(1), Uo) — WE(u, up) < 2 /o (H[uo] = HIU(S)]) ds < 2t (H[uo] — H[U(1)])
e Furthermore, it readily follows
IV(£) = Voll3 = IV = voll3 <t (||VV0||§ +a|vol5 — IVV D)3 — o IIV(t)II§) (12)

forallt > 0.
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EXTENSION OFMMS’S TECHNIQUEIII

Combining the above estimates gives, for t > 0,

0 < FlU(t), V()] = Fnlu,v]
t t t
< a(H[uo]—H[U(t)])—/o D(s)ds+/o R(s)ds
20 (I9vol3 + a Ivoll3 ~ IV (I3~ « IV(DI3) -

which also reads

t t
%/O D(s)dsgAh(t)Jr%/o R(s)ds, t>0, (13)
where
o(t) = AL L 2 (19018 + a vol — 19V I - o IV @IE) -

We can control R and lett — O to obtain

4
i IVWM)E + 118V — av + Ul < 2A0(0) +C2 (aluo, Vol + Ealuo, Vol /(M) (1)

FURTHER REGULARITY OF THE MINIMISERS

Let x € (0, xc), (ug, Vo) € K, h € (0,1), and consider a minimiser (u, v) of F, in K. Then
u € L3(RY).
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Arrigato gonzaimasu

Merci pour votre attention
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