Oscillating solutions to a simplified chemotaxis system in high dimensional spaces

Takasi Senba (Kyushu Institute of Technology, JAPAN)

Our system (PE)

(PE)
$$\begin{cases} U_t = \nabla \cdot (\nabla U - U \nabla V) & \text{in } \mathbf{R}^n \times (0, \infty), \\ 0 = \Delta V + U & \text{in } \mathbf{R}^n \times (0, \infty), \quad V(0, \cdot) = 0 & \text{in } (0, \infty), \\ U(\cdot, 0) = U^{\mathcal{I}} \ge 0 & \text{in } \mathbf{R}^n. \end{cases}$$

- $n = 1, 2, 3, \cdots$
- \bullet (PE) is a simplified version of Keller-Segel system, if n=2.
- Keller-Segel system is introduced to describe the aggregation of cellular slime molds.
- U(x,t) represents the density of the cells.
- ullet We consider the behavior of the function U.

Plan of our talk

- 1. Fundamental properties of radial solutions.
- 2. Known results and behavior of solutions.
- 3. Our results (Stability of stationary solutions)
- 4. Application of our results (existence of oscillating solutions)
- 5. Idea of poof of our resits.

Time local existence and uniqueness

If $U^{\mathcal{I}}$ is radial, positive and

$$U^{\mathcal{I}}(x) = \left\{ \begin{array}{l} O(1)/|x|^2 \ (n \ge 3) \\ O(1)/|x|^4 \ (n = 2) \end{array} \right\} \text{ as } |x| \to \infty,$$

there exists a unique solution (U, V) as follows.

$$U(x,t) = \int_{\mathbf{R}^n} \mathcal{G}(x-\tilde{x},t) U^{\mathcal{I}}(\tilde{x}) d\tilde{x}$$
$$- \int_0^t \int_{\mathbf{R}^n} \left\{ \nabla_{\tilde{x}} \mathcal{G}(x-\tilde{x},t-\tilde{t}) \cdot \frac{\tilde{x}}{\omega_n |\tilde{x}|^n} \int_{|\hat{x}|<|\tilde{x}|} U(\hat{x},\tilde{t}) d\hat{x} \right\} U(\tilde{x},\tilde{t}) d\tilde{x} d\tilde{t}$$

in $\mathbb{R}^n \times [0,T)$ with a constant $T \in (0,\infty]$.

 \mathcal{G} is the Gauss kernel of $\partial_t - \Delta$ in \mathbf{R}^n and $\omega_n = |S^{n-1}|$.

$$V(x,t) = -\int_0^{|x|} \frac{1}{\omega_n r^{n-1}} \int_{|\tilde{x}| < r} U(\tilde{x},t) d\tilde{x} dr \quad \text{in } \mathbf{R}^n \times [0,T).$$

Fundamental properties of solutions

- U is non-negative in $\mathbf{R}^n \times (0,T)$, since $U^{\mathcal{I}}$ is non-negative.
- (PE) has radial stationary solutions (U_{α}, V_{α}) for any $\alpha > 0$ satisfying $U_{\alpha}(0) = \alpha$,

$$\begin{cases} U_{\alpha}(x) = \begin{cases} O(1)/|x|^2 & \text{as } |x| \to \infty \ (n \ge 3), \\ \alpha/(1 + (\alpha/8)|x|^2)^2 \ (n = 2), \end{cases} \\ V_{\alpha}(x) = \log(U_{\alpha}(x)/\alpha). \end{cases}$$

† If
$$n=2$$
, $\int_{\mathbb{R}^2} U_{\alpha}(x) dx = 8\pi$ for $\alpha > 0$.

† U_{α} is continuous with respect to α .

† Stationary solutions
$$(U_{\alpha}, V_{\alpha})$$
 satisfies $\begin{cases} 0 = \Delta V_{\alpha} + \alpha e^{V_{\alpha}} & \text{in } \mathbf{R}^{n}, \\ V_{\alpha}(0) = 0, & U_{\alpha} = \alpha e^{V_{\alpha}} & \text{in } \mathbf{R}^{n} \end{cases}$ † Singular stationary solution $U_{\infty}(x) = \begin{cases} \frac{2(n-2)}{|x|^{2}} & \text{if } n \geq 3, \\ 8\pi\delta_{0} & \text{if } n = 2. \end{cases}$

Known results \sim radial case \sim

ullet There exist solutions blowing up at finite time T.

$$\limsup_{t\to T} \|U(\cdot,t)\|_{L^{\infty}(\mathbf{R}^n)} = \infty. \quad [\text{Nagai '95 etc}]$$

Solutions exist globally in time, if

$$\begin{cases} 0 \le U^{\mathcal{I}} \le U_{\infty}, & U^{\mathcal{I}} \not\equiv U_{\infty} \quad (n \ge 3), \\ U^{\mathcal{I}} \ge 0, & \int_{\mathbf{R}^2} U^{\mathcal{I}}(x) dx \le 8\pi \quad (n = 2). \text{ [Biler etc '06]} \end{cases}$$

• There exist solutions blowing up at infinite time.

$$\limsup_{t\to\infty} \|U(\cdot,t)\|_{L^{\infty}(\mathbf{R}^n)} = \infty.$$

 $(n=2 \ [Blanchet etc '08, Kavallavis-Souplet '09 (bounded domain)], <math>n \ge 11 \ [S., '09])$

Oscillating solutions $\sim \lambda = 8\pi$ and $n = 2 \sim$

Put
$$\omega(U^{\mathcal{I}}: C(\mathbf{R}^2)) = \Big\{ F \in C(\mathbf{R}^2) \cap L^{\infty}(\mathbf{R}^2) : \lim_{n \to \infty} t_n = \infty,$$

$$\lim_{n \to \infty} \|U(\cdot, t_n) - F\|_{L^{\infty}(\mathbf{R}^2)} = 0 \quad \text{for some } \{t_n\} \subset (0, \infty) \Big\}.$$

Theorem 1.[Naito-S. preprint]

(1) For a and d with 0 < a < d there exists a radial solution (U,V) with $U(\cdot,0)=U^{\mathcal{I}}$ satisfying

$$\{U_b\}_{b\in[a,d]}\subset\omega(U^{\mathcal{I}}:C(\mathbf{R}^2)),\quad \int_{\mathbf{R}^2}U(x,t)dx=8\pi.$$

(2) For $\{b_j\}_{j=1}^{\infty}\subset (0,\infty)$ with $\lim_{j\to\infty}b_j=\infty$ there exists a radial solution (U,V) with $U(\cdot,0)=U^{\mathcal{I}}$ satisfying

$$\{U_{b_j}\}_{j=1}^{\infty} \subset \omega(U^{\mathcal{I}}: C(\mathbf{R}^2)), \quad \int_{\mathbf{R}^2} U(x,t) dx = 8\pi$$

Remark

(1) For each $b \in [a,d]$ there exists a sequence $\{t_k\}_{k=1}^{\infty} \subset (0,\infty)$ satisfying

$$\lim_{k\to\infty} \|U(\cdot,t_k) - U_b\|_{L^{\infty}(\mathbf{R}^2)} = 0, \quad \lim_{k\to\infty} t_k = \infty.$$

(2) For each $j=1,2,3,\cdots$ there exists a sequence $\{t_k\}_{k=1}^{\infty}\subset (0,\infty)$ satisfying

$$\lim_{k\to\infty} \|U(\cdot,t_k) - U_{b_j}\|_{L^{\infty}(\mathbf{R}^2)} = 0, \quad \lim_{k\to\infty} t_k = \infty.$$

There exists a sequence $\{t_k\}_{k=1}^{\infty} \subset (0,\infty)$ satisfying

$$\lim_{k \to \infty} \|U(\cdot, t_k)\|_{L^{\infty}(\mathbf{R}^2)} = \infty, \quad \lim_{k \to \infty} t_k = \infty.$$

 $\lim_{b\to\infty} U_b = 8\pi\delta_0.$

Tools for construction of oscillating solutions $\sim n=2$

• Stability of stationary solutions for radial perturbation.

Proposition 1 [Biler-Karch-Laurençot-Nadzieja] Let $U^{\mathcal{I}}$ be nonnegative and radial, $\|U^{\mathcal{I}}\|_{L^1(\mathbf{R}^2)}=8\pi$ and

$$\sup_{x \in \mathbf{R}^2} (1 + |x|)^5 |U^{\mathcal{I}}(x) - U_b(x)| < \infty$$

with some b > 0. Then, $\lim_{t\to\infty} \|U(\cdot,t) - U_b\|_{L^{\infty}(\mathbf{R}^2)} = 0$.

• Layer of stationary solutions.

$$\begin{cases} \lim_{a \to b} \|U_a - U_b\|_{L^{\infty}(\mathbf{R}^2)} = 0 & (b > 0) \\ \int_{|x| < r} U_a(x) dx \le \int_{|x| < r} U_b(x) dx & (r > 0), & \text{if } a \le b. \end{cases}$$

• Arguments in [Poláčik and Yanagida '03]

Our result \sim high dimensional case \sim

Theorem 1 Let $n \ge 11$. $\beta_{\pm} = \{n + 2 \pm \sqrt{(n-2)(n-10)}\}/2 \in (2,n)$. Suppose $0 \le U^{\mathcal{I}} \le U_{\infty}$ in \mathbf{R}^n and

$$\lim_{|x| \to \infty} (1 + |x|)^{\beta_{-}} |U^{\mathcal{I}}(x) - U_{\alpha}(x)| = 0$$

with some $\alpha > 0$. Then, the solution (U, V) to (PE) satisfies

$$\lim_{t\to\infty} \|U(\cdot,t) - U_{\alpha}\|_{\beta_{-},\mathbf{R}^n} = 0,$$

where $||F||_{\beta,\mathbf{R}^n} = \sup_{x \in \mathbf{R}^n} (1+|x|)^{\beta} |F(x)|$.

• Layer of stationary solutions. ($n \ge 11$)

$$\begin{cases} \lim_{a\to b} \|U_a - U_b\|_{\beta_-,\mathbf{R}^n} = 0 & (b>0) \\ U_b(x) = \frac{2(n-2)}{|x|^2} - \frac{A(b)}{|x|^{\beta_-}} & \operatorname{as}|x| \to \infty. \\ A(b) > 0 & \operatorname{is continous with respect to } b > 0. \\ U_a(x) \le U_b(x) & \operatorname{in } \mathbf{R}^n & \operatorname{if } a \le b. \end{cases}$$

Remark

Let W be a solution to

 $W_t = \Delta W + e^W$ in $\mathbf{R}^n \times (0, \infty)$ $W(\cdot, 0) = W^{\mathcal{I}}$ in \mathbf{R}^n and let W_α be a radial stationary solution satisfying $W_\alpha(0) = \alpha$.

Theorem 2 (Tell '06) Let n > 10. For some $0 < \gamma < \gamma'$ suppose $W_{\gamma} \leq W^{\mathcal{I}} \leq W_{\gamma'}$ in \mathbf{R}^n and

$$\lim_{|x| \to \infty} (1 + |x|)^{\beta_- - 2} |W^{\mathcal{I}}(x) - W_{\alpha}(x)| = 0$$

with some $\alpha > 0$. Then, $\lim_{t\to\infty} \|W(\cdot,t) - W_{\alpha}\|_{\beta_{-}-2,\mathbf{R}^{n}} = 0$.

• Assumption " $\lim_{|x|\to\infty} (1+|x|)^{\beta} |U^{\mathcal{I}}(x)-U_{\alpha}(x)|=0$ " is optimal, since $\lim_{\gamma\to\alpha} \|U_{\gamma}-U_{\alpha}\|_{\beta_-,\mathbf{R}^n}=0$ and

$$\lim_{|x|\to\infty} (1+|x|)^{\beta_-} |U_\alpha(x) - U_\gamma(x)| > 0 \quad \text{if } \gamma \neq \alpha.$$

Functional spaces and ω -limit set

 \bullet For a non-negative constant β , put

$$C_{\beta}(\mathbf{R}^n) = \left\{ F \in C(\mathbf{R}^n) \cap L^{\infty}(\mathbf{R}^n) : \sup_{x \in \mathbf{R}^n} (1 + |x|)^{\beta} |F(x)| < \infty \right\}.$$

• Let (U, V) be a solution to (PE) with initial data $U^{\mathcal{I}}$ satisfying $U \in C([0, \infty) : C(\mathbf{R}^n) \cap L^{\infty}(\mathbf{R}^n))$. We put

$$\omega(U^{\mathcal{I}}: C_{\beta}(\mathbf{R}^n)) = \Big\{ F \in C(\mathbf{R}^n) \cap L^{\infty}(\mathbf{R}^n) : \lim_{n \to \infty} t_n = \infty, \\ \lim_{n \to \infty} \|U(\cdot, t_n) - F\|_{\beta, \mathbf{R}^n} = 0 \quad \text{for some } \{t_n\} \subset (0, \infty) \Big\}.$$

Application of Theorem 1 \sim oscillating solutions \sim

Theorem 3 Let $n \ge 11$ and let Λ be a set of $[0, \infty)$. Then, there exists a radial and continuous function $U^{\mathcal{I}}$ such that

$$0 \le U^{\mathcal{I}} \le U_{\infty} \equiv \frac{2(n-2)}{|x|^2}$$
 in \mathbf{R}^n .

and

$$\{U_a\}_{a\in\Lambda}\subset\omega(U^{\mathcal{I}}:C_{\beta}(\mathbf{R}^n))$$
 for any $\beta\in[0,2)$.

Moreover, suppose inf $\Lambda > 0$. Then, we can take $\beta \in [0, \beta_-)$.

Remark. $U_a \to U_\infty$ as $a \to \infty$. Then, if $\sup \Lambda = \infty$,

$$\limsup_{t\to\infty} \|U(\cdot,t)\|_{L^{\infty}(\mathbf{R}^n)} = \infty.$$

Proof of stability \sim sub-solutions, super-solutions \sim

Lemma 1 (Tello '06, Gui-Ni-Wang '92) Let $n \ge 10$. There exists a sequence of radial functions $\{\overline{V}_{\alpha}^{(k)}, \underline{V}_{\alpha}^{(k)}\}_{k\ge 1}$ satisfying the following properties.

- $\Delta \overline{V}_{\alpha}^{(k)} + \alpha e^{\overline{V}_{\alpha}^{(k)}} < 0$ in \mathbf{R}^n (Super-solutions).
- $\Delta \underline{V}_{\alpha}^{(k)} + \alpha e^{\underline{V}_{\alpha}^{(k)}} > 0$ in \mathbf{R}^n (Sub-solutions).
- $\overline{V}_{\alpha}^{(1)} > \overline{V}_{\alpha}^{(2)} > \dots > V_{\alpha} > \dots > \underline{V}_{\alpha}^{(2)} > \underline{V}_{\alpha}^{(1)}$.
- $\liminf_{|x|\to\infty} (1+|x|)^{\beta+-2}|V(x)-V_{\alpha}(x)|>0$, where $V=\overline{V}_{\alpha}^{(k)}$ or $\underline{V}_{\alpha}^{(k)}$.
- $\widetilde{\lim}_{|x|\to\infty} (1+|x|)^{\beta_--2} |V(x)-V_\alpha(x)| = 0, \text{ where } V = \overline{V}_\alpha^{(k)} \text{ or } V_\alpha^{(k)}.$
- V_{α} is a unique solutions to $\Delta V + \alpha e^{V} = 0$ in \mathbf{R}^{n} with V(0) = 0 such that $\overline{V}_{\alpha}^{(1)} > V_{\alpha} > \underline{V}_{\alpha}^{(1)}$.

Transformation and sub and super solutions

Let (U, V) be a solutions to (PE) and let $\omega_n = |S^{n-1}|$.

• Put $u(r,t) = \frac{1}{\omega_n r^n} \int_{|x| < r} U(x,t) dx$. u satisfies

$$\begin{cases} \mathcal{L}(u) = u_t - u_{rr} - \frac{n+1}{r} u_r - u \{ ru_r + nu \} = 0 & (0 < r < \infty, \ t > 0), \\ u_r(0,t) = 0 & (t > 0), \\ u(x,0) = u^{\mathcal{I}} & (0 \le r < \infty). \end{cases}$$

- $u_{\alpha}(r) = \frac{1}{\omega_n r^n} \int_{|x| < r} U_{\alpha}(x) dx$ is a stationary solution to $\mathcal{L}(u) = 0$.
- $\overline{u}_{\alpha}^{(k)}(r) = \frac{1}{\omega_n r^n} \int_{|x| < r} \alpha e^{\overline{V}_{\alpha}^{(k)}(x)} dx$ is a super-solution to $\mathcal{L}(u) = 0$.
- $\underline{u}_{\alpha}^{(k)}(r) = \frac{1}{\omega_n r^n} \int_{|x| < r} \alpha e^{\underline{V}_{\alpha}^{(k)}(x)} dx$ is a sub-solution to $\mathcal{L}(u) = 0$.

Linearized equation

For a stationary solution u_{α} , let m be a solution to

$$\begin{cases} \mathcal{M}_{\alpha}(m) = m_{t} - m_{rr} - \frac{n+1}{r} m_{r} - m \left\{ r u_{\alpha r} + n u_{\alpha} \right\} - u_{\alpha} \left\{ r m_{r} + n m \right\} \\ (0 < r < \infty, \ t > 0), \end{cases} \\ m_{r}(0, t) = 0 \quad (t > 0), \\ m(x, 0) = m^{\mathcal{I}} \quad (0 \le r < \infty). \end{cases}$$

Estimates of solutions

Lemma 2 Let $n \ge 11$, $\beta \in [\beta_-, \beta_+]$ and $\alpha \ge 0$. Suppose

$$m^{\mathcal{I}} \geq 0$$
 and $rm_r^{\mathcal{I}} + \beta m^{\mathcal{I}} \geq 0$ $(0 < r < \infty)$.

Then, the solution m to $\mathcal{M}_{\alpha}(m) = 0$ satisfies

$$m \ge 0$$
, $rm_r + \beta m \ge 0$ $(0 < r < \infty, t > 0)$.

 \langle Idea of proof \rangle " $m \geq 0$ " comes from the comparison theorem. Multiplying $\mathcal{M}_{\alpha}(m) = 0$ by r^{β} and differentiating with respect to r, we have

 $[(r^{\beta}m)_r]_t = [(r^{\beta}m)_r]_{rr} +$ "terms of $[(r^{\beta}m)_r]'' +$ "positive term" $(r^{\beta}m)_r +$ "terms" of $(r^{\beta}m)_r +$ "positive term" $(r^{\beta}m)_r +$ "positive term" $(r^{\beta}m)_r +$ "terms" of $(r^{\beta}m)_r +$ "positive term" $(r^{\beta}m)_r +$ "terms" of $(r^{\beta}m)_r +$ "positive term" $(r^{\beta}m)_r +$ "positive term" $(r^{\beta}m)_r +$ "positive term" $(r^{\beta}m)_r +$ "positive term" $(r^{\beta}m)_r +$ "terms" of $(r^{\beta}m)_r +$ "positive term" $(r^{\beta}m)_r +$ "positive ter

Sub-solutions and super-solutions to $\mathcal{L}(u) = 0$

Lemma 3 Let $n \ge 11$, $\beta \in [\beta_-, \beta_+]$, $\alpha > 0$ and let m be a solution to $\mathcal{M}_{\alpha}(m) = 0$. Suppose

$$m^{\mathcal{I}} \ge 0$$
, $rm_r^{\mathcal{I}} + \beta m^{\mathcal{I}} \ge 0$ $(0 < r < \infty)$.

Then, $u_{\alpha} \pm m$ is a sub-solution to $\mathcal{L}(u) = 0$.

Lemma 4 Let $n \ge 11$, $\beta \in [\beta_-, \beta_+]$, $\eta > \gamma > \alpha > 0$ and let m be a solution to $\mathcal{M}_{\gamma}(m) = 0$. Suppose

$$m^{\mathcal{I}} \ge 0$$
, $rm_r^{\mathcal{I}} + \beta m^{\mathcal{I}} \ge 0$ $(0 < r < \infty)$

and

$$m^{\mathcal{I}} \le u_{\eta} - u_{\gamma} \le u_{\gamma} - u_{\alpha} \quad (0 < r < \infty).$$

Then, $u_{\alpha} + m$ is a super-solution to $\mathcal{L}(u) = 0$.

⟨ Idea of proof of Lemma 3 ⟩

$$\mathcal{L}(u_{\alpha} \pm m) = \mathcal{L}(u_{\alpha}) \pm \mathcal{M}_{\alpha}(m) - m\{rm_r + nm\} \leq 0.$$

• $rm_r + nm \ge 0$ and $m \ge 0$ by Lemma 2.

⟨ Idea of proof of Lemma 4 ⟩

$$\mathcal{L}(u_{\alpha} + m) = \mathcal{L}(u_{\alpha}) + \mathcal{M}_{\gamma}(m) + (u_{\gamma} - u_{\alpha} - m)\{rm_r + nm\} + \{U_{\gamma} - U_{\alpha}\} m \ge 0.$$

- $m \le u_{\eta} u_{\gamma} \le u_{\gamma} u_{\alpha}$ by Lemma 3 and assumptions.
- $rm_r + nm \ge 0$ and $m \ge 0$ by Lemma 2.
- $U_{\gamma} \geq U_{\alpha}$ in \mathbf{R}^n .

Then, $\mathcal{L}(u_{\alpha}+m)\geq 0$.

Decay of solutions to $\mathcal{M}_{\alpha}(m) = 0$

Lemma 5 Suppose $\lim_{r\to\infty} (1+r)^{\beta_-} |m^{\mathcal{I}}(r)| = 0$. Then, the solution m to $\mathcal{M}_{\alpha}(m) = 0$ satisfies

$$\lim_{t\to\infty} ||m(\cdot,t)||_{\beta_-,[0,\infty)} = 0,$$

where $||f||_{\beta,[0,\infty)} = \sup_{0 < r < \infty} (1+r)^{\beta} |f(r)|$.

Remark

- $\mathcal{L}(\overline{u}_{\alpha}^{(1)}) > 0$, $\mathcal{L}(\underline{u}_{\alpha}^{(1)}) < 0$.
- $\lim_{r\to\infty} (1+r)^{\beta_-} |u_{\alpha}(r) u_{\gamma}(r)| > 0$ if $\alpha \neq \gamma$.

 $\langle \text{ Idea of proof } \rangle \text{ Let } m^{\mathcal{I}} = m^{\mathcal{I}}_+ - m^{\mathcal{I}}_- \text{ and } m^{\mathcal{I}}_+ = m^{\mathcal{I}}_+ \chi_{[0,R)} + m^{\mathcal{I}}_+ \chi_{[R,\infty)}.$

For any $\varepsilon > 0$, there exists a R > 0 s.t. $u_{\alpha} + m_{+}^{\mathcal{I}} \chi_{[R,\infty)} \leq u_{\alpha+\varepsilon}$. Let m_{+1} be a solutions to $\mathcal{M}_{\alpha}(m) = 0$ with $m_{+1}(\cdot,0) = m_{+}^{\mathcal{I}} \chi_{[R,\infty)}$. m_{+1} satisfies $u_{\alpha} + m_{+1} \leq u_{\alpha+\varepsilon}$.

On the other hand,

For some $\delta > 0$, $u_{\alpha} + \delta m_{+}^{\mathcal{I}} \chi_{[0,R)} \leq \overline{u}_{\alpha}^{(1)}$.

Let \overline{u} be a solution to $\mathcal{L}(u)=0$ with $\overline{u}(\cdot,0)=\overline{u}_{\alpha}^{(1)}$ and let m_{+2} be a solutions to $\mathcal{M}_{\alpha}(m)=0$ with $m_{+2}(\cdot,0)=m_{+}^{\mathcal{I}}\chi_{[0,R)}$.

By $\overline{u}_t < 0$, $\lim_{t \to \infty} \|\overline{u}(\cdot, t) - u_{\alpha}\|_{\beta_{-}, [0, \infty)} = 0$ and $u_{\alpha} + \delta m_{+2} \leq \overline{u}$.

Then, $\limsup_{t\to\infty} \|m_+\|_{\beta_-,[0,\infty)} \leq \|u_{\alpha+\varepsilon} - u_{\alpha}\|_{\beta_-,[0,\infty)}$.

Here, $m_+=m_{+1}+m_{+2}$ is a solution to $\mathcal{M}_{\alpha}(m)=0$ with $m_+(\cdot,0)=m_+^{\mathcal{I}}$.

 ε is arbitrary.

Similarly, we can show the decay of solution m_- to $\mathcal{M}_{\alpha}(m)=0$ with $m_-(\cdot,0)=m_-^{\mathcal{I}}$.

Proof of stability of u_{α}

 $\langle \text{ Simple case } \rangle \ u^{\mathcal{I}} - u_{\beta} \leq u_{\eta} - u_{\gamma} \leq u_{\gamma} - u_{\beta} \text{ and } u_{\alpha} \leq u^{\mathcal{I}} \leq u_{\gamma} \ .$ Let $m^{\mathcal{I}} = u^{\mathcal{I}} - u_{\beta}$.

Let m_{β} be a solution to $\mathcal{M}_{\beta}(m) = 0$ with $m_{\beta}(\cdot, 0) = m^{\mathcal{I}}$.

Let m_{γ} be a solution to $\mathcal{M}_{\gamma}(m) = 0$ with $m_{\gamma}(\cdot, 0) = m^{\mathcal{I}}$.

By Lemmas 3 and 4,

$$u_{\beta} + m_{\beta} \le u \le u_{\beta} + m_{\gamma}$$
.

By Lemma 5,

$$\lim_{t \to \infty} \|u(\cdot, t) - u_{\beta}\|_{\beta_{-}, [0, \infty)} = 0.$$

Thus, stationary solutions u_{β} is stable.

 \langle Parabolic regularity method \rangle Using the parabolic regularity method for the above solution, we establish the convergence of solutions to (PE).

Parabolic regularity argument. There exists a constant ${\cal C}$ such that

$$||U(\cdot,t) - U_{\alpha}||_{\beta,\mathbf{R}^n} \le C \max_{t-\frac{1}{2} \le s \le t+\frac{1}{2}} ||u(\cdot,s) - u_{\alpha}||_{\beta,[0,\infty)}$$

for t > 1.