Finite-time blowup for a complex Ginzburg-Landau equation

Fred Weissler

Université Paris 13, Sorbonne Paris Cité

5th Euro-Japanese Workshop on Blow-up Centre International de Rencontres Mathématiques Luminy 10-14 September 2012

Joint work with T. Cazenave (UPMC) and F. Dickstein (UFRJ)

The equations

Ginzburg-Landau equation :

$$\begin{cases} u_t = e^{i\theta} \Delta u + e^{i\gamma} |u|^{\alpha} u, \\ u(0) = u_0, \end{cases}$$
 (GL)

in \mathbb{R}^N , where $\alpha > 0$, $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$, and $\gamma \in \mathbb{R}$ (" $\alpha = p - 1$ ").

• Special case $\theta = \gamma = 0$, nonlinear heat equation :

$$u_t = \Delta u + |u|^{\alpha} u \tag{NLH}$$

• Special case $\theta=\gamma=\pm\pi/2$, nonlinear Schrödinger equation :

$$\pm iu_t = \Delta u + |u|^{\alpha} u \tag{NLS}$$

well-posedness

- If $-\pi/2 < \theta < \pi/2$, the Cauchy problem (GL) is locally well-posed in $C_0(\mathbb{R}^N)$.
- We denote by $T_{max} = T_{max}(u_0, \theta, \gamma)$ the existence time of the maximal solution u(t). If $T_{max} < \infty$, then $\|u(t)\|_{L^{\infty}} \to \infty$ as $t \to T_{max}$.
- If $u_0 \in C_0(\mathbb{R}^N) \cap H^1(\mathbb{R}^N)$, then $u(t) \in C_0(\mathbb{R}^N) \cap H^1(\mathbb{R}^N)$ for all $0 \le t < T_{max}$.
- If $\alpha < 4/N$, then the Cauchy problem (GL) is also well-posed in $L^2(\mathbb{R}^N)$, with the same blowup time. So if $T_{max} < \infty$, then also $\|u(t)\|_{L^2} \to \infty$ as $t \to T_{max}$.
- If $\theta = \pm \pi/2$, and $\alpha < 4/(N-2)$, then (GL) is locally well-posed in $H^1(\mathbb{R}^N)$.

QUESTION : When do there exist solutions with $T_{max} < \infty$?

Previous results on finite-time blowup

• Levine 1973, (NLH), if $u_0 \in C_0(\mathbb{R}^N) \cap H^1(\mathbb{R}^N)$ has negative energy, i.e. $E(u_0) < 0$, where

$$E(w) = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla w|^2 - \frac{1}{\alpha + 2} \int_{\mathbb{R}^N} |w|^{\alpha + 2},$$

then $T_{max} < \infty$.

• Zakharov 1972, Glassey 1977 (NLS), $\alpha \geq 4/N$, $E(u_0) < 0$, and u_0 has finite variance, i.e. $\int_{\mathbb{R}^N} |x|^2 |u_0|^2 < \infty$, then $T_{max} < \infty$.

Previous results on finite-time blowup

• Levine 1973, (NLH), if $u_0 \in C_0(\mathbb{R}^N) \cap H^1(\mathbb{R}^N)$ has negative energy, i.e. $E(u_0) < 0$, where

$$E(w) = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla w|^2 - \frac{1}{\alpha + 2} \int_{\mathbb{R}^N} |w|^{\alpha + 2},$$

then $T_{max} < \infty$.

- Zakharov 1972, Glassey 1977 (NLS), $\alpha \geq 4/N$, $E(u_0) < 0$, and u_0 has finite variance, i.e. $\int_{\mathbb{R}^N} |x|^2 |u_0|^2 < \infty$, then $T_{max} < \infty$.
- Zaag, 1998, "close to nonlinear heat equation", construction
 of initial value such that resulting solution blows up in finite
 time (at a single point, with precise profile), when
 - $\alpha < 4/(N-2)$ (subcritical Sobolev),
 - $\theta = 0$,
 - $|\gamma|$ small.

Previous results on finite-time blowup, continued

- Snoussi and Tayachi, 2001, "somewhat close to nonlinear heat equation", negative energy initial value, $E(u_0) < 0$, produces finite-time blowup when :
 - $\theta = \gamma$,
 - $\cos^2 \theta > 2/(\alpha + 2)$ (calculations done in the case $\alpha = 2$).

Previous results on finite-time blowup, continued

- Snoussi and Tayachi, 2001, "somewhat close to nonlinear heat equation", negative energy initial value, $E(u_0) < 0$, produces finite-time blowup when :
 - $\theta = \gamma$.
 - $\cos^2 \theta > 2/(\alpha + 2)$ (calculations done in the case $\alpha = 2$).
- Masmoudi and Zaag, 2008, construction of initial value such that resulting solution blows up in finite time (at a single point, with precise profile), when $\tan^2 \gamma + (\alpha + 2) \tan \gamma \tan \theta < \alpha + 3$.
 - If θ is close to $\pi/2$ (Schrödinger), then γ must be small.
 - If $\theta = \gamma$, condition becomes $\cos^2 \theta > (\alpha + 3)/2(\alpha + 2)$. Improves ST (2001) for $\alpha > 1$.

Previous results on finite-time blowup, continued

- Snoussi and Tayachi, 2001, "somewhat close to nonlinear heat equation", negative energy initial value, $E(u_0) < 0$, produces finite-time blowup when :
 - $\theta = \gamma$,
 - $\cos^2 \theta > 2/(\alpha + 2)$ (calculations done in the case $\alpha = 2$).
- Masmoudi and Zaag, 2008, construction of initial value such that resulting solution blows up in finite time (at a single point, with precise profile), when $\tan^2 \gamma + (\alpha + 2) \tan \gamma \tan \theta < \alpha + 3$.
 - If θ is close to $\pi/2$ (Schrödinger), then γ must be small.
 - If $\theta = \gamma$, condition becomes $\cos^2 \theta > (\alpha + 3)/2(\alpha + 2)$. Improves ST (2001) for $\alpha > 1$.
- Rottschäfer, 2008, "close to nonlinear Schrödinger equation", construction of radially symmetric, backwards self-similar solution when:
 - $\alpha = 2$
 - N = 3
 - $\theta < \pi/2$ with $\pi/2 \theta$ small,
 - $\gamma > \pi/2$ with $\gamma \pi/2$, small.

$$\begin{cases} e^{-i\theta}u_t = \Delta u + |u|^{\alpha}u, \\ u(0) = u_0. \end{cases}$$
 (GL_{\theta})

In what follows, we consider the special case of the general Ginzburg-Landau equation :

$$\begin{cases} e^{-i\theta}u_t = \Delta u + |u|^{\alpha}u, \\ u(0) = u_0. \end{cases}$$
 (GL_{\theta})

• Stationary solutions of (GL_{θ}) are the same, independent of $-\pi/2 \le \theta \le \pi/2$.

$$\begin{cases} e^{-i\theta}u_t = \Delta u + |u|^{\alpha}u, \\ u(0) = u_0. \end{cases}$$
 (GL_{\theta})

- Stationary solutions of (GL_{θ}) are the same, independent of $-\pi/2 \le \theta \le \pi/2$.
- Solutions of (GL_{θ}) satisfy energy identities similar to those satisfied by solutions of (NLH) and (NLS).

$$\begin{cases} e^{-i\theta} u_t = \Delta u + |u|^{\alpha} u, \\ u(0) = u_0. \end{cases}$$
 (GL_{\theta})

- Stationary solutions of (GL_{θ}) are the same, independent of $-\pi/2 \le \theta \le \pi/2$.
- Solutions of (GL_{θ}) satisfy energy identities similar to those satisfied by solutions of (NLH) and (NLS).
- With these identities, Ball's blowup proof (1977) on a bounded domain goes over easily and shows that for $-\pi/2 < \theta < \pi/2$, if $E(u_0) < 0$, then the resulting solution blows up in finite time.

$$\begin{cases} e^{-i\theta} u_t = \Delta u + |u|^{\alpha} u, \\ u(0) = u_0. \end{cases}$$
 (GL_{\theta})

- Stationary solutions of (GL_{θ}) are the same, independent of $-\pi/2 \le \theta \le \pi/2$.
- Solutions of (GL_{θ}) satisfy energy identities similar to those satisfied by solutions of (NLH) and (NLS).
- With these identities, Ball's blowup proof (1977) on a bounded domain goes over easily and shows that for $-\pi/2 < \theta < \pi/2$, if $E(u_0) < 0$, then the resulting solution blows up in finite time.
- Levine's argument (for a general domain, in particular \mathbb{R}^N), however, seems to require the Snoussi-Tayachi condition : $\cos^2 \theta > 2/(\alpha + 2)$.

main results (Cazenave, Dickstein, W)

Theorem 1. Let $-\pi/2 < \theta < \pi/2$ and $u_0 \in C_0(\mathbb{R}^N) \cap H^1(\mathbb{R}^N)$ with $E(u_0) < 0$. It follows that the resulting solution u of (GL_θ) blows up in finite time. More precisely,

$$T_{max} \leq \frac{\|u_0\|_{L^2}^2}{\alpha(\alpha+2)(-E(u_0))\cos\theta}.$$

main results (Cazenave, Dickstein, W)

Theorem 1. Let $-\pi/2 < \theta < \pi/2$ and $u_0 \in C_0(\mathbb{R}^N) \cap H^1(\mathbb{R}^N)$ with $E(u_0) < 0$. It follows that the resulting solution u of (GL_θ) blows up in finite time. More precisely,

$$T_{max} \leq \frac{\|u_0\|_{L^2}^2}{\alpha(\alpha+2)(-E(u_0))\cos\theta}.$$

Remark. In the case $\theta=\pi/2$ (NLS), and $\alpha<4/N$, all solutions are global. Thus, in the case $-\pi/2<\theta<\pi/2$, we expect the blowup time to get arbitrarily large, for a given initial value, as θ approaches $\pm\pi/2$.

main results (Cazenave, Dickstein, W)

Theorem 1. Let $-\pi/2 < \theta < \pi/2$ and $u_0 \in C_0(\mathbb{R}^N) \cap H^1(\mathbb{R}^N)$ with $E(u_0) < 0$. It follows that the resulting solution u of (GL_θ) blows up in finite time. More precisely,

$$T_{max} \leq \frac{\|u_0\|_{L^2}^2}{\alpha(\alpha+2)(-E(u_0))\cos\theta}.$$

Remark. In the case $\theta=\pi/2$ (NLS), and $\alpha<4/N$, all solutions are global. Thus, in the case $-\pi/2<\theta<\pi/2$, we expect the blowup time to get arbitrarily large, for a given initial value, as θ approaches $\pm\pi/2$.

Theorem 2. In Theorem 1, suppose in addition that $\alpha < 4/N$. Then there exists a constant $c = c(N, \alpha, \|u_0\|_{L^2}, E(u_0)) > 0$ such that

$$T_{\max}^{\theta} \geq \frac{c}{\cos \theta}$$
.

Remark. In the case $\theta=\pi/2$ (NLS), and $\alpha \geq 4/N$, negative energy solutions (with finite variance) blowup in finite time. The same is true for radially symmetric solutions if $4/N \leq \alpha \leq 4$, without the condition of finite variance (Ogawa and Tsutsumi, 1991). Thus, in the case $-\pi/2 < \theta < \pi/2$, we expect the blowup time to stay bounded, for a given initial value, as θ approaches $\pm \pi/2$.

Remark. In the case $\theta=\pi/2$ (NLS), and $\alpha \geq 4/N$, negative energy solutions (with finite variance) blowup in finite time. The same is true for radially symmetric solutions if $4/N \leq \alpha \leq 4$, without the condition of finite variance (Ogawa and Tsutsumi, 1991). Thus, in the case $-\pi/2 < \theta < \pi/2$, we expect the blowup time to stay bounded, for a given initial value, as θ approaches $\pm \pi/2$.

Theorem 3. In Theorem 1 $(-\pi/2 < \theta < \pi/2 \text{ and } u_0 \in C_0(\mathbb{R}^N) \cap H^1(\mathbb{R}^N)$ with $E(u_0) < 0$) suppose in addition that u_0 is radially symmetric and that $N \geq 2$ and $1/N \leq \alpha \leq 4$ (no assumption of finite variance). There exists \overline{T} such that $1/N \leq 1/N$ for all $1/N \leq 1/N$ for all $1/N \leq 1/N$ such that $1/N \leq 1/N$ for all $1/N \leq 1/N$ for all 1/N

Remark. In the case $\theta=\pi/2$ (NLS), and $\alpha \geq 4/N$, negative energy solutions (with finite variance) blowup in finite time. The same is true for radially symmetric solutions if $4/N \leq \alpha \leq 4$, without the condition of finite variance (Ogawa and Tsutsumi, 1991). Thus, in the case $-\pi/2 < \theta < \pi/2$, we expect the blowup time to stay bounded, for a given initial value, as θ approaches $\pm \pi/2$.

Theorem 3. In Theorem 1 $(-\pi/2 < \theta < \pi/2)$ and $u_0 \in C_0(\mathbb{R}^N) \cap H^1(\mathbb{R}^N)$ with $E(u_0) < 0$) suppose in addition that u_0 is radially symmetric and that $N \ge 2$ and $1/N \le \alpha \le 4$ (no assumption of finite variance). There exists \overline{T} such that $1/T_{max}^\theta \le \overline{T}$ for all $1/T_{max}^\theta \le \overline{T}$

Proof based on truncated variance identity (Ogawa and Tsutsumi) and requires the same condition $4/N \le \alpha \le 4$.

Remark. In the case $\theta=\pi/2$ (NLS), and $\alpha \geq 4/N$, negative energy solutions (with finite variance) blowup in finite time. The same is true for radially symmetric solutions if $4/N \leq \alpha \leq 4$, without the condition of finite variance (Ogawa and Tsutsumi, 1991). Thus, in the case $-\pi/2 < \theta < \pi/2$, we expect the blowup time to stay bounded, for a given initial value, as θ approaches $\pm \pi/2$.

Theorem 3. In Theorem 1 $(-\pi/2 < \theta < \pi/2)$ and $u_0 \in C_0(\mathbb{R}^N) \cap H^1(\mathbb{R}^N)$ with $E(u_0) < 0$) suppose in addition that u_0 is radially symmetric and that $N \ge 2$ and $4/N \le \alpha \le 4$ (no assumption of finite variance). There exists \overline{T} such that $T_{max}^{\theta} \le \overline{T}$ for all $-\pi/2 < \theta < \pi/2$.

Proof based on truncated variance identity (Ogawa and Tsutsumi) and requires the same condition $4/N \le \alpha \le 4$. If we assume finite variance and use the "real" variance identity (viriel), we still require radial symmetry and $4/N \le \alpha \le 4$, but for different reasons.

energy identities

Functionals:

$$E(w) = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla w|^2 - \frac{1}{\alpha + 2} \int_{\mathbb{R}^N} |w|^{\alpha + 2},$$
$$J(w) = \int_{\mathbb{R}^N} |\nabla w|^2 - \int_{\mathbb{R}^N} |w|^{\alpha + 2}.$$

Identities for solutions of (GL $_{\theta}$), with $-\pi/2 < \theta < \pi/2$,

$$\frac{d}{dt}E(u(t)) = -\cos\theta \|u_t\|_{L^2}^2, \qquad \frac{d}{dt}\|u(t)\|_{L^2}^2 = -2\cos\theta J(u(t))$$

$$\frac{d}{dt} \|u(t)\|_{L^{2}}^{2} = -2(\alpha + 2)\cos\theta E(u(t)) + \alpha\cos\theta \|\nabla u(t)\|_{L^{2}}^{2}$$

$$= 2(\alpha+2)\cos^2\theta \int_0^t \|u_t\|_{L^2}^2 - 2(\alpha+2)\cos\theta E(u_0) + \alpha\cos\theta \|\nabla u(t)\|_{L^2}^2$$

Proof of Theorem 1 (based on Levine 1973)

Let $f(t) = \int_0^t \|u(t)\|_{L^2}^2 = \int_0^t \int_{\mathbb{R}^N} |u|^2$. Since $E(u_0) \le 0$, we have that

$$f''(t) = \frac{d}{dt} \|u(t)\|_{L^2}^2 \ge 2(\alpha + 2)\cos^2\theta \int_0^t \int_{\mathbb{R}^N} |u_t|^2$$

$$\frac{1}{2(\alpha+2)\cos^{2}\theta}f(t)f''(t) \geq \int_{0}^{t} \int_{\mathbb{R}^{N}} |u|^{2} \int_{0}^{t} \int_{\mathbb{R}^{N}} |u_{t}|^{2} \\
\geq \left(\int_{0}^{t} \int_{\mathbb{R}^{N}} |u||u_{t}|\right)^{2} \geq \frac{1}{4} \left(\int_{0}^{t} \frac{d}{dt} \int_{\mathbb{R}^{N}} |u|^{2}\right)^{2} \\
= \frac{1}{4} \left(\int_{0}^{t} f''(t)\right)^{2} = \frac{1}{4} (f'(t) - f'(0))^{2}$$

where we have used

$$0 < \frac{1}{2} \frac{d}{dt} \int_{\mathbb{R}^N} |u|^2 = \Re \int_{\mathbb{R}^N} u_t \overline{u} \le \int_{\mathbb{R}^N} |u_t| |u|$$

Proof of Theorem 1, continued

However, $\int_{\mathbb{R}^N} |u_t| |u|$ is better estimated from below by

$$\int_{\mathbb{R}^N} |u_t||u| \ge \Big| \int_{\mathbb{R}^N} u_t \overline{u} \Big| = |-e^{i\theta} J(u)| = |J(u)| = \frac{1}{2\cos\theta} \frac{d}{dt} ||u(t)||_{L^2}^2.$$

Indeed.

$$u_t\overline{u}=e^{i\theta}[(\Delta u)\overline{u}+|u|^{\alpha+2}],$$

and so

$$\Re \int_{\mathbb{D}^N} u_t \overline{u} \le \cos \theta \int_{\mathbb{D}^N} |u_t| |u|.$$

So we get

$$\frac{1}{2(\alpha+2)\cos^2\theta}f(t)f''(t) \geq \frac{1}{4\cos^2\theta}\Big(\int_0^t \frac{d}{dt}\int_{\mathbb{R}^N}|u|^2\Big)^2$$

and finally

$$\frac{2}{\alpha+2}f(t)f''(t) \ge \left(\int_0^t f''(t)\right)^2 = (f'(t) - f'(0))^2$$

Proof of Theorem 1, continued

The inequality

$$\frac{2}{\alpha+2}f(t)f''(t) \ge \left(\int_0^t f''(t)\right)^2 = (f'(t) - f'(0))^2$$

shows finite time blowup since

$$f''(t) = \frac{d}{dt} \|u(t)\|_{L^2}^2 \ge 2(\alpha + 2)\cos^2\theta \int_0^t \|u_t\|_{L^2}^2,$$

and so $f'(t) \to \infty$.

Proof of Theorem 1, continued

The inequality

$$\frac{2}{\alpha+2}f(t)f''(t) \ge \left(\int_0^t f''(t)\right)^2 = (f'(t) - f'(0))^2$$

shows finite time blowup since

$$f''(t) = \frac{d}{dt} \|u(t)\|_{L^2}^2 \ge 2(\alpha + 2)\cos^2\theta \int_0^t \|u_t\|_{L^2}^2,$$

and so $f'(t) \to \infty$.

We note for further reference that this inequality also shows $T_{max}^{\theta} \leq K_1 \tau^{\theta}$, where

$$\tau^{\theta} = \sup_{0 < t < T_{max}^{\theta}} \{ \| u(t) \|_{L^{2}} \le K_{2} \| u_{0} \|_{L^{2}} \},$$

where K_1 and K_2 are explicit constants depending only on α .

sketch of proof of Theorem 3, assuming finite variance

We have the following variance identity for solutions u of (GL_{θ}) :

$$\begin{split} \frac{1}{2} \frac{d^2}{dt^2} \int_{\mathbb{R}^N} |x|^2 |u|^2 &= 2N\alpha E(u(t)) - (N\alpha - 4) \int_{\mathbb{R}^N} |\nabla u|^2 \\ &+ \cos \theta \frac{d}{dt} \int_{\mathbb{R}^N} \left\{ -2|x|^2 |\nabla u|^2 + \frac{\alpha + 4}{\alpha + 2} |x|^2 |u|^{\alpha + 2} + 2N|u|^2 \right\} \\ &- 2\cos^2 \theta \int_{\mathbb{R}^N} |x|^2 |u_t|^2. \quad \text{(Var)} \end{split}$$

Integrating twice , we see that there exists $C_1 > 0$, depending on u_0 but not on θ , such that for all $0 \le t < T_{max}^{\theta}$,

$$\begin{split} & \int_{\mathbb{R}^N} |x|^2 |u|^2 \le \int_{\mathbb{R}^N} |x|^2 |u_0|^2 + C_1 t + N\alpha E(u_0) t^2 \\ & + 2 \cos \theta \int_0^t \int_{\mathbb{R}^N} \left\{ -2|x|^2 |\nabla u|^2 + \frac{\alpha + 4}{\alpha + 2} |x|^2 |u|^{\alpha + 2} + 2N|u|^2 \right\}. \end{split}$$

Using $E(u_0) < 0$, we wish to show that the RHS above becomes negative before a certain time, independent of $-\pi/2 < \theta < \pi/2$.

sketch of proof of Theorem 3, continued

Control of $\|u(t)\|_{L^2}$: Using Levine's argument for finite time blowup, it can be shown that $T^{\theta}_{max} \leq K_1 \tau^{\theta}$, where $\tau^{\theta} = \sup_{0 \leq t < T^{\theta}_{max}} \{\|u(t)\|_{L^2} \leq K_2 \|u_0\|_{L^2}\}$, where K_1 and K_2 are explicit constants depending only on α . Thus, it suffices to obtain a uniform bound on τ^{θ} .

For all $0 \le t \le \tau^{\theta}$ one has $||u(t)||_{L^2} \le K_2 ||u_0||_{L^2}$.

Lemma. Suppose $N \ge 2$ and $4/N \le \alpha \le 4$. Given any M > 0, there exists a constant C such that

$$\int_{\mathbb{R}^N} |x|^2 |u|^{\alpha+2} \le \int_{\mathbb{R}^N} |x|^2 |\nabla u|^2 + C \int_{\mathbb{R}^N} |u|^{\alpha+2} + C, \quad (*)$$

for all smooth, radially symmetric u such that $||u||_{L^2} \leq M$.

Thus, for all $0 \le t \le \tau^{\theta}$, we have

$$\int_{\mathbb{R}^{N}} |x|^{2} |u^{\theta}|^{2} \leq C_{1} + C_{2}t + N\alpha E(u_{0})t^{2} + C_{3}\cos\theta \int_{0}^{t} \int_{\mathbb{R}^{N}} |u|^{\alpha+2}.$$

Control of $\cos \theta \int_0^t \int_{\mathbb{R}^N} |u|^{\alpha+2}$:

$$\begin{aligned} \frac{d}{dt} \|u(t)\|_{L^{2}}^{2} &= -2\cos\theta J(u(t)) \\ &= -4\cos\theta E(u(t)) + \frac{2\alpha\cos\theta}{\alpha + 2} \int_{\mathbb{R}^{N}} |u|^{\alpha + 2} \\ &\geq \frac{2\alpha\cos\theta}{\alpha + 2} \int_{\mathbb{R}^{N}} |u|^{\alpha + 2} \end{aligned}$$

so that

$$\cos\theta \int_0^\tau \int_{\mathbb{R}^N} |u|^{\alpha+2} \le \|u(t)\|_{L^2}^2 - \|u_0\|_{L^2}^2,$$

and thus is bounded for $0 \le t \le \tau^{\theta}$, independently of θ .

This finally gives, for all $0 \le t \le \tau^{\theta}$,

$$\int_{\mathbb{D}^{N}} |x|^{2} |u^{\theta}|^{2} \leq C_{1} + C_{2}t + N\alpha E(u_{0})t^{2}$$

which concludes the proof, since $T_{max}^{\theta} \leq K_1 \tau^{\theta}$.

THANK YOU

for your attention!!!