# Exponential separation between positive and sign-changing solutions and its applications

Peter Poláčik

Luminy, September 2012

To be discussed:

(LE) 
$$v_t = L(x,t)v, \quad x \in \Omega, t \in J, \quad (\text{e.g.} \quad v_t = \Delta v + a(x,t)v)$$
  $v = 0, \quad x \in \partial\Omega, t \in J, \quad (\text{if } \partial\Omega \neq \emptyset)$ 

Principal Floquet bundles and exponential separation:

relative exponential decay of sign-changing solutions compared to positive solutions

naturally extend the concepts of principal eigenvalues and eigenfunctions of  $u\mapsto L(x)u$ 

A useful tool in studies o nonlinear nonautonomous equations

$$u_t = \Delta u + f(t, u, \nabla u), \quad x \in \Omega, t > 0,$$

- (LE) is obtained by linearizing along a solution or by taking the difference of two solutions
- -- will show some applications in equations with blowup on R<sup>N</sup>

# Exponential separation: bounded domains

$$v_t = \Delta v + a(x,t)v \quad x \in \Omega, t \in J,$$
  
 $v = 0, \quad x \in \partial\Omega, t \in J,$ 

$$\Omega\subset\mathbb{R}^N$$
, bounded, Lipschitz,  $J=(s,\infty)$  or  $J=(-\infty,s)$  or  $J=\mathbb{R},$   $a\in L^\infty(\Omega\times\mathbb{R})$  (extend  $a$  by zero, if defined on a halfline only)

$$v(\cdot, t, s, v_0) :=$$
 the solution with  $v(\cdot, s) = v_0$ 

$$v_0 \in X$$
,  $X := L^2(\Omega)$  (or  $L^p(\Omega)$ ,  $p \in [1, \infty]$  or  $X = C_0(\Omega)$ )

$$v_t = \Delta v + a(x,t)v \quad x \in \Omega, t \in J,$$
  
 $v = 0, \quad x \in \partial\Omega, t \in J,$ 

#### Theorem.

- $\exists$  positive solution  $\varphi(x,t), t \in \mathbb{R}$ ; unique with  $\|\varphi(\cdot,0)\|_{L^2} = 1$ .
- For any  $s \in \mathbb{R}$ , the set

$$X_2(s) := \{v_0 \in L^2(\Omega) : \text{ the solution } v(\cdot, t, s, v_0)$$
  
changes sign for all  $t > s\}$ 

is a subspace of  $L^2(\Omega)$  of codimension 1. So

$$L^{2}(\Omega) = X_{1}(s) \oplus X_{2}(s), \ X_{1}(s) := \operatorname{span} \{\varphi(\cdot, s)\}.$$

Clearly, 
$$v_0 \in X_i(s) \implies v(\cdot, t, s, v_0) \in X_i(t), i = 1, 2.$$

• (Exp. Separation)  $\exists \gamma, C > 0$ , determined by  $\Omega$ ,  $\|a\|_{L^{\infty}}$ ,

$$\forall v_0 \in X_2(s) : \frac{\|v(\cdot, t, s, v_0)\|_{L^2}}{\|\varphi(\cdot, t)\|_{L^2}} \le Ce^{-\gamma(t-s)} \frac{\|v_0\|_{L^2}}{\|\varphi(\cdot, s)\|_{L^2}}$$

#### Remarks

• if 
$$v_0 \in X_2(s)$$
,  $u>0$  then  $\frac{\|v(\cdot,t,s,v_0)\|_{L^2}}{\|u(\cdot,t)\|_{L^2}} \leq ce^{-\gamma(t-s)}$  
$$u(\cdot,t) = \beta \varphi(\cdot,t) + w(\cdot,t), \quad \text{with } w(\cdot,t) \in X_2(t), \ \beta \neq 0$$

- $X_1(t) := \operatorname{span} \{ \varphi(\cdot, t) \}$ ,  $t \in \mathbb{R}$ , principal Floquet bundle,  $X_2(t), t \in \mathbb{R}$ , its complementary Floquet bundle
- connection to principal eigenvalues, eigenfunctions:

$$a(x,t) \equiv a(x) \Rightarrow$$
 $X_i(t) \equiv X_i \quad (i=1,2)$ 
 $\varphi(x,t) = \varphi_1(x)e^{\lambda_1 t},$ 
 $\lambda_1, \ \varphi_1$  - principal eigenvalue, eigenfuntion of  $\Delta + a(x)$  exponetial separation  $\Leftrightarrow \exists \gamma > 0 : \|e^{(\Delta + a)t}\|_{X_2}\| \leq Ce^{(\lambda_1 - \gamma)t}$ 

First results: [Mierczynski], [P. – Terescak '93], ...
 (... = several results based on limiting arguments (with t→ ±∞) involving regularity of the coefficients)

General equations on Lip. domains [Huska - P. -Safonov '07]:

$$u_t = L(x, t)u, \quad x \in \Omega, t \in J,$$
  
 $u = 0, \quad x \in \partial\Omega, t \in J,$ 

(ND) 
$$L(x,t)u = a_{ij}(x,t)\frac{\partial^2 u}{\partial x_i \partial x_j} + b_j(x,t)\frac{\partial u}{\partial x_j} + c(x,t)u$$
  
or  
(D)  $L(x,t)u = \frac{\partial}{\partial x_j} \left( a_{ij}(x,t)\frac{\partial u}{\partial x_i} + a_j(x,t)u \right) + b_j(x,t)\frac{\partial u}{\partial x_j} + c(x,t)u$ 

 $\Omega$  - bdd., Lipschitz, coefficients - measurable, bounded on  $\Omega \times \mathbb{R}$  (for (ND), the  $a_{ij}$  are continuous),  $a_{ij}$  - uniformly elliptic

constants in the exponential separation determined only by  $\Omega$ , the bound on the coefficients, and the ellipticity constant (gives interesting results even for  $L(x,t)\equiv L(x)$ )

6

Also have continuity and robustness results: the Floquet bundles  $X_i$ , i=1,2 depend continuously on the coefficients and  $\Omega$ 

Exp. separation with a constant  $\gamma$  exp. separation with a constant  $\tilde{\gamma}<\gamma$ ,  $\tilde{\gamma}\approx\gamma$  after a small perturbation of the coefficients and  $\Omega$ 

The method relies on a new elliptic-type Harnack inequality for quotients of positive solutions:

if u, v are positive solutions on  $\Omega \times (s, \infty)$ 

$$\implies \sup_{x \in \Omega} \frac{u(x,t)}{v(x,t)} \le K \inf_{x \in \Omega} \frac{u(x,t)}{v(x,t)} \quad (t > s + \delta)$$

*K* determined only by  $\Omega$ , the bound on the coefficients, the ellipticity constant, and  $\delta$  ( $\delta$ >0 is arbitrary)

# [Huska '06-'09]:

- a version of the exponential separation theorem for general bounded (not necessarily Lipschitz) domains extending [Berestycki, Nirenberg, Varadhan], [Birindelli] on principal eigenvalues, eigenfunctions of elliptic operators
- also oblique derivative problem on Lipschitz domains

[Mierczynski – Shen '08] - monograph, includes random parabolic equations

## Exponential separation: R<sup>N</sup>

$$v_t = \Delta v + a(x,t)v \quad x \in \mathbb{R}^N, \ t \in J,$$
  $J = (s,\infty) \text{ or } J = \mathbb{R},$   $a: \mathbb{R}^N \times \mathbb{R} \to \mathbb{R},$  measurable (extend suitably, if needed)  $|a(x,t)| \leq d \ ((x,t) \in \mathbb{R}^N \times \mathbb{R}), \quad a(x,t) \leq -\alpha \ (|x| \geq \rho)$ 

Example: 
$$L = \Delta + a(x), \quad a(x) \le -\alpha \quad (|x| \ge \rho)$$

no exponential separation if

$$a(x) \to -\alpha$$
 as  $|x| \to \infty$  and  $\sigma(L) \subset (-\infty, -\alpha]$   $(= \sigma_{ess}(L))$ 

•  $\exists$  exponential separation if  $\sigma(L) \cap (-\alpha, \infty) \neq \emptyset$ 

Instability Condition (IC): for some  $\epsilon > 0$ ,  $\forall s \in \mathbb{R} \exists \text{ solution } \psi(\cdot, t) \in L^{\infty}(\mathbb{R}^{N}) \ (t > s) \text{ such that}$ 

$$\frac{\|\psi(\cdot,t)\|_{L^{\infty}}}{\|\psi(\cdot,s)\|_{L^{\infty}}} \ge c e^{(-\alpha+\epsilon)(t-s)} \quad (t>s)$$

$$v_t = \Delta v + a(x,t)v$$
  $|a(x,t)| \le d$ ,  $a(x,t) \le -\alpha$   $(|x| \ge \rho)$ ,  $v(\cdot,t,s,v_0) :=$  the solution with  $v(\cdot,s) = v_0 \in X := L^{\infty}(\mathbb{R}^N)$ 

Theorem [Huska - P. 08] Assume (IC).

 $\bullet$   $\exists$  positive solution  $\varphi(\cdot,t),\ t\in\mathbb{R}$ ; such that

$$\exists c_1: rac{arphi(x,t)}{\|arphi(\cdot,t)\|_{L^\infty(\mathbb{R}^N)}} \leq c_1^{-\sqrt{\epsilon}|x|} \quad (x \in \mathbb{R}^N, \, t \in \mathbb{R}).$$

 $\bullet$  For any  $s \in \mathbb{R}$ , the set

$$X_2(s):=\{v_0\in L^\infty(\mathbb{R}^N):\exists \text{ a ball }B\subset\mathbb{R}^N \text{ and }t_k o\infty,\ v(\cdot,t_k,s,v_0) \text{ changes sign in }B\}$$

is a subspace of  $L^{\infty}(\mathbb{R}^N)$  of codimension 1. So

$$L^{\infty}(\mathbb{R}^N) = \operatorname{span} \{\varphi(\cdot,s)\} \oplus X_2(s).$$

ullet (exp. separation)  $\exists \gamma, C > 0$ , determined by d,  $\rho$ ,  $\alpha$ ,  $\epsilon$ 

$$\forall v_0 \in X_2(s) : \frac{\|v(\cdot, t, s, v_0\|_{L^{\infty}(\mathbb{R}^N)})}{\|\varphi(\cdot, t)\|_{L^{\infty}(\mathbb{R}^N)}} \leq Ce^{-\gamma(t-s)} \frac{\|v_0\|_{L^{\infty}(\mathbb{R}^N)}}{\|\varphi(\cdot, s)\|_{L^{\infty}(\mathbb{R}^N)}}$$

#### Remarks

The results extend to more general equations, e.g.

$$v_t = \Delta v + b(x,t) \cdot \nabla v + a(x,t)v \quad x \in \mathbb{R}^N, \ t \in J,$$
  
with  $b \in \mathbb{C}^1$ ,  $\nabla_x \cdot b(x,t) \to 0$  as  $x \to \infty$ 

• Continuity and robustness results under perturbations of the coefficients and also under "perturbation" of the domain: replacing  $\mathbb{R}^N$  by B(0,R) with R large (and taking the Dirichlet boundary condition)

## Remarks (cont'd)

## Useful consequences of

$$\frac{\|v(\cdot,t,s,v_0\|_{L^{\infty}(\mathbb{R}^N)}}{\|\varphi(\cdot,t)\|_{L^{\infty}(\mathbb{R}^N)}} \leq Ce^{-\gamma(t-s)} \frac{\|v_0\|_{L^{\infty}(\mathbb{R}^N)}}{\|\varphi(\cdot,s)\|_{L^{\infty}(\mathbb{R}^N)}}$$

• (Exp. growth of positive sol's) If there is  $v_0 \in X_2(0)$  with  $\inf_{t>0}\|v(\cdot,t,0,v_0)\|_{L^\infty}>0$ 

then

$$\|\varphi(\cdot,t)\|_{L^{\infty}} \ge c_2 e^{\gamma(t-s)} \|\varphi(\cdot,s)\|_{L^{\infty}} \quad (t>s>0)$$

• (Positivity by growth rate) If v is a solution on  $(-\infty,t)$  with

$$\limsup_{s \to -\infty} \frac{\log \|v(\cdot,s)\|_{L^{\infty}}}{|s|} > \lim\sup_{s \to -\infty} \frac{\log \|\varphi(\cdot,s)\|_{L^{\infty}}}{|s|} - \gamma$$

then v is of one sign (>0 everywhere, or <0 everywhere, or  $\equiv$  0).

Similarly with lim inf.

a principal Lyapunov exponent

# Exponential separation with backward self-similar variables

$$v_s = \Delta v - \frac{1}{2}y \cdot \nabla v + a(y,s)v \quad y \in \mathbb{R}^N, \ s \in \mathbb{R}$$

a – bounded

consider the solutions  $v(\cdot, s, \sigma, v_0)$ 

with 
$$v_0 \in X := L^2(\mathbb{R}^N, \rho)$$
,  $\rho(y) = e^{-|y|^2/4}$ 

Rm:  $\Delta - (y/2) \cdot \nabla$  has compact resolvent, no issues with  $\sigma_{ess}$ 

Extra assumption:  $a(y,s) \to b(y)$   $(s \to -\infty)$ , locally uniformly.

Have the exponential separation on  $(-\infty,0)$  with

$$\gamma = \lambda_1(\Delta - (y/2) \cdot \nabla + b(y)) - \lambda_2(\Delta - (y/2) \cdot \nabla + b(y)) > 0.$$

Moreover, the principal Lyapunov exponent at  $s=-\infty$  is equal to  $\lambda_1(\Delta-(y/2)\cdot\nabla+b(y)).$ 

- based on semigroup estimates, using [Escobedo-Kavian]
- -a similar result on a halfspace under Dirichlet bounday condition (considering the equation on  $X_{odd}$ , positivity for  $y_1>0$  only)

# An application: instability of localized solutions of

$$u_t = \Delta u + f(t, u, \nabla u), \quad x \in \mathbb{R}^N, t > 0,$$
  
 $u(\cdot, 0) = u_0 \in C_0(\mathbb{R}^N), \ u_0 \ge 0.$ 

where

$$f \in C^2$$
,  $f(t,0,0) \equiv 0$ ,  $f_u(t,0,0) \le -2\alpha < 0$ ,

Assume  $u_0$  yields a global *localized solution*:

$$0 < c_1 < \|u(\cdot,t)\|_{L^\infty(\mathbb{R}^N)} < c_2 < \infty$$
  $u(x,t) o 0$  as  $|x| o \infty$  uniformly in  $t$ 

#### Linearization around u

$$v_t = \Delta v + b(x,t) \cdot \nabla v + a(x,t)v$$
  
$$b(x,t) = f_p(t, u(x,t), \nabla u(x,t)), \ a(x,t) = f_u(t, u(x,t), \nabla u(x,t))$$

The exp. separation theorem applies because

$$a(x,t) < -\alpha < 0 \quad (|x| \gg 1)$$

$$\nabla \cdot b(x,t) = f_{pu} \cdot \nabla u(x,t) + \dots \to 0 \quad (|x| \to \infty)$$

and  $u_{x_1}$  is a sign-changing solution, which is bounded and stays away from zero (gives (IC))

Get a linear instability of u: There is a positive solution of

$$v_t = \Delta v + b(x,t) \cdot \nabla v + a(x,t)v \quad x \in \mathbb{R}^N, t > 0,$$

which grows exponentially

$$||v(\cdot,t)||_{L^{\infty}} \ge c_3 e^{\tilde{\gamma}(t-s)} ||v(\cdot,s)||_{L^{\infty}} \quad (t>s>0)$$

Also true for the Dirichlet problem on each sufficiently large ball

- good for comparison arguments in the nonlinear equation, leads to a nonlinear instability of the localized solution
- a stronger result by exponential separation and continuation arguments (moving hyperplanes, sliding method):

if 
$$\tilde{u}_0 \ge \neq u_0 \Rightarrow \liminf_{t \to \infty} u(x, t; \tilde{u}_0) > \liminf_{t \to \infty} \|u(\cdot, t)\|_{L^{\infty}} =: q,$$

uniformly on compacts, or  $u(x,t;\tilde{u}_0)$  blows up

- --  $u(x,t;\tilde{u}_0)$  is not localized: uniqueness of localized solutions in any ordered family of sol's
- -- the behavior of  $u(x,t;\tilde{u}_0)$  depends on f, for a class of superlinear equations, it has to blow up

## Example

$$u_t = \Delta u + r(t)(u^p - \lambda u)$$
  $r$  -cont.,  $0 < r_1 < r(t) < r_2$ ;  $\lambda > 0$ ,  $p > 1$ 

- each localized solution is on the (sharp) threshold between decay and blowup (decay to 0 below, blowup above), regardless of *p* 

(No need to know the behavior of the threshold solution for this.)

- under some restrictions on p (in particular,  $p < p_S$ ) and the initial conditions, localized solutions do occur as thresholds between blowup and decay [P. 2011]

An application: a proof of a Liouville theorem for radial ancient sol's

$$u_t = \Delta u + |u|^{p-1}u, \quad x \in \mathbb{R}^N, \ t \in (-\infty, T)$$
  
  $1$ 

Theorem. Assume u is a radial solution with finite (and bounded) zero number:  $u=u(r,t),\ r=|x|,\ z(v(\cdot,t))\leq k,\ (t< T).$  Then it is spatially homogeneous: u=u(t)

- (a) Under the assumption that  $||u(\cdot,t)||_{L^{\infty}} \le c(T-t)^{-1/(p-1)}$ , this follows from [Merle-Zaag '98, 2000] (no symmetry needed)
- (b) A Liouville theorem for entire radial solutions with finite zero number [Bartsch, P., Quittner '11] and the doubling lemma [P., Quittner, Souplet '07] reduce the general case to (a)
- (c) Exponential separation theorem can be used to give a simple proof of (a) (radial case only)

# Sketch of the proof for positive radial solutions u

$$w(y,s) := (T-t)^{1/(p-1)}u(x,t), \quad y = x/\sqrt{T-t}, s = -\log(T-t)$$

bounded solution of

$$w_s = \Delta w - \frac{1}{2} y \cdot \nabla w - \frac{1}{p-1} w + w^p, \qquad y \in \mathbb{R}^N, s \in \mathbb{R}$$

and by [Giga-Kohn], unless  $w \equiv 0$ ,

$$w(\cdot,s) \to \kappa := (1/(p-1))^{1/(p-1)} \quad (s \to -\infty),$$

uniformly on compacts. Want to prove that  $w_{y_1} \equiv 0$ .

The function  $e^{s/2}w_{y_1}$  is a solution of

$$v_s = \Delta v - (y/2) \cdot \nabla v + a(y,s)v \quad y \in \mathbb{R}^N, \ s \in \mathbb{R}$$
  
 $a(y,s) = -1/(p-1) + p(w(y,s))^{p-1} \to -1/(p-1) + p\kappa^{p-1} = 1$ 

(uniformly on compacts)

$$\lambda_1(\Delta - (y/2)\cdot \nabla + 1) = 1$$
 and  $\lambda_1(\Delta - (y/2)\cdot \nabla + 1\Big|_{X_{odd}}) = 1/2$ 

Since  $e^{s/2}w_{y_1}$  is odd in  $y_1$ ,  $\approx e^{s/2}$  (s $\to -\infty$ ), it is of one sign.

So  $u_{x_1}$ ,  $u_r$  are of one sign.

$$u_r(r,t) < 0 \quad (u(0,t) = \|u(\cdot,t)\|_{\infty})$$
 is easy to rule out [Giga-Kohn]

Assume 
$$u_r(r,t) > 0$$



Take 
$$\eta(t) := \lim_{r \to \infty} u(r,t) = \lim_{x_1 \to \infty} u(x_1, x', t)$$

It solves 
$$\eta_t = \eta^p$$
 so  $\eta(t) = \kappa(\tau - t)^{-1/(p-1)}$  for some  $\tau \geq T$ .

Replacing T with  $\tau$ , returning to self-similar variables,

$$w_s = \Delta w - (y/2) \cdot \nabla w - \frac{1}{p-1}w + w^p$$

we get  $w \le \kappa$  (since  $u \le \eta$ )

Now  $v = \kappa - w$  is a positive solution of

$$v_s = \Delta v - (y/2) \cdot \nabla v + a(y,s)v \quad y \in \mathbb{R}^N, \ s \in \mathbb{R}$$
  
 $a(y,s) = -1/(p-1) + p|\zeta(y,s)|^{p-1} \to 1$ 

$$\lambda_1(\Delta - (y/2) \cdot \nabla + 1) = 1$$
 gives  $\|\kappa - w\|_X \approx e^s$  and

then also  $\|w_{y_1}\|_X pprox e^s$  contradiction: too fast decay for  $e^{s/2}w_{y_1}$