5th Euro-Japanese Workshop on Blow-up Luminy, France, 10–14 September 2012

Global attractivity properties of stationary solutions for semilinear heat equations

Yuki Naito (Ehime University, Japan)

Introduction

In this talk we will consider the problem

(1.1)
$$\begin{cases} u_t = \Delta u + u^p & \text{in } \mathbf{R}^N \times (0, T), \\ u(x, 0) = u_0(x) & \text{in } \mathbf{R}^N, \end{cases}$$

where N>2, p>1, and $u_0\geq 0$, $u_0\not\equiv 0$, $u_0\in C(\mathbf{R}^N)\cap L^\infty(\mathbf{R}^N)$.

It is well known that there exists $T\in(0,\infty]$ such that (1.1) has a unique classical solution on $t\in(0,T)$, and if $T<\infty$ then $\lim_{t\to T}\|u(t)\|_{\infty}=\infty$.

We are interested in the case $T=\infty$, and consider the attractivity property of positive stationary solutions.

Plan of this talk

- Part I. Remarks on attractivity properties for $u_t = \Delta u + u^p$.
 - 1.1. Known results
 - (i) Local stability property by Gui, Ni, and Wang (1992, 2001)
 - (ii) Global attracitivty property by Poláčik and Yanagida (2003)
 - 1.2. Main remarks
 - 1.3. Sketch of Proof
- Part II. Application to the problem $u_t = \Delta u + e^u$
- Part III. Application to self-similar solutions to $u_t = \Delta u + u^p$

Part I.

Remarks on attractivity properties for

$$u_t = \Delta u + u^p.$$

Stationary solutions: Definitions

Let us recall the properties of solutions to the problem

$$\Delta \phi + \phi^p = 0 \quad \text{in } \mathbf{R}^N.$$

Define

$$p_c = \begin{cases} \infty, & 3 \le N \le 10, \\ 1 + \frac{4}{N - 4 - 2\sqrt{N - 1}}, & N \ge 11. \end{cases}$$

Put

$$L = \left(\frac{2}{p-1} \left(N - 2 - \frac{2}{N-2}\right)\right)^{1/(p-1)}.$$

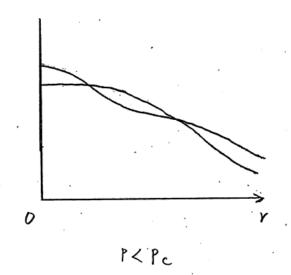
Note that there is a singular solution $\phi_{\infty}(|x|) = L|x|^{-2/(p-1)}$ if p > N/(N-2).

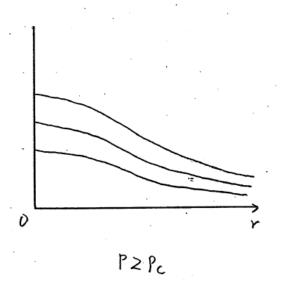
Stationary solutions: Positive solutions

For $\alpha > 0$, we denote by $\phi_{\alpha}(r)$ a solution of

$$\begin{cases} \phi'' + \frac{N-1}{r}\phi' + \phi^p = 0, & r > 0, \\ \phi(0) = \alpha & \text{and} & \phi'(0) = 0. \end{cases}$$

- When p>(N+2)/(N-2), ϕ_α satisfies $\phi_\alpha(r)>0$ for r>0 and $r^{2/(p-1)}\phi_\alpha(r)\to L\quad\text{as }r\to\infty.$
- When $(N+2)/(N-2) , <math>\phi_{\alpha}(r)$ and $\phi_{\beta}(r)$ intersect infinity many times on $(0,\infty)$.
- When $p \ge p_c$, $\phi_{\alpha}(r) > \phi_{\beta}(r)$ for $r \ge 0$ if $\alpha > \beta$.





Known results by Gui-Ni-Wang

Let $\psi \in C(\mathbf{R}^N)$. For $\lambda > 0$, define $\|\psi\|_{\lambda} = \sup_{x \in \mathbf{R}^N} (1 + |x|)^{\lambda} |\psi(x)|$.

Let λ_1, λ_2 be the roots of

$$\lambda^2 - (N - 2 - 2m)\lambda + 2(N - 2 - m) = 0$$
 with $m = \frac{2}{p - 1}$.

When $p > p_c$, we have $0 < \lambda_1 < \lambda_2$. (If $p = p_c$, then $0 < \lambda_1 = \lambda_2$.)

Theorem A (Gui-Ni-Wang 1992, 2001). Let $p>p_c$ and $\alpha>0$.

- (i) For any $\varepsilon>0$ there is $\delta>0$ such that, if $\|u_0-\phi_\alpha\|_{m+\lambda_1}<\delta$, then $\|u(\cdot,t,u_0)-\phi_\alpha\|_{m+\lambda_1}<\varepsilon\quad\text{for all }t>0.$
- (ii) For any $\lambda \in (\lambda_1, \lambda_2]$, there is $\delta > 0$ such that, if $\|u_0 \phi_\alpha\|_{m+\lambda} < \delta$, then $\lim_{t \to \infty} \|u(\cdot, t, u_0) \phi_\alpha\|_{m+\lambda'} = 0 \quad \text{for any } \lambda' \in [0, \lambda).$

i.e., ϕ_{α} is stable w.r.t. $\|\cdot\|_{m+\lambda_1}$, and ϕ_{α} is weakly asymptotically stable w.r.t. $\|\cdot\|_{m+\lambda}$.

The condition $p \geq p_c$ is crucial.

Theorem (Gui-Ni-Wang 1992)

Assume that (N+2)/(N-2) .

- (i) If $u_0 \leq \phi_\alpha$ and $u_0 \not\equiv \phi_\alpha$ for some $\alpha > 0$, then $u(x,t,u_0)$ is global and $\lim_{t\to\infty} \|u(\cdot,t,u_0)\|_{L^\infty} = 0$.
- (ii) If $u_0 \ge \phi_\alpha$ and $u_0 \not\equiv \phi_\alpha$ for some $\alpha > 0$, then $u(x, t, u_0)$ blows up in finite time.

Let us recall a sketch of proof of Theorem A.

Let $p > p_c$. For each $\alpha > 0$, we have

$$\phi_{\alpha}(x) = \frac{L}{|x|^m} + \frac{a_1(\alpha)}{|x|^{m+\lambda_1}} + o\left(\frac{1}{|x|^{m+\lambda_1+\varepsilon}}\right) \quad \text{as } |x| \to \infty,$$

where $a_1(\alpha) < 0$ and $a_1(\alpha)$ is continuous and increasing in $\alpha > 0$.

Then we have

$$\|\phi_{\alpha} - \phi_{\beta}\|_{m+\lambda_1} \to 0 \text{ as } \beta \to \alpha.$$

Thus, for any $\varepsilon > 0$, there is $\eta > 0$ such that

$$\|\phi_{\alpha\pm\eta} - \phi_{\alpha}\|_{m+\lambda_1} < \varepsilon.$$

Let $\eta > 0$ satisfy

$$\|\phi_{\alpha\pm\eta} - \phi_{\alpha}\|_{m+\lambda_1} < \varepsilon.$$

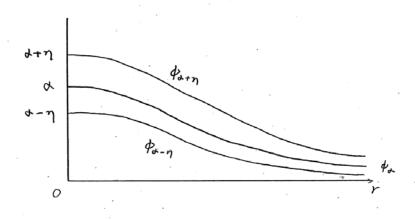
There exists $\delta > 0$ such that, if $\|\phi_{\alpha} - u_0\|_{m+\lambda_1} < \delta$, then

$$\phi_{\alpha-\eta}(x) \le u_0(x) \le \phi_{\alpha+\eta}(x)$$
 in \mathbf{R}^N .

By the separation property of $\phi_{\alpha+\eta}$ and $\phi_{\alpha-\eta}$, we have

$$\phi_{\alpha-\eta}(x) \le u(x,t,u_0) \le \phi_{\alpha+\eta}(x)$$
 for $t > 0, x \in \mathbf{R}^N$.

Thus we obtain Theorem A (i).



Let us consider the sketch of proof of Theorem A (ii). Recall that

$$\phi_{\alpha}(x) = \frac{L}{|x|^m} + \frac{a_1(\alpha)}{|x|^{m+\lambda_1}} + o\left(\frac{1}{|x|^{m+\lambda_1+\varepsilon}}\right) \quad \text{as } |x| \to \infty.$$

Let $\lambda > \lambda_1$. Then we have

$$\{u_0: ||u_0 - \phi_\alpha||_{m+\lambda} < \delta\} \cap \{\phi_\beta: \beta > 0\} = \{\phi_\alpha\}.$$

If $||u_0 - \phi_\alpha||_{m+\lambda} < \delta$, we can show that

$$||u(\cdot,t;u_0) - \phi_\alpha||_{\lambda'} \to 0 \quad \text{as } t \to \infty$$

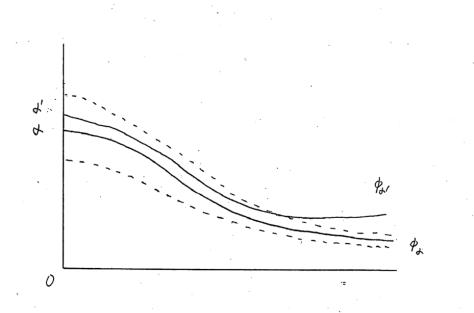
for any $\lambda' \in (0, m + \lambda)$. Thus we obtain Theorem A (ii).

Recall that

$$\phi_{\alpha}(x) = \frac{L}{|x|^m} + \frac{a_1(\alpha)}{|x|^{m+\lambda_1}} + o\left(\frac{1}{|x|^{m+\lambda_1+\varepsilon}}\right) \quad \text{as } |x| \to \infty.$$

Let $\lambda > \lambda_1$. Then we have

$$\{u_0: ||u_0 - \phi_\alpha||_{m+\lambda} < \delta\} \cap \{\phi_\beta: \beta > 0\} = \{\phi_\alpha\}.$$



Known results by Poláčik-Yanagida

The global attractivity property of steady states was shown by Poláčik-Yanagida(2003).

Theorem B (Poláčik-Yanagida 2003)

Let $p \geq p_c$. Assume that

$$-\phi_{\infty}(|x|) \le u_0(x) \le \phi_{\infty}(|x|) \quad \text{for } x \in \mathbf{R}^N.$$

If u_0 satisfies

$$\lim_{|x| \to \infty} |x|^{m+\lambda_1} |u_0(x) - \phi_{\alpha}(|x|)| = 0$$

with some $\alpha > 0$, then

$$||u(\cdot,t,u_0)-\phi_\alpha||_{L^\infty(\mathbf{R}^N)}\to 0$$
 as $t\to\infty$.

Known results by Poláčik-Yanagida: Applications

As applications of Theorem B, they showed the following.

Define the ω -set of the solution u by

$$\omega(u) = \{\psi : u(\cdot, t_n) \to \psi \text{ for some sequence } t_n \to \infty\}.$$

Theorem (Existence of nonstabilizing bounded solution)

Let $p \geq p_c$. For given $-\infty < \alpha < \beta < \infty$,

there is u_0 such that $u = u(x, t; u_0)$ satisfies

$$\omega(u) = \{\phi_{\gamma} : \alpha \le \gamma \le \beta\}.$$

Theorem (Existence of global unbounded solution)

Let $p \geq p_c$. Then there exists u_0 such that $u(x, t, u_0)$ is global and

$$||u(\cdot,t,u_0)||_{L^{\infty}(\mathbf{R}^N)} \to \infty \text{ as } t \to \infty.$$

See also Poláčik-Yanagida (2004).

(The existence of solution which undergoes a sort of birth-and-death process.)

Known results (summary)

In Part I, we will give some remarks on these results.

Theorem A. Let $p > p_c$ and $\alpha > 0$.

(i) For any $\varepsilon > 0$ there is $\delta > 0$ such that, if $||u_0 - \phi_{\alpha}||_{m+\lambda_1} < \delta$, then

$$||u(\cdot, t, u_0) - \phi_{\alpha}||_{m+\lambda_1} < \varepsilon \text{ for all } t > 0.$$

(ii) For any $\lambda \in (\lambda_1, \lambda_2]$, there is $\delta > 0$ such that, if $||u_0 - \phi_{\alpha}||_{m+\lambda} < \delta$, then

$$\lim_{t \to \infty} \|u(\cdot, t, u_0) - \phi_{\alpha}\|_{m+\lambda'} = 0 \quad \text{for any } \lambda' \in [0, \lambda).$$

Theorem B. Let $p \geq p_c$. Assume that

$$-\phi_{\infty}(|x|) \le u_0(x) \le \phi_{\infty}(|x|) \quad \text{for } x \in \mathbf{R}^N.$$

If u_0 satisfies $\lim_{|x|\to\infty} |x|^{m+\lambda_1} |u_0(x) - \phi_\alpha(|x|)| = 0$ with some $\alpha > 0$, then

$$||u(\cdot,t,u_0)-\phi_\alpha||_{L^\infty(\mathbf{R}^N)}\to 0$$
 as $t\to\infty$.

Main remarks: The case $p > p_c$

We assume that $u_0 \in C(\mathbf{R}^N)$ satisfies

$$-\phi_{\infty}(|x|) \le u_0(x) \le \phi_{\infty}(|x|) \quad \text{for } x \in \mathbf{R}^N.$$

By a small change, we obtain the following.

Theorem 1.1. Let $p > p_c$ and $\alpha > 0$. Assume (*).

For any $\varepsilon > 0$, there is $\delta > 0$ such that, if

$$\limsup_{|x|\to\infty} |x|^{m+\lambda_1} |u_0(x) - \phi_\alpha(|x|)| < \delta,$$

then

$$\limsup_{t \to \infty} \|u(\cdot, t, u_0) - \phi_{\alpha}(|\cdot|)\|_{m+\lambda_1} < \varepsilon.$$

Corollary 1.1. Let $p > p_c$. Assume (*). If

$$\lim_{|x| \to \infty} |x|^{m+\lambda_1} |u_0(x) - \phi_{\alpha}(|x|)| = 0$$

with some $\alpha > 0$, then

$$\lim_{t \to \infty} ||u(\cdot, t, u_0) - \phi_{\alpha}(|\cdot|)||_{m+\lambda_1} = 0.$$

Main remarks: The case $p > p_c$

The asymptotically stability result is extended as follows.

Theorem 1.2. Let $p > p_c$ and $\alpha > 0$. Assume (*). If there exist $\lambda \in (\lambda_1, \lambda_2]$ such that

$$\limsup_{|x| \to \infty} |x|^{m+\lambda} |u_0(x) - \phi_\alpha(|x|)| < \infty$$

then, for any $\lambda' \in [0, \lambda)$,

$$\lim_{t \to \infty} \|u(\cdot, t, u_0) - \phi_{\alpha}(|\cdot|)\|_{m+\lambda'} = 0.$$

Remark.

- (i) It is open whether (**) holds with $\lambda' = \lambda$.
- (ii) In Theorem 1.2, we can not replace $\lambda \in (\lambda_1, \lambda_2]$ by $\lambda = \lambda_1$.
- (iii) In the proof, we will employ weak super- and subsolutions to stationary problem.

Theorem (Fila-Winkler-Yanagida 2005, see also Hoshino-Yanagida 2008)

Let $p > p_c$ and $\lambda \in (\lambda_1, \lambda_2)$. Assume (*).

If u_0 satisfies

$$|u_0(x) - \phi_{\alpha}(|x|)| \le c|x|^{-m-\lambda}, \quad x \in \mathbf{R}^N,$$

for some $\alpha > 0$ and c > 0, then there exists C > 0 such that

$$||u(\cdot,t,u_0) - \phi_{\alpha}(|\cdot|)||_{L^{\infty}} \le C(1+t)^{-\frac{\lambda-\lambda_1}{2}}$$

for all t > 0. (This estimate is optimal.)

Remark. The decay rate may depend on the weight of the norm.

We have

$$\|u(\cdot,t,u_0) - \phi_{\alpha}(|\cdot|)\|_{\lambda'} = \begin{cases} O\left(t^{-\frac{\lambda-\lambda_1}{2}}\right) & \text{if } \lambda' \in (0,m+\lambda_1] \\ O\left(t^{-\frac{\lambda-\lambda_1}{2\lambda}}(\lambda-\lambda')\right) & \text{if } \lambda' \in (m+\lambda_1,m+\lambda) \end{cases}$$

as $t \to \infty$.

Main remarks: The case $p = p_c$

Next let us consider the case where $p = p_c$. For each $\alpha > 0$, we have

$$\phi_{\alpha}(x) = \frac{L}{|x|^m} + \frac{a_1(\alpha)\log|x|}{|x|^{m+\lambda_1}} + O\left(\frac{1}{|x|^{m+\lambda_1}}\right) \quad \text{as } |x| \to \infty,$$

where $a_1(\alpha) < 0$ and $a_1(\alpha)$ is increasing in $\alpha > 0$.

For $\lambda > 0, \mu > 0$, define

$$\||\psi\||_{\lambda,\mu} = \sup_{x \in \mathbf{R}^N} \frac{(1+|x|)^{\lambda}}{(\log(2+|x|))^{\mu}} |\psi(x)|.$$

Theorem (Gui-Ni-Wang 1992, 2001) Let $p = p_c$ and $\alpha > 0$.

- (i) For any $\varepsilon > 0$ there is $\delta > 0$ such that, if $||u_0 \phi_{\alpha}||_{m+\lambda_1,1} < \delta$, then $||u(\cdot,t,u_0) \phi_{\alpha}||_{m+\lambda_1,1} < \varepsilon$ for all t > 0.
- (ii) For any $\mu \in [0, 1)$, there is $\delta > 0$ such that, if $||u_0 \phi_\alpha||_{m+\lambda_1, \mu} < \delta$, then $\lim_{t \to \infty} ||u(\cdot, t, u_0) \phi_\alpha||_{m+\lambda_1, \mu'} = 0 \quad \text{for any } \mu' \in (\mu, 1].$

Main remarks: The case $p = p_c$

Theorem 2.1. Let $p = p_c$ and $\alpha > 0$. Assume (*).

For any $\varepsilon > 0$, there is $\delta > 0$ such that, if

$$\limsup_{|x| \to \infty} \frac{|x|^{m+\lambda_1}}{\log|x|} |u_0(x) - \phi_{\alpha}(|x|)| < \delta,$$

then

$$\limsup_{t\to\infty} ||u(\cdot,t,u_0) - \phi_{\alpha}(|\cdot|)||_{m+\lambda_1,1} < \varepsilon.$$

Corollary 2.1. Let $p = p_c$. Assume (*).

If

$$\lim_{|x| \to \infty} \frac{|x|^{m+\lambda_1}}{(\log |x|)} |u_0(x) - \phi_{\alpha}(|x|)| = 0$$

with some $\alpha > 0$, then

$$\lim_{t \to \infty} |||u(\cdot, t, u_0) - \phi_{\alpha}(|\cdot|)|||_{m+\lambda_1, 1} = 0.$$

Main remarks: The case $p = p_c$

Theorem 2.2. Let $p = p_c$. Assume (*).

If there exist $\alpha > 0$ and $\mu \in [0, 1)$ such that, if

$$\limsup_{|x|\to\infty} \frac{|x|^{m+\lambda_1}}{(\log|x|)^{\mu}} |u_0(x) - \phi_{\alpha}(|x|)| < \infty,$$

then, for any $\mu' \in (\mu, 1]$,

$$\lim_{t \to \infty} |||u(\cdot, t, u_0) - \phi_{\alpha}(|\cdot|)|||_{m+\lambda_1, \mu'} = 0.$$

Sketch of Proof: Weak super- and subsolutions

Let us consider the stationary problem

$$\Delta \phi + \phi^p = 0 \quad \text{in } \mathbf{R}^N.$$

We say that ϕ is a (continuous) weak subsolution, if $\phi \in C^{\infty}(\mathbf{R}^N)$ satisfies, for any $\eta \in C^2(\mathbf{R}^N)$ with $\eta \geq 0$, compact support in \mathbf{R}^N ,

$$\int_{\mathbf{R}^N} \left(\phi(x)\Delta\eta(x) + \phi(x)^p \eta(x)\right) dx \ge 0.$$

Note here that, if $\phi \in C^2(\mathbf{R}^N)$, then

$$\Delta \phi + \phi^p \ge 0 \quad \text{in } \mathbf{R}^N.$$

Sketch of Proof: Weak super- and subsolutions

Let us recall fundamental results for the Cauchy problem

$$\begin{cases} u_t = \Delta u + u^p & \text{in } \mathbf{R}^N \times (0, \infty), \\ u(x, 0) = u_0(x) & \text{in } \mathbf{R}^N. \end{cases}$$

Lemma 1. Let \overline{u}_0 and \underline{u}_0 are weak super- and subsolutions satisfying $\underline{u}_0 \leq u_0 \leq \overline{u}_0$. Then

$$\underline{u}_0(x) \le u(x, t, u_0) \le \overline{u}_0(x)$$
 for all $t > 0$.

Lemma 2. If u_0 is a bounded weak subsolution, then $u(x, t, u_0)$ is non-decreasing in t > 0 for each fixed $x \in \mathbf{R}^N$.

Lemma 3. Assume that u = u(|x|, t) is decreasing or increasing in t > 0, and that

$$\lim_{t \to \infty} u(|x|, t) = v(|x|) \in L^{\infty}.$$

Then v is a stationary solution, i.e, $v \equiv \phi_{\alpha}$ with some $\alpha \geq 0$.

Sketch of Proof: Weak super- and subsolutions

By using previous lemmas, we obtain the following.

Lemma 4. (i) Assume that \overline{u}_0 is a weak supersolution satisfying $\overline{u}_0 > \phi_{\alpha}$ and

$$\{\psi: \phi_{\alpha} \le \psi \le \overline{u}_0\} \cap \{\phi_{\beta}: \beta > 0\} = \{\phi_{\alpha}\}.$$

Then we have $u(x, t, \overline{u}_0) \to \phi_{\alpha}(x)$ as $t \to \infty$.

(Because we have $\phi_{\alpha}(x) \leq u(x, t, \overline{u}_0) \leq \overline{u}_0(x)$ for $t \geq 0$.)

(ii) Assume that \underline{u}_0 is a weak subsolution satisfying $\underline{u}_0 < \phi_\alpha$ and

$$\{\psi: \underline{u}_0 \le \psi \le \phi_\alpha\} \cap \{\phi_\beta: \beta > 0\} = \{\phi_\alpha\}.$$

Then we have $u(x, t, \underline{u}_0) \to \phi_{\alpha}(x)$ as $t \to \infty$.

Sketch of Proof: Proof of Theorem 1.2

We will give the proof of Theorem 1.2 (global attractivity part).

Theorem 1.2. Let $p > p_c$ and $\alpha > 0$. Assume (*).

If there exist $\lambda \in (\lambda_1, \lambda_2]$ such that

$$\limsup_{|x| \to \infty} |x|^{m+\lambda} |u_0(x) - \phi_\alpha(|x|)| < \infty$$

then, for any $\lambda' \in [0, \lambda)$,

$$\lim_{t \to \infty} \|u(\cdot, t, u_0) - \phi_{\alpha}(|\cdot|)\|_{m+\lambda'} = 0.$$

Recall that $u_0 \in C(\mathbf{R}^N)$ satisfies (*), i.e.,

(*)
$$-\phi_{\infty}(|x|) \le u_0(x) \le \phi_{\infty}(|x|) \quad \text{for } x \in \mathbf{R}^N.$$

We may assume that there exists $\beta > \alpha$ such that

$$-\phi_{\beta}(|x|) \le u_0(x) \le \phi_{\beta}(|x|) \quad \text{for } x \in \mathbf{R}^N.$$

Sketch of Proof: Proof of Theorem 1.2

The following result is crucial for the proof of Theorem 1.2.

Proposition. Assume that $u_0 \in C(\mathbf{R}^N)$ satisfies

$$\limsup_{|x| \to \infty} |x|^{m+\lambda} |u_0(x) - \phi_\alpha(|x|)| < \infty$$

for some $\lambda \in (\lambda_1, \lambda_2]$, and

$$-\phi_{\beta}(|x|) \le u_0(x) \le \phi_{\beta}(|x|) \quad \text{for } x \in \mathbf{R}^N \quad \text{with } \beta > \alpha.$$

(i) There exists a weak supersolution \overline{u}_0 satisfying $u_0 < \overline{u}_0, \, \phi_{\alpha} < \overline{u}_0$ and

$$\{\psi: \phi_{\alpha} \le \psi \le \overline{u}_0\} \cap \{\phi_{\beta}: \beta > 0\} = \{\phi_{\alpha}\}.$$

(ii) There exists a weak subsolution \underline{u}_0 satisfying $\underline{u}_0 < u_0, \, \underline{u}_0 < \phi_\alpha$ and

$$\{\psi: \underline{u}_0 \le \psi \le \phi_\alpha\} \cap \{\phi_\beta: \beta > 0\} = \{\phi_\alpha\}.$$

Sketch of Proof: Proof of Theorem 1.2

Once we obtain Proposition, it is easy to give the proof of Theorem 1.2.

Let \overline{u}_0 and \underline{u}_0 be super- and subsolutions obtained in Proposition.

Since $\underline{u}_0 \leq u_0 \leq \overline{u}_0$, we have

$$u(x, t, \underline{u}_0) \le u(x, t, u_0) \le u(x, t, \overline{u}_0)$$
 for $t \ge 0$.

By Lemma 4, we have

$$u(x, t, \underline{u}_0) \to \phi_{\alpha}(x)$$
 and $u(x, t, \overline{u}_0) \to \phi_{\alpha}(x)$ as $t \to \infty$.

Thus we obtain $u(x, t, u_0) \to \phi_{\alpha}(x)$ as $t \to \infty$.

Part II.

Application to the problem $u_t = \Delta u + e^u$

Exponential nonlinearity: Problem

We consider the problem

$$\begin{cases} u_t = \Delta u + e^u & \text{in } \mathbf{R}^N \times (0, T), \\ u(x, 0) = u_0(x) & \text{in } \mathbf{R}^N, \end{cases}$$

where N > 2 and $u_0 \in C(\mathbf{R}^N)$.

First, let us recall the properties of solutions to the problem

$$\Delta \phi + e^{\phi} = 0 \quad \text{in } \mathbf{R}^N.$$

Exponential nonlinearity: Stationary solutions

For $\alpha > 0$, we denote by $\phi_{\alpha}(r) = \phi(r; \alpha)$ a solution of

$$\begin{cases} \phi'' + \frac{N-1}{r}\phi' + e^{\phi} = 0, & r > 0, \\ \phi(0) = \alpha & \text{and} & \phi'(0) = 0. \end{cases}$$

• When $N \geq 3$, $\phi_{\alpha}(r)$ is decreasing and satisfies

$$\phi_{\alpha}(r) = -2\log r + O(1)$$
 as $r \to \infty$.

- When $3 \le N \le 9$, $\phi_{\alpha}(r)$ and $\phi_{\beta}(r)$ intersect infinity many times on $(0, \infty)$.
- When $N \ge 10$, $\phi_{\alpha}(r) > \phi_{\beta}(r)$ for $r \ge 0$ if $\alpha > \beta$.

Exponential nonlinearity: Stationary solutions

Let us recall the precise behavior of $\phi_{\alpha}(r)$ as $r \to \infty$. (Tello 2006) Let λ_1, λ_2 be the roots of

$$\lambda^2 - (N-2)\lambda + 2(N-2) = 0.$$

When $N \geq 10$, we have $0 < \lambda_1 \leq \lambda_2$, i.e.,

$$\lambda_1 = \frac{N-2-\sqrt{(N-2)(N-10)}}{2}, \quad \lambda_2 = \frac{N-2+\sqrt{(N-2)(N-10)}}{2}.$$

For each $\alpha > 0$, we have

$$\phi_{\alpha}(x) = \begin{cases} -2\log r + \log(2N - 4) + a_1(\alpha)r^{-\lambda_1} + b_1(\alpha)r^{-\lambda_2} + o(r^{-\lambda_2}) & \text{if } N \ge 11, \\ -2\log r + \log(2N - 4) + \frac{a_1(\alpha)\log r + b_1(\alpha)}{r^{\lambda_1}} + o(r^{-\lambda_1}) & \text{if } N = 10 \end{cases}$$

as $|x| \to \infty$, where $a_1(\alpha)$ is a negative constant.

Note here that $a_1(\alpha) < 0$ is continuous and increasing in α .

Exponential nonlinearity: Local stability

Theorem A (Tello 2006)

Let N > 10 and $\alpha > 0$.

- (i) For any $\varepsilon > 0$ there is $\delta > 0$ such that, if $||u_0 \phi_\alpha||_{\lambda_1} < \delta$, then $||u(\cdot, t, u_0) \phi_\alpha||_{\lambda_1} < \varepsilon$ for all t > 0.
- (ii) There is $\delta > 0$ such that, if $||u_0 \phi_\alpha||_{\lambda_2} < \delta$, then $\lim_{t \to \infty} ||u(\cdot, t, u_0) \phi_\alpha||_{\lambda} = 0 \quad \text{for any } \lambda \in (0, \lambda_2).$

Exponential nonlinearity: Global attractivity

We assume that $u_0 \in C(\mathbf{R}^N)$ satisfies

(*)
$$\phi_{\beta'}(|x|) \le u_0(x) \le \phi_{\beta}(|x|) \quad \text{for } x \in \mathbf{R}^N$$

with some $\beta', \beta \in \mathbf{R}$.

Theorem 3.1. Let N > 10, and assume (*). Let $\alpha \in (\beta', \beta)$.

For any $\varepsilon > 0$, there is $\delta > 0$ such that, if

$$\limsup_{|x| \to \infty} |x|^{\lambda_1} |u_0(x) - \phi_\alpha(|x|)| < \delta,$$

then

$$\limsup_{t\to\infty} \|u(\cdot,t,u_0) - \phi_{\alpha}(|\cdot|)\|_{\lambda_1} < \varepsilon.$$

As a consequence of Theorem 1, we obtain the following.

Corollary 3.1.(Tello 2006) Let N > 10. Assume (*). If

$$\lim_{|x| \to \infty} |x|^{\lambda_1} |u_0(x) - \phi_{\alpha}(|x|)| = 0$$

with some $\alpha \in (\beta', \beta)$, then

$$\lim_{t \to \infty} \|u(\cdot, t, u_0) - \phi_{\alpha}(|\cdot|)\|_{\lambda_1} = 0.$$

Exponential nonlinearity: Global attractivity

Theorem 3.2. Let N > 10, and assume (*). Let $\alpha \in (\beta', \beta)$. If there exist $\lambda \in (\lambda_1, \lambda_2]$ such that

$$\limsup_{|x| \to \infty} |x|^{\lambda} |u_0(x) - \phi_{\alpha}(|x|)| < \infty$$

then, for any $\lambda' \in [0, \lambda)$,

$$\lim_{t \to \infty} ||u(\cdot, t, u_0) - \phi_{\alpha}(|\cdot|)||_{\lambda'} = 0.$$

Part III.

Application to self-similar solutions to

$$u_t = \Delta u + u^p$$

Self-similar solutions

We will consider the problem

(1.1)
$$\begin{cases} u_t = \Delta u + u^p & \text{in } \mathbf{R}^N \times (0, T), \\ u(x, 0) = u_0(x) & \text{in } \mathbf{R}^N, \end{cases}$$

where N > 2, p > 1, and $u_0 \ge 0$, $u_0 \ne 0$, $u_0 \in C(\mathbf{R}^N) \cap L^{\infty}(\mathbf{R}^N)$.

We recall that u is a self-similar solution if and only if u has the form

$$u(x,t) = t^{-1/(p-1)}\phi(x/\sqrt{t}),$$

where ϕ satisfies the elliptic equation

$$\Delta \phi + \frac{1}{2}x \cdot \nabla \phi + \frac{1}{p-1}\phi + \phi^p = 0$$
 in \mathbf{R}^N .

Similarity variables

For a solution u of (1.1), define

$$w(y,s) = (t+1)^{1/(p-1)}u(x,t)$$
 with $y = x/\sqrt{t+1}$, $s = \log(t+1)$.

Then (1.1) is reduced to the problem

(1.2)
$$\begin{cases} w_s = \Delta w + \frac{1}{2} y \cdot \nabla w + \frac{1}{p-1} w + w^p, & s \ge 0, \ y \in \mathbf{R}^N, \\ w(y,0) = u_0(y), & y \in \mathbf{R}^N. \end{cases}$$

A stationary problem for (1.2) is as follows.

$$\Delta \phi + \frac{1}{2}x \cdot \nabla \phi + \frac{1}{p-1}\phi + \phi^p = 0 \quad \text{in } \mathbf{R}^N.$$

Initial value problem

For $\alpha > 0$, we denote by ϕ_{α} a solution to

$$\begin{cases} \phi'' + \left(\frac{N-1}{r} + \frac{r}{2}\right)\phi' + \frac{1}{p-1}\phi + \phi^p = 0, & r > 0 \\ \phi(0) = \alpha & \text{and} & \phi'(0) = 0. \end{cases}$$

This ODE problem was studied extensively, by

Haraux-Weissler (1982), Weissler (1985),

Peletier-Terman-Weissler (1986), Yanagida (1996)

Dohmen-Hirose (1998), Galaktionov-Vazquez (1997)

Souplet-Weissler (2003), Bae (2004), N (2006)

We recall here the results on the asymptotic behavior of $\phi_{\alpha}(r)$ as $r \to \infty$.

Asymptotic behavior

Haraux-Weissler (1982)

Let $p > p_F := (N+2)/N$. For $\alpha > 0$, there exists $\ell = \ell(\alpha) \in \mathbf{R}$ such that

$$\lim_{r \to \infty} r^{2/(p-1)} \phi_{\alpha}(r) = \ell(\alpha),$$

and that $\ell(\alpha)$ is continuous in $\alpha > 0$.

N (2006) Let $p_F .$

Then there exists $\alpha^* > 0$ such that, if $0 < \alpha < \beta < \alpha^*$, then

$$0 < \phi_{\alpha}(r) < \phi_{\beta}(r)$$
 for $r \ge 0$ and $0 < \ell(\alpha) < \ell(\beta)$.

Note here that

$$\phi_{\alpha}(r) = \ell(\alpha)r^{-2/(p-1)} + o(r^{-2/(p-1)})$$
 as $r \to \infty$.

We can expect similar results as Part I and II for self-similar solutions.

Results

First let us consider the problem (1.2).

(1.2)
$$\begin{cases} w_s = \Delta w + \frac{1}{2} y \cdot \nabla w + \frac{1}{p-1} w + w^p, & s \ge 0, \ y \in \mathbf{R}^N, \\ w(y,0) = u_0(y), & y \in \mathbf{R}^N. \end{cases}$$

We assume that

(*)
$$0 \le u_0(y) \le \phi_{\alpha^*}(|y|) \quad \text{for } y \in \mathbf{R}^N.$$

Theorem 3.1. Let $p_F . Assume (*). Let <math>\alpha \in (0, \alpha^*)$.

For any $\varepsilon > 0$, there is $\delta > 0$ such that, if

$$\limsup_{|y|\to\infty} |y|^{2/(p-1)} |u_0(y) - \phi_\alpha(|y|)| < \delta,$$

then

$$\limsup_{t \to \infty} \|w(\cdot, s) - \phi_{\alpha}(|\cdot|)\|_{2/(p-1)} < \varepsilon.$$

Results: Remark and Corollary

Remark. Since $|y|^{2/(p-1)}\phi_{\alpha}(|y|) \to \ell(\alpha)$ as $|y| \to \infty$, the condition

$$\limsup_{|y| \to \infty} |y|^{2/(p-1)} |u_0(y) - \phi_{\alpha}(|y|)| < \delta,$$

in Theorem 3.1, can be written as

$$\limsup_{|y|\to\infty} \left| |y|^{2/(p-1)} u_0(y) - \ell(\alpha) \right| < \delta.$$

We note that, for any $\ell \in (0, \ell(\alpha^*))$, there exists a unique $\alpha \in (0, \alpha^*)$ satisfying $\ell = \ell(\alpha)$.

Corollary 3.1. Let $p_F . Assume (*). If$

$$\lim_{|y| \to \infty} |y|^{2/(p-1)} u_0(y) = \ell$$

for some $\ell \in (0, \ell(\alpha^*))$, then

$$\lim_{t \to \infty} ||w(\cdot, s) - \phi_{\alpha}(|\cdot|)||_{2/(p-1)} = 0,$$

where α satisfies $\ell = \ell(\alpha)$.

Results

Finally, we apply our result to the problem (1.1):

(1.1)
$$\begin{cases} u_t = \Delta u + u^p & \text{in } \mathbf{R}^N \times (0, T), \\ u(x, 0) = u_0(x) & \text{in } \mathbf{R}^N. \end{cases}$$

For $\alpha > 0$, define

$$u_{\alpha}(x,t) = t^{-1/(p-2)} \phi_{\alpha}(|x|/\sqrt{t}).$$

Corollary 3.2. Let $p_F .$

Assume that there exists $t_0 > 0$ such that

$$0 \le u_0(x) \le u_{\alpha^*}(x, t_0) \quad \text{for } x \in \mathbf{R}^N.$$

If $\lim_{|x|\to\infty} |x|^{2/(p-1)}u_0(x) = \ell$ for some $\ell \in (0, \ell(\alpha^*))$, then

$$\lim_{t \to \infty} t^{1/(p-1)} \| u(\cdot, t) - u_{\alpha}(|\cdot|, t) \|_{L^{\infty}} = 0,$$

where α satisfies $\ell = \ell(\alpha)$.

