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ON ONE-PARAMETER FAMILIES OF !)IFFBOMORPHISMS 

Pavol BRUNOVSKf, Bratislava 

This paper is concerned with diffeomorphisms of 

manifolds, depending on a parameter, this means that we 

shall consider mappings f ? F# M —• M , where F 

is a 1-dimenaional C* C4 *-- n, «- oo ) manifold, M 

is an en -dimensional C* manifold, f is C* and such 

that for ©very -ft e P , the mapping f' ; M —* M gi­

ven by f^fin-) » ffftj/m̂ ) is a diffeomorphism. Given B , 

M 7 we denote by T the set of all mappings f with 

the above properties, endowed with the C* Whitney to­

pology. We shall be interested in the generic behavior 

of the periodic points of f. (i.e. fixed points of -fL 

and its iterates) if *fi* is varied. 

We say that a property is generic in &*. if it is 

valid for every f from a residual subset of IT , 

The first part of our results (§1) concerns the ca­

se of arbitrary m y the second (§ 2) takes place for/*t-»2. 

The problems studied in this paper ere to a great ex­

tent motivated by differential equations, where problems 

of dependence of critical points and periodic trajecto-

This research was partly done under the support of NASA 
(NOR 24-005-063) during the author's stay at the Univer­
sity of Minnesota. 
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riee on a parameter are frequent. 

The preaent research has been stimulated by the work 

of K.R. Meyer -13 on two dimensional symplectic diffeo-

morphiama, to whom the author is indebted for valuable 

discussions. Similar problems have been studied by J. 

Sotomayor 12] whose work deals with two-dimensional 

flows. His setting of the problem and results are of a 

somewhat different character. 

§ 1 

Denote by Z^- -Z^/f) c Tx M the set of all k-

periodic points of f , i.e. Ê -a? i(4i,/m,)\t£(/m,) ** /m , 

f? C/m-) + *n> ôr 0<£<Jk1m In this section, we 

shall study the sets Z^ * Jk will be called the prime 

period of a point (fif /m,) € 2.^ * 

A closed subset Q of P«x M will be called inva­

riant, if <(^f4 (y,,<m,))\(>p,/nv)€ fiJc A aM{(>ti,4^ (/»%)) \ 

I(*$>,<**)€ Q} c Q • By the orbit of a point (fa/m,) we shall 

understand the set of all points (<yi,4* (nm)), Jk, integer. 

Lemma 1. For every 4 from a certain open and den­

se subset ?" of & 9 E. is a closed one-dimensional 

submsnifold of F«x M -

Proof. It ia obvious that Z^ is closed. Associate 

with every 4 e $ a mapping Ft F«x M —* F * M givsn 

by FCft,**) m (/m, 4 (&,«*,)) . Then, Z1 * F~* (A) whe­

re A is the diagonal in M«xM and by the transversa-

- 560 



lity theorems 18.2, 19.1 of 1.31, the aet of f 'a for 

which F meets A transversally, is open and dense 

in $ • The statement of the lemma follows by the impli­

cit function theorem. 

Denote by X. the aet of thoae pointa (<fi7<m) e Z 

for which cifLCm) - id (or, cLT(fi9ntv ) ) ia singular 

(i.e. at least one eigenvalue of df (*i>) ia equal 1). 

Further, denote by ̂  m £ x ̂ M the imbedding of E. 

into P x M * From the implicit function theorem it fol­

lows that X ^ ia exactly the aet of thoae pointa x eZ 

tor which T% (%) meeta the aubmanifold CTP)a of 

thoae pointa from X P satiafying dp, m 0 . 

Lemma 2. For every f from an open and denaa sub­

set T» of f^\ T^Cx) meets (TP) 0 tranaveraally. 

Corollary 1. For f e Tn
 ? if (ft, *n, ) e X^ 9 then 

there i8 a coordinate neighbourhood (W^(U>cx)fW»UxV,of 

(fa/n%) auch that ^uxx (pf/rrp)^(070)fZnW can be pa­

rametrised by -X t i.e. (A*XX)(Z n W)ss{(^x)lfCss^(x ), 

^ * g ? 4 ^ ) , 2 ^ i - 6 ^ ^ 6 Jl where cp im C* 0 e J , 

J ia an interval, and d. y* (0) > 0 - (Ihe laat 

inequality ia the coordinate repreaentation of the trans­

versa lity condition of Lemma 2.) 

Baaed upon this corollary, we shall call the pointa 

of X^ collapaation (fixed) pointa. Namely, there are 

exactly two pointa in Z i r\ W with fixed ̂  >» 0 email 

enough; these pointa collapse at ft m0 and diaappear 

for ffe << '0 • 
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Corollary 2. For every f e £" 9 the fixed pointa 

of 4L are iaolated for every J(i e P . 

Corollary 3» For f e SJ", X f ia discrete. 

Proof of Lemma 2. Openneaa. Aaaume 4 e f^f . We co­

ver Z by a countable number of coordinate neighbour-

hoods CUj^x V^ 9 <c^ x ^<oC) . Using the implicit func­

tion formula for second derivatives, we can express the 

transversality condition of Lemma 2 by inequalities 

T^ + 0 , where if are polynomials in (fd^x x^ ) • *f 

°CXA,X # )~ and its first and second derivatives. Rest­

ricting suitably the coordinate neighbourhoods, we can 

aaaume that IcTr. I are bounded away from aero by positi­

ve conatanta ^ . If f is close enough to f (in the 

C* Whitney topology). Z^ (4 ) will be contained in 
f 

U (VL xV ) and /r.C? ) will be non aero on U * V . 
<X oC flf oC «c Of 

Consequently, Z ( f ) will satisfy the transversal ity 

condition. 

For the proof of density, we firat prove the fol­

lowing lemma: 

Lemma 3* Denote -\Cfc) »<>xgJR»l \x\< zis hi 

being the Euclidean norm* Let I € TJ and let C V V ^ - K , * ^ 

W r U x V be a coordinate neighbourhood in P x M auch 

that ^ C U ) = B/fC'f), -xOrt-J^Cf) and W n Z1 ia con­

nected. Denote W. * \L. * V. - C / a . x ^ H t B . C i / j ; x Ji «/j>J f 

i m i92 « then, in any neighbourhood ft of f in &f 

there ia an + which coincidaa with f outside W and 

auch that T+ C Z, C ?) n \v̂  ) meeta CT P) 0 tranavaraally, 

T C • ) being the projection of T C • ) into T P . 
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Proof* Denote by Q. the aet of all C*' nape of 

2 r\ W into U ., 0, m {T9, I <j, e Q* J . We conaider Q, 

aa a aubmanifold of the Banach manifold £. of all C* 

maps T(Z|n1V)-> T P . By Theorem 19.1 of 131, there 

ia a T e fy 7 arbitrary C* -close to ^ auch that 

Ty meeta ( T P ) 0 traneversally. In particular! y 

can be cho8en ao that 1(4, *f - (^tfaL'^ 4/4 * Let 9? be 

a C* bump function auch that <p ** 1 on W" g> « 0 

on W \ W^ . Define <fr(x)ss(4? ((*'*&ri,+ g>0(f x 0-M > • 

<(* ° T ~(cc°&fi, ^ Then, ^ meete (TP ) 0 transver­

sa lly in \VJ and coincided with fr outside Vvl . 

Since V ia iaomorphic with a aubaet of •Rm"M 

and ((cxx)(Zin W) ia a C* curve in K^*4 , there 

ia a C* tubular neighbourhood of ZMr\Wm Jxt Z n W M> 
1 ? i 

x B ^ (4 ) —* V auch that it C*., 0) » ^ 6t) (for 

the concept of tubular neighbourhood cf.UJ). This tubu­

lar neighbourhood can be constructed e.g. ao that 

((*, x .x ) • M, (z, 3^ (4 )) lies in the /w, -hyperplane 

passing through ((U x x )(z>) and orthogonal to the tan­

gent to (<u> x *) CZ n W ) at ( 0, 0) . 

Denote J^ , 3YX the natural projections of Z^ n 

r\W x B ^ ( 4 ) into Zf n W and 3^ (4) respectively, 

Y i £"*—» K a C* bump function such that y » 4 on 

B^CV-2) and f ** 0 outside 3 ^ ( 4 ) * We define 

f(^, ̂ l ^ f C J K T ^ (<fif<m,)+yjf2 JhT1 (&9m,)* tf4,q>l(lK
iCfi>f*n)-

"* P*2W ̂ ^^ fmt)J,#m.) for (ftfm)€HtCZgf/<W)Kl^Ci)J} 
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f (<p.fm) & -f (ji7/m) elsewhere. 

Then, Z^C?) n W * C ^ ^ K Z ^ Cf )n W ) , ? coinci­

des with f outside U and T can be made arbitrary 

close to f by choosing 9. sufficiently close to & # 

This proves the lemma* 

To prove the density part of Lemma 2, we find a 

countable family of coordinate neighbourhoods 

(WKf (*£**%,} *n 8UCn a w a7 that every (W^ ? (Ô . -x 3^ ) 

satisfies the assumptions of Lemma 3 and Ẑ , (*f )c U W ^ 

(the subscript 1 used as in Lemma 3). Then, we apply Lem­

ma 3 stepwise for every oc and choose the approximation 

of f at every step so close that the transversality con­

dition is not destroyed in U U r\ U _ * This is pos-

sible due to the first part of the proof* 

The next lemma examines the behaviour of f in the 

neighbourhood of a collapsetion point* 

Lemma 4* For every -P from an open and dense sub­

set 3p f of %%\ the following is true: 

(a) for every (<p>0 , /m.0 ) c X^ , one eigenvalue of 

d/fl (<m,0 ) is 1, the moduli of the others being diffe­

rent from 1, 

(b) locally, (^,/m^) divides Zi\^(p09mto)i into two 

components and the number of eigenvalues of df^ with 

modulus 1 at points from different components of 

Z, \ < CfW"V>' <**««» 3̂r 1. 
(c) There is a neighbourhood W of (^t0 9 #n0 ) such that 
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W \ Z,. containa no invariant aet. 
i 
Proof. Since (>f*>, <r>%0) e X, , df^ (<m.c ) has 1 

as an eigenvalue. This eigenvalue i s simple becauae of 

Lemma 1. 

If (<fifcf mv0) e X^ and * c $£» , then there 

i s a coordinate neighbourhood (W, pc x x ) of 6fi# /m^); 

V -e, U x V such that C ĉcx x ) (<flr09in>0) « 10, 0) and 

f can be in these coordinates represented by 

(1) x j « -x̂  + oc^ +/3** + f i > f ^ , ^ f ^ ) , 

(2) V - A/^ + ^C^^x^,^) 

where n$> == (x«,..., x ) the primed coordinates are 

those of the images, <x, <. 0 9 

(3) 7i (0, 0,0) m 09co(<u.,x90)~ <r fl-5* I + ocj ) . 

Note that from the form of (2) it follows that eve­

ry fixed point in W satisfies /y. « 0 ( W* possibly 

restricted). 

We denote by £ " " the set of all f e F " , in 
7 ^ 7 

the representation (1),(2) of which <i) /S -+ 0 and 

(ii) the eigenvaluea of A have moduli - M .It is ob­

vious that the meaning of these conditions is indepen­

dent of the choice of coordinates. Also, (ii) is equiva­

lent with (a). We ahow that T'" is open dense. 
7 

Openness follows sasily from the continuous de­

pendence of the eigenvalues on «f . To prove density, we 

note that there is a real cT arbitrarily small in abao-
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lute value auch that fi + <f 4s- 0 and for any eigenva­

lue A of d'L (m,J, IA + cT\ 4* 4 . We change f into 

% by changing the terma Aty and ft>xA in the re-

preaentation (1), (2) of f into (A + r (<"-, «* > <? £ V and 

(/if ifr(<a,.x)or).x* ( £ being the unity matrix) reepec-

tively, where f (^^) ia a C* bump function vaniah-

ing outaide W , and equal 1 at (0,0) , By the choice of 

a aufficiently email cT? f can be made sufficiently 

close to -P . df 6wt) will then satisfy (a) and we do not 
T* 

introduce any new fixed points* Since X. ia discrete 

for T* c $J' ^ this proves the denaity of 5£'" , 

To prove (b) we note that if f aatisfies (a), on­

ly one eigenvalue can croaa the unit circle at (<fiQ 7 m*0 ) 

and this eigenvalue ia the eigenvalue of the restriction 

of <£?\, to the manifold tu,m 0. cLfl^^ #Thia mapping is 

represented by (1) with n+, » 0 # 

Assume /I > 0 (in the other ease we change the 

sign of x )• To prove (c), we note first that A is 

similar to a matrix (Q £ ) , i.e. there ia a nonaingular 

matrix A «uch that fiT^Aft * (^ ^) , where the modu­

li of eigenvaluea of 1 and C are < A and > A res­

pectively. Applying first the linear coordinate transfor­

mation <*f m (2 (jj ) and than » «r w*+ (oi^, <cc) -•- | 

<o, » itr**C*^, £ ) • i£ where # -a-iir*4"^ ,*<.) and AJU *» 

m w*~ <«xif fc ) (<wr* + , t*r*~ being C* ) are the e-

quations of the center-stable and center-unstable mani-
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folds respectively (cf.[31, Appendix C , (1) and (2) 

is transformed into 

(5) V - B"Z + © ^ , f , ^ , t ) , 

(6) f - q + J K ^ , £,«-,,$> 

where oc < 0 , .S 5 0 , i l are C* and 

(?) ec fc , f f o,p - . o,-iic^,t?,^,o) ~ o-, 

s ^ , f . n , t > - crClftl + f a ) , - i s ( 0 , 0,0,0) -

« 0 ;d, 9 (0 ,0 ,0 ,0 ) * 0, d i l CO, 0,0,0) » 0 . 

From (5) and (7) it follows that the orbit of eve­

ry point (41 /m>) which is contained entirely in some 

sufficiently small neighbourhood of (^07 *n>0 ) satisfies 

^(•^(mt)) —* 0 tor M,-* 00 and J (f*(/m>)>-*' 0 

for A — • - <w . Thua, if there is an invariant set con­

tained in this neighbourhood, it must be a part of the 

manifold % « 0 , \ m 0 # In particular, this imp­

lies 

(8) ij, C Z ^ n W ) -* 0 { ( Z ^ W ) * 0 

( W possibly restricted). 

(1) Actually, Appendix C in 132 deals with flows rather 

than mappings. Therefore, in order to use its results di­

rectly, we have to construct a flow from f aa in C5J and 

then return to f by considering the cross-section mapping* 

- 567 -



We therefore consider the restriction of I to the 

center manifold ^ -=* 0 , t » 0 , the representation of 

which is given by 

(9) $' - f+oc(«. + /3^+ -(<«.,f,0,0) . 

It follows from Corollary 1 and (8) that for (A, > 

> 0 fixed* Z^ r\ V consists of two points 

>,$.,<>>, 0,0) , < > , & < > > , 0,0) aatisfying 

$,*>)< 0, ̂ > > > 0 and 

d o ) te4.(«fr- ̂  I f. > > . ^ aea ̂  I ^ 1 , 1 

for some positive constants ae. , «e, . From (9) and (10) 

it follows 

(11) f - f > 0 for > * 0 , 

(12) f, < > > < } ' < 0 for («. > 0 , £ - 0 , 

(13) f - | > 0 for («, > 0, (-4«/»-V>'< 4< 
< I f I < oT . 

Since §' - f can change ita sign only at fixed points, 

for (U- > 0 from (12) ,(13) we conclude & > > < $' < f 

for f 1 < ( a ) < f < ^ C ( a ) , f ' - f > 0 f o r f > J r z c » . 

This, together with (11). proves (c). 

To prove (b) we note that i f f € ST "' ^ then only 

one eigenvalue of df^ earn cross the unit circle at 

0ft, ,<m-,) and this eigenvalue is the eigemralue of the 

restriction of df^ to the manifold *l m Q f t m Q y 
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which ia repreaented by (9). From (13) it followa 

dL f ' 
^ I " (<«<, &<<<"» ~ 4 + 2./1 fo + * <(;) which implies 

d$9 d $' 

This completes the proof* 

We summarize the results of Lemmas 1 - 4 together 

with their generalization for periodic points with higher 

prime period in the following theorem* 

Denote X ^ * Z^ rx .X, (f * ) . 

Theorem 1. For every -f from a residual subset 

(i) Z^ are 1-dimenaional aubmanifolda of Px.M; Zf is 

closed; 

(ii) for fixed -fi , the 4t-periodic points of f^ are i-

solated; 

(iii) X ^ ia discrete* 

(iv) for every (ft,/m,)€ Z^^* .X^ , there is a neigh­

borhood W m XI H V ofCfi,"*) and a C* function ̂ p: 

j U —> V auch that Zj* r» W is the graph of y • 

(v) for every ( <fi# , i*, > c X ^ ? there is a coordinate 

neighbourhood (Wj (tix x ) of (fa, my), (fix oc )(>f*#, *>-,«,)* 

m (0,0) auch that 

(a) there is a C* function Y* U^-* W, U ^ R open, 

auch that Z ^ n W - {f (^'1^6 U^ J, x^• y » *-£ , 

- ^ L - ^ > > o , 

569 .. 



(b) df (m, ) has one eigenvalue 1, the others having 

moduli different from 1; the number of eigenvalues with 

moduli > A in the components x1 > 0 , and x1 < 0 of 

2L A W is constant and differ by one; 

(c) W \ Z ^ contains no invariant set. 

Proff« The statement for to, -* A is proven in Lem­

mas 1 - 4. To prove the rest, we denote by %p(U) the 

set of all f e f such that f \ \ i satisfies (i) - (v) 

for A * A, * A . 

Let d be a C* Riemannian metric on Px M , f K^. ' 

an increasing sequence of compact sets, U K - = P x M . 

Denote B (N,cf )«{(<fi,<rit)l d(H9(^9m,))<(f J for N c ?M M . 
A 

fe show that the sets £ « % c \ s ^ ( ^ ZM> -* >> arc 

open and dense. Since ^ » f) Tj€ , this will complete 

the proof* 

To prove density, we cover Z1 n K^B(JJ. ZM 9 £~* ) 

by a countable family iV4 } of open sets such that 

i n K W J ^ . n M w A - j ? and W-nZ. - j? , it, < £ . 

Using Lemmas 1 - 4 we find that f* can be arbitrarily 

closely approximated by a map to such that to> € % (W4) 

and Jfv coincides with f* outside V . We denote 

Í 
f-»Jh, <m V. , 

4 outaide W. . 

Then, if Jh, is close enough to f* , W^ n^W^) n... 

...nfr^CW^) - # , ?* - H and, therefore, 

f e ^ ť Í W 4 ) 
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Repeating this for every -t and taking into account the 

openness of T (W^ ) , one concludes the proof of density 

°f hi • 
For the proof of openness we note that since 

^.t^^Jt!^ ^to* **'* ^ *8 c o m P a c t t trom 4 e W-t i t fo l ­

lows f € 9. (K \ B t U Z. , A'1- oT )) for some small 
nQ M, m<$ m> * 

<f > 0 . 

If ? is close enough to ̂ . ^ V ^ * 3 ^ £4^^)>cr> * 

Thus, 

(14) SCAJ.E.C?),^"^ D BCU. Z ^ C * ) , ^ - <T) . 
*%<2 *•* ' 4t<̂ > ** * 

The openness of T-z follows now from (14), Lemmas 1 - 4 

and the fact that ?* is arbitrarily close to f * if ? 

is close enough to f . 

Remarks. 1. In case ftt » 2 , the points of one com­

ponent of Zj^n W \ < (>ji# 9 /m0 ) I ara saddles, the points 

of the other are either sources or sinks. 

2. The set & of those f e T satisfying (i) -

(v) of Theorem 1 for Jk, m A is open dense in 9 • 

5 2. 

The sets Z ^ for M, -> A are not closed in gene­

ral. A point from Z * x Z^ is alao a periodic point, 

its prime period being a divisor of M • We shall call the 

points of Zj^X Zj^ branching ( JL -periodic, according 

to their prime period) points. In this section, we shall 

study the behaviour of f in the neighbourhood of bran-
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ching points in the case m =- 1 which allows us to ob­

tain soae information about the sets Z^ . 

If -f € 3̂  , a Jfe -periodic point Of&,<m,) can be a 

branching point only if df* (m.) has some root of u-

nity different from 1 as an eigenvalue* For, if df^ (m,) 

has no root of unity as an eigenvalue, at/f (mv) - id 

is regular for every i> > 0 and by the implicit func­

tion theorem there is a unique C*' 1-dimensional subma-

nifold of periodic points with (not necessarily prime) pe­

riod i)i^9 >) > 0 j thus, this manifold coincides with 

Zjfc, for every >> > 0 . The case of 1 being an eigen­

value is covered by Theorem 1. 

Therefore, we need first to know how the eigenva­

lues cross the unit circle if j(i is changed, in the gene­

ric case. 

Henceforth we shell assume !n» 2 without repeating 

it. Let 4 € $J and denote J^ -* i(*p>9<rn) e 2 ^ I ctf^C/m,) 

has double eigenvalues I. 

From the implicit function theorem it follows that 

^ <>-• * < £ 
% T* 

the eigenvalues A***, A**' of c £ 4 £ G » t ) are C* func­

tions on 2-fc v. 1^ . 

.Denote by S the unit circle in the complex plane, 

fljforfl ?* *or a residual subset ^ of f, % c 3̂  : 

(i) fcf^V n S =* * > + - J l 7 1 f 

(ii) xf> 9 I m 4, I meet S transversally. 
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(iii) If, for some 6ft.,/mJ e Zj^f X (4tf/rru) e S , 

then either JL*° $ S or Xf** (^t^mt) is not a 

root of 1. 

Corollary* Generically, (fi^w) can be a bran-

ching point only if one of the eigenvaluea of dfj^(nrt) 

ia - 4 7 the other being real 4» 4 . We denote by Y ^ the 

set of such points. 

Proof of Theorem 2* We prove the statement of the 

theorem for Jk/ m A (fixed points), the generalization 

to the case Ms > A being similar as in the proof of 

Theorem 1. 

From Theorem 1, (vc) and its proof it follows that 

for every f 6 9? 9 if some eigenvalue meets S at 4 , 

it is single and meets S tranaveraally. Therefore, we 

can restrict our attention to S S i A J . 

Let f € £ , where 9 ia defined at the end 

of § 4 , (-ft,.m)e 2 ^ \ X . . Then, according to Theo­

rem 1, (iv), there is a coordinate neighbourhood 

(W}(4,xx) f W a U x V such that ^(jft) ~Q, *(<m>) ** 0 

and the representation of -f in these coordinates is gi­

ven by 

X9 m A (ft,)* 4- £L (<tt,d< ) f 

where il (<<*, 0) m 0 , d,JlC0,0) - 0 . 

The subset of matrices with both eigenvalues on th* 

unit c irc le i s a eubmanifold *££ of co-dimension 1 in 

OL (2) ( i t i s the set of matrices A such that cUt A m 

m 4 ) • Further, the set of a l l 2 x 2 matrices with 
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eigenvalues being JL -th roots of unity (the unity mat­

rix £ excluded), <$L is a 2-dimensional submanifold 

of GL (2), given by dvb A - A ft*Am oc^ + ocjf for Z 

odd, and a union of the 2-dimensional manifold given as 

for Z odd and the isolated matrix - E for Z even, 

where oc« are the .^ -th roots of unity J lying in the 

open upper complex half plane. 

Using the elementary transversality theorem, we can 

approximate the function A : (U CU) — • G L (2) ar­

bitrarily closely by A : (U CU) — • GL CZ) so that 

.X coincidea with A outside U , TL G (U, (VL) , 

K meets HIL transversally and doea not meet W^ at 

all for KA, e IL . LL open, U , c U, . Asa conse-
\ Z * 2 2 1 

quence we obtain that X (<u>) doea not have — i as doub­

le eigenvalue for any (U. € \l± . This implies that the ei­

genvalues A j 1 are C** functions of matrices in the 

neighbourhood of any ACfc) , «ome eigenvalue of which 

is - 4 . 

Therefore, in the neighbourhood of the values ofA((U>) , 

j(te U, , the eubaeta of GL (2), given by X^ » - i and 

X m - 4 are submanifolds of co-dimension 1* Thus, we 

can uae the tranaveraality theorem again (for A and 

<6£ # ) to obtain that arbitrarily near A (and, thus, 

A ) there ia a function A t (u CU) —» G L (2) auch 

that for fu, c U* f ~i ia not double eigenvalue of A ((U.) 

and the eigenvaluea A and A,̂  cross the unit circle 

transversally at the oolnts which are not t -th roots 
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of unity. 

Let Y2 , Yi be open, \ c VJ , \ c Y , let 

g> C(U fx) be a bump function such that 9>ff*-,x ) • 4 

tor((A,x)€U2xYZf y^,x)« 0 outside 

U x V, . We denote by f the map that coincides with 
1 1 

f outside U x V and is given in V by its coordi­

nate representation 

X1 mLA((4,) + g> ((4,,X)(X((U,)~ A((4,))3 «X+ i l ((U., x ) • 

Then* if A is chosen close enough to A , f is arbit­

rarily close to f , satisfies ( i ) , ( i i ) and 

Ciiy if A^cS, then either X^ 3, or \ is not an i - ih root 

of unity, in U t x l { , 

As usual, we can prove that f can be approximated 

by a function % having Properties ( i ) f ( i i ) f ( i i i - ) over 

al l .Z, S X„ by covering Ẑ , N X. by a countable fa-
1 1 1 1 

mily of coordinate neighbourhoods. It i s obvious that the 

set of f 's f having Properties ( i ) f ( i i ) f ( i i i ) i s open. 

Since the subset 3£ c & of mape, having Proper­

t ies ( i ) f ( i i ) f ( i i i ) for Jk,m 4 i s the intersection of 

the sets S^<= y f satisfying ( i ) f ( i i ) f (iii^ ) , the 

proof of Theorem 2 for Jk, ** A i s completed. 

Remark. Note that the subset &%Ht
 c $ of »«P»> 

all iterates \ip to order Jk> of which aatis.^ Ciii^) , 

i s open dtense in T . 

te shall now study the behaviour of f in the neigh­

bourhood of a branching point. 
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Theorem 3. Assume K ^t 3 . Then, for a residual sub­

set Ĵ  of f9 ^ c f 9 the following is valid: 

(i) Y ^ coincided with the set of Jte -periodic bran­

ching points. 

(ii) For every (^t09/m0) e Y ^ there is a coordinate 

neighbourhood CW,(Xx x ) 9 W a It x V of (&9 f <m,o ) 

auch that <u, (41,) ** 0, x (<m.0)*s O . Z ^ n W s VLx i 0 J 

and 

(a) 2 ^ ^ ̂  V conaiat8 of two component a, separated 

by (y.o 9 m*0) ; all points of Z a % n W aatiafy <a > 

> 0 and Z2M n W u < (#.09 «n0 ) I is a C1 

(but not C2 ) submanifold of W . 

(b) Either the points of Z ^ n W are sinks for ^u > 0 

saddles for p , & 0 (degenerated for p , ** 0 ), and the 

points of Zaj. n W are saddles, or the same is true 

with 8ink replaced by saddle and conversely, or one of the 

above cases is true for the inverse of f • 

(c) W \ ( Z. u Z„^ ) contains no invariant aet of T\. . 

Proof* We again prove the theorem for Jk. ** 1 , the 

generalisation for Jin > 4 being similar aa in the proof 

of Theorem 1* 

Assume l « 7%. . Then, one eigenvalue of d-f^ (mQ) 

is — A the other, A , is not on S .We can assume 

I X I < 4 , in the other case we consider the inverae of f • 

As in the proof of Theorem 1, using C3], Appendix C, we 

find that there is a coordinate neighbourhood 
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OV. tu,** )f W « U x V . ((u.xx)(yp.t)}rm.0) = (0t0) euch that 

the local repreeentation of f in the coordinates /<-,x 

is given by 

(15) *; - - *, + <*(«, x^/a** +r*l + *>(<y>,*i, x 4 ) , 

(16) *^= A x . + t*C>, n^f .x4) , 

where o> , 1^ are C* and 

(17) 1>C(U.,^,0)- 0, d-iMO, 0,0)=. 0,cu((«.,x.,x2)-» 

-- (l*?!+ l/i**,! + l*.l) . 

Similarly, as in the proof of Lemma 4, it can be 

0hown that every -f can be arbitrarily closely approxima­

ted in #1 by a map the local repreeentation of which 

eatiofiee (I1 + y + 0 at every point from Y . We de­

note £ the eet of euch maps. The openness of if ie 

obvious • 

We prove that if «f m 5?, then 4* satisfies (i)t 
91 

(ii), of this theorem for Jte, = 4 . We ehall analyse the 

case o&->0,/S* + 2r-c0* The other caaee can be trans­

formed to the above case by a euitable change of coordi-

natee or lead to other caoee of (ii b), which can be ana­

lysed similarly. 

From (15),(16) we obtain the representation of the 

eecond iterate of -PL _. 
l^mO 

(18) x» m x^-2 (*<€**,-2 C/S* +<?)** + eJ^Cft,^) , 
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where co%((4,,x) •» (1(1X^1 «*• J «x* I ) * By a change of 

•ariablee x^ « >>a£ , (U, * >>* for («, > 0, (18) ia trana-

formed into 

(19) f . f - a ^ C o c f + C/3* + r>f*J + i£C»,f ) , 

where ^ C», £ ) -« »-'c*>a C»*, » £ ) ia C*-~* for 

•p > 0 and aatiafiee 

(20) £C», f ) « W * * ) • 

£ ia a 2-periodic point of f { x ^ for i> > 0 if 

f aatiafiee 

(2D «,f+ c/s*+r>f$- X ^ ^ P * 0> 

where j ^ (o>, f ) «r »*£ C», £ ) * Proa (20) it followa 

that if we define 7(4 (0> f ) * ̂ , 

then * ia C*""$ for >> £ 0 and, in the caae tc m 3 , 

£*< that _ — £a continuoua* 
<?f 
For V « 0 , (21) ha a two non-zero aolutiona 

f, co) - - c-oc c/3J+ r rV / a , fc<o> * c- * c/i*+ rr"J* / a . 

Using the implicit function theorem of 161 and returning 

to the coordinates (u., x^ we obtain that for <cc > 0 

sufficiently email there are two 2-periodic pointa (1 or­

bit) of 4* I * * with coordinates 

(22) x1f c ^ ) - - i>occ/r+ r > " V J + ^ C<̂> , 
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-x̂wfit) . [ - * ^ y r V ] f / a -i- Va C<*) f 

where i^f Y 4 « « C*""3 and aatiafy^Cft)-- cr((f> x>', 

the eigenvalue of xM^ jM ^ ^ at the pointa xH , *A1 

is equal 4 + *t oc. (U, + <r(pt) . Since from (16) it followe 

that the other eigenvalue of cifj* at the pointa 

-ft* 

(<«,., x^ (<u,),0)f (p-tX^ft), 0) ia of modulua less than one, 

this proves that the pointa C ^ , ^ Cf-c), 0), QK,,*^ ((* >, 0> 

are saddles for email (U . From (15),(16) it follows fur­

ther that for small l(txl, the pointa of Z 4 are sinks 

for {U, > 0 and saddles for (U < 0 . Thia provee (ii b) 

if we ahow that Z± n W ( W possibly restricted) doea 

not contain other pointa except of the pointa ((&,*. (u)f 0)f 

I m 47 2 . 

Prom (16),(17) it followa that every orbit that re­

mains in I x I < cT ( <f sufficiently email independent of 

(UL for l(U.I small) ̂  approachea the eubmanifold x A m 0 

(in the positive sense). Therefore, in order to prove 

(ii c) and thus also to complete the proof of (ii b) it 

suffices to prove that for eufficiently email pc the on­

ly periodic pointa of f^ |x m 0 for 1x^1 < of < cTf dC 

sufficiently email, are the pointa .x̂ . (<cc) 9 i ** 4, £ f 

and 0. 

From (17) it followa that 

(23) * " - • * < * 0 for <c* * 0 , *j < 0 , 
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(24) x% - xi > 0 for p. 4 0 , ̂  > 0 , 

(25) X* - ^ > 0 tOT (A, > 0 f 

*^> i-k<*,(r+fi%)~*<<*>^lx , 

(26) x " - x4 < 0 for <u, > 0 , 

and i (<u. I < c£ ; I x^ t < cf f cC being sufficiently 

avail. From (23),(24), it follows that the orbit of eve* 

ry point with 0 > (A, > - C ^ , lx4 I < dl leaves 

U 4l < <fx . Fro» (22),(23),(24) and the implicit func­

tion argument used after (21) it follows that there are 

no periodic points with Ix^l < L-^ccC/J1-* T V 1V% 

except of the points x ((U,)7 X. ((«.) . Prom this, (25), 

(26) and (19) it follows x " - x„ < 0 for d* < x < 

< x _ (<a.) or 0 < x„ < x,A C<oJ snd x" - x, > 0 

for *„(<«,)< ^ < 0 orx^C(ct)<x1< oT^ ^ > 0 , 

so that every orbit both in the positive and negative sen­

se tends to one of the points 0 7 x ((JL ) t x^% ( 44,) . 

This completes the proof of (iv c). 

To complete the proof of (ii a), we denote bygpCx ) 

the real function, defined as the inverse of the functions 

*4 - *<M f<"-> for *« K ° and *<t m **a (f-} tOT 

X„ > 0 • From (22) it follows 

(27) ii-w^CvX,)- WtyfotJ. ̂ - " W ) - 3*F<0)- -*• 
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Further, from th*e fact that the points (^ :x (tc)70) 

( ft9 xA1 C<u,) , 0 ) are nondegenerated for fju > 0 it 

follows that g> is C* . Uaing (22) and the implicit func­

tion theorem we obtain 

(28) ^^^-ioC\(l^r)^il,z^ cr(f4.ih) for ̂  < 0 , 

4 ^ - * C-oc- fC/524.r)<u,]' /2^crC f.c
f /a) for x •> 0 . 

This, together with (27) shows that 9? can be com­

pleted into a C function (which is not C1 ) in some 

neighbourhood of 0 by defining y (0) =. 0 . 

As a corollary of Theorem 1 and 3 we obtain 

Theorem 4. Let K. > 2 . Then for every -f € 5T : 

(i) for .4c odd, 2-^ is a closed submanifold of Px M , 

(ii) for to even, E ^ is a closed C (but not C1 ) sub-

manifold of Px M •, Z ^ N Z ^ is discrete and coinci­

des with Y^/z • 
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