ON ONE-PARAMETER FAMILIES OF DIFFBOMORPHISMS

Pavol BRUNOVSKf, Bratislava

This paper is concerned with diffeomorphisms of manifolds, depending on a parameter. This means that we shall consider mappings $f: P \times M \rightarrow M$, where P is a 1-dimensional $C^{n}(1<\pi<\infty)$ manifold, M is an n-dimensional C^{κ} manifold, f is C^{κ} and such that for every $\nVdash \in P$, the mapping $f_{\neq}: M \rightarrow M$ given by $f_{k}(m)=f(\neq m)$ is a diffeomorphism. Given P, M, we denote by \mathcal{F} the set of all mappings f with the above properties, endowed with the \mathcal{C}^{r} Witney topology. We shall be interested in the generic behavior of the periodic points of f_{n}, (i.e. fixed points of f_{n} and its iterates) if p is varied.

We say that a property is generic in \mathcal{F} if it is valid for every f from a residual subset of f.

The first part of our results (§ 1) concerns the case of arbitrary n, the second (§ 2) takes place for $n=2$.

The problems studied in this paper are to a great extent motivated by differential equations, where problems of dependence of critical points and periodic trajecto-

[^0]ries on a parameter are frequent.
The present research has been stimulated by the work of K.R. Meyer [l] on two dimensional symplectic diffeomorphiams, to whom the author is indebted for valuable discussions. Similar problems have been atudied by J. Sotomayor [2] whose work deals with two-dimensional flows. His setting of the problem and results are of a somewhat different character.

$\S 1$

Denote by $Z_{k}=Z_{k}(f) \subset P \times M \quad$ the set of all k periodic pointe of f, i.e. $Z_{k}=f(n, m) \mid f_{1}^{n}(m)=m$, $f_{12}^{j}(m) \neq m$ for $\left.0<j<k\right\}$. In this section, we shall study the sets Z_{k}. he will be called the prime period of a point $(\not, m) \in \mathcal{Z}_{k}$.

A closed subset Q of $P \times M$ will be called invariant, if $\{(\uparrow, f(\eta, m)) \mid(\eta, m) \in Q\} \in Q$ and $\left\{\left(\nmid, f_{\neq 1}^{-1}(m)\right) \mid\right.$ $\mid(\not\{, m) \in Q\} \subset Q$. By the orbit of a point (η, m) we chall understand the set of all pointa ($p, f_{p}^{n}(m)$), k integer.

Leman. For every f from a certain open and dense subset $\mathcal{F}_{1}^{\prime \prime}$ of $\mathcal{F}^{\prime}, Z_{1}$ is a closed one-dimensional submanifold of $P x M$.

Proof. It is obvious that Z_{1} is closed. Associate with every $f \in \mathcal{F} \quad$ a mapping $F ; P x M \rightarrow P x M$ given by $F(n, m)=(m, f(n, m))$. Then, $Z_{1}=F^{-1}(\Delta)$ where Δ is the diagonal in $M \times M$ and by the tranevarsa-
lity theorems 18.2, 19.1 of [3], the set of f 's for which F meets Δ transversally, is open and dense in \mathfrak{F}. The otatement of the lemma follows by the implicit function theorem.

Denote by X_{1} the set of those points $(n, m) \in Z_{1}$ for which $d f_{n}(m)-i d$ (or, $d F(\eta, m)$) is singular (i.e. at least one eigenvalue of $d f_{1}(m)$ is equal 1). Further, denote by $j=j_{n} \times j_{M}$ the imbedding of Z_{1} into $P_{x} M$. From the implicit function theorem it follows that X_{1} is exactly the set of those points $x \in \mathcal{Z}_{1}$ for which $T_{j_{n}}(z)$ meets the submanifold ($\left.T P\right)_{0}$ of those points from $T P$ satisfying $d p=0$.

Lemma 2. For every f from an open and dense subset $\mathcal{F}_{1}^{\prime \prime \prime}$ of $\mathcal{F}_{1}^{\prime}, T_{j_{12}}(x)$ meets (IP) tranaversally. Corollayy 2. For $f \in \mathcal{F}_{1}^{\prime \prime}$, if $(\eta, m) \in X_{1}$, then there is a coordinate neighbourhood ($W, \mu \times x$), $W=U_{x} V$, of (n, m) such that $\mu \times x(\eta, m)=(0,0), Z_{1} \cap W$ can be parametrized by x_{1}, i.e. $(\mu \times x)\left(\mathcal{Z}_{1} \cap W\right)=\left\{(\mu, x) \mid \mu=\varphi_{0}\left(x_{1}\right)\right.$, $\left.x_{i}=\varphi_{i}\left(x_{1}\right), 2 \leqslant i \leqslant n, x_{1} \in \mathcal{I}\right\}$ where φ is $C^{n}, 0 \in \mathcal{I}$,
y is an interval, and $\frac{d^{2} \varphi_{0}}{d x_{1}}(0)>0$. (The last inequality is the coordinate representation of the transversality condition of Lemma 2.)

Based upon this corollary, we shall call the points of X_{1} collapastion (fixed) points. Namely, there are exactly two pointe in $\mathcal{Z}_{1} \cap W$. with fixed $\mu>0$ mall enough; these points collapse at $\mu=0$ and disappear for $\mu<0$.

Corollary 2. For every $f \in \mathcal{F}_{1}^{\prime \prime}$, the fixed points of f_{\imath} are isolated far every $\nsim \in P$.

Corollary 3. For $f \in \mathcal{F}_{1}^{\prime \prime}, X_{1}$ is discrete.
Proof of Lemma 2. Openness. Assume $f \in f_{1}^{\prime}$. We cover Z_{1} by a countable number of coordinate neighbour hoods $\left(u_{\alpha} \times V_{\alpha}, \mu_{\alpha} \times x_{\alpha c}\right)$. Using the implicit function formula for second derivatives, we can express the transversality condition of Lemma 2 by inequalities $\pi_{\alpha} \neq 0$, where $\pi_{\alpha c}$ are polynomials in $\left(\mu_{\alpha} \times x_{\alpha}\right) \circ f$ $\circ\left(\mu_{c} \times x_{\alpha}\right)^{-1}$ and its first and second derivatives. Restricting suitably the coordinate neighbourhoods, we can assume that $\left|\pi_{\alpha}\right|$ are bounded away from zero by positive constants ε_{α}. If \tilde{f} is clase enough to f (in the C^{n} Whitney topology), $\mathcal{Z}_{1}(\tilde{f})$ will be contained in $\bigcup_{\alpha}\left(u_{\alpha} \times V_{\alpha}\right)$ and $\pi_{\alpha}(F)$ will be non zero on $u_{\alpha} \times V_{\alpha}$. Consequently, $Z_{1}(\boldsymbol{f})$ will satisfy the transversality condition.

For the proof of density, we first prove the following lemma:

Leme 3. Denote $B_{q}(\varepsilon)=\left\{x \in R^{x}| | x \mid<\varepsilon\right\},|\cdot|$ being the Euclidean norm. Let $f \in \mathbb{J}_{1}$ and let $(W, \mu \times x)$, $W=U \times V$ be a coordinate neighbourhood in $P \times M$ such that $\mu(U)=B_{1}(1), x(V)=B_{n}(1)$ and $W \cap Z_{1}$ is connected. Denote $W_{i}=U_{i} \times V_{i}=(\mu \times x)^{-1}\left[B_{1}(i / 3) \times B_{n}(i / 3)\right]$, $i=1,2$. Then, in any neighbourhood Q of f in $\mathcal{F}_{1}^{\prime \prime}$ there is an \tilde{f} which coincides with f outside W and such that $T_{12}\left(Z_{1}(F) \cap W_{1}\right)$ meete (TP) 0 transverselly, $T_{n}(\cdot)$ being the projection of $T(\cdot)$ into TP.

Proof. Denote by G the set of all C^{n} maps of $Z_{1} \cap W$ into $u, \hat{G}=\{T g l g \in \mathcal{G}\}$. We consider \hat{g} as a submanifold of the Banach manifold g of all c^{r} maps $T\left(Z_{1} \cap W\right) \rightarrow T P$. By Theorem 19.1 of [3], there is a $\gamma \in \mathcal{G}$, arbitrary C^{μ}-close to j_{12} such that T γ meets (TP) transversely. In particular, γ can be chosen so that $\left|\mu \cdot \gamma-\mu \circ j_{p}\right| \leq 1 / 4$. Let φ be a c^{κ} bump function such that $\varphi=1$ on $W_{1}, \varphi=0$ on $W \backslash W_{2}$. Define $g(x)=\mu^{-1}\left(\mu \circ j_{2}+\varphi \circ\left(\gamma \times j_{M}\right)\right.$. $\left(\mu \circ \gamma-\left(\mu \circ j_{k}\right)\right)$. Then, g meets (TP) sally in W_{1} and coincides with j_{p} outside W_{2}.

Since W is isomorphic with a subset of R^{n+1} and $(\mu \times x)\left(Z_{1} \cap W\right)$ is a C^{n} curve in R^{n+1}, there is a C^{n} tubular neighbourhood of $Z_{1} \cap W, h: Z_{1} \cap W \times$ $\times B_{n}(1) \rightarrow W \quad$ such that $h(x, 0)=j(z)$ (for the concept of tubular neighbourhood cf.[4]). This tubular neighbourhood can be constructed egg. so that $(\mu \times \times) \cdot h\left(x, B_{m}(1)\right)$ lies in the n-hyperplane passing through $(\mu \times x)(x)$ and orthogonal to the tangent to $(\mu \times x)(Z \cap W)$ at $(0,0)$.

Denote π_{1}, π_{2} the natural projections of $Z_{1} \cap$ $\cap W \times B_{n}(1)$ into $Z_{1} \cap W$ and $B_{n}(1)$ respectively, $\psi: R^{n} \rightarrow R$ a C^{n} bump function such that $\psi=1$ on $B_{n}(1 / 2)$ and $\psi=0$ outside $B_{n}(1)$. We define

$$
\begin{aligned}
& \tilde{f}(n, m)=f\left(\mu ^ { - 1 } \left(\mu(\eta, m)+\psi \pi_{2} h^{-1}(\eta, m) \cdot\left[\mu g \pi_{1} h^{-1}(\eta, m)-\right.\right.\right. \\
&\left.\left.-\mu j_{p} \pi_{1} h^{-1}(\eta, m)\right], m\right) \text { for }(\eta, m) \in h\left[\left(Z_{1} \cap W\right) \times B_{n}(1)\right]
\end{aligned}
$$

$\tilde{f}(\nmid, m)=f(\nmid, m) \quad$ elsewhere.
Then, $Z_{1}(\tilde{f}) \cap W=\left(g \times j_{M}\right)\left(Z_{1}(f) \cap W\right), \tilde{f}$ coincidea with f outside U and \widetilde{f} can be made arbitrary close to f by choosing g sufficiently close to j_{n}. This proves the lemma.

To prove the density part of Lemma 2, we find a countable family of coordinate neighbourhoods ($W_{\alpha}, \mu_{\alpha} \times j_{\alpha}$) in such a way that every ($W_{\alpha}, \mu_{\alpha} \times j_{\alpha}$) satisfies the assumptions of Lemma 3 and $Z_{1}(f) \subset \bigcup_{\alpha} W_{\alpha 1}$ (the subscript 1 used as in Lemma 3). Then, we apply Lemma 3 stepwise for every \propto and choose the approximation of f at every step so close that the transversality condiction is not destroyed in $\bigcup_{\beta<\alpha} U_{\beta 1} \cap U_{\alpha 11}$. This is possable due to the first part of the proof.

The next lemma examines the behaviour of f in the neighbourhood of a collapsation point.

Lemma 4. For every f from an open and dense subset ${\underset{1}{1 " n}}^{1 \prime \prime}$ of ${\underset{1}{1 "}}^{\prime \prime}$, the following is true: (a) for every $\left(p_{0}, m_{0}\right) \in X_{1}$, one eigenvalue of $d f_{n_{0}}\left(m_{0}\right)$ is 1 , the moduli of the others being different from 1 ,
(b) locally, ($\left.\imath_{0}, m_{0}\right)$ divides $\bar{\Sigma}_{1} \backslash\left\{\left(\eta_{0}, m_{0}\right)\right\}$ into two components and the number of eigenvalues of $d f_{12}$ with modulus 1 at points from different components of
$Z_{1} \backslash\left\{\left(\eta_{0}, m_{0}\right)\right\}$ differs by 1.
(c) There is neighbourhood W of (\varkappa_{0}, m_{0}) such that
$W \backslash Z_{1} \quad$ contains no invariant set.
Proof. Since ($\left.\eta_{0}, m_{0}\right) \in X_{1}, d p_{r_{0}}\left(m_{0}\right)$ has 1
as an eigenvalue. This eigenvalue is simple because of Lemma 1.

If $\left(\eta_{0}, m_{0}\right) \in X_{1}$ and $f \in \mathcal{F}_{1}^{\prime \prime}$, then there is a coordinate neighbourhood ($W, \mu \times x$) of (p_{e}, m_{0}), $W=U \times V$ such that $(\mu \times \times)\left(\eta_{0}, m_{0}\right)=(0,0)$ and f can be in these coordinates represented by
(1) $x_{1}^{\prime}=x_{1}+\alpha \mu+\beta x_{1}^{2}+\omega\left(\mu, x_{1}, y\right)$,

$$
\begin{equation*}
y^{\prime}=A y+x\left(\mu, x_{1}, y\right) \tag{2}
\end{equation*}
$$

where $y=\left(x_{2}, \ldots, x_{m}\right)$, the primed coordinates are those of the images, $\propto<0$,

$$
\begin{equation*}
x(0,0,0)=0, \omega(\mu, x, 0)=\sigma\left(|\mu|+x_{1}^{2}\right) . \tag{3}
\end{equation*}
$$

Note that from the form of (2) it follows that every fixed point in W satisfies $y=0(W$ possibly restricted).

We denote by $\mathcal{F}_{1}^{\prime \prime \prime}$ the set of all $f \in{\underset{1}{7} " \text {, in }}^{\prime \prime}$, the representation (1), (2) of which (i) $\beta \neq 0$ and (ii) the eigenvalues of \mathcal{A} have moduli $\neq 1$. It is obvious that the meaning of these conditions is independent of the choice of coordinates. Also, (ii) is equivalent with (a). We show that $\mathcal{F}_{1}^{\prime \prime \prime}$ is open dense.

Openness follow easily from the continuous dependence of the eigenvalues on f. To prove density, we note that there is a raal σ^{σ} arbitrarily amall in abso-
lute value such that $\beta+\sigma^{\alpha} \neq 0$ and for any eigenvalue λ of $d f_{n_{0}}\left(m_{0}\right),\left|\lambda+\delta^{\prime}\right| \neq 1$. We change f into f by changing the terma $A y$ and βx_{1}^{2} in the representation (1), (2) of f into $\left(A+\psi(\mu, x) \sigma^{\sigma} E\right) y$ and $\left(\beta+\psi(\mu, x) \sigma^{\sigma}\right) x_{1}^{2}(E$ being the unity matrix) reapectively, where $\psi(\mu, x)$ is a C^{κ} bump function vanishing outside W, and equal 1 at $(0,0)$. By the choice of a sufficiently small σ^{σ}, f can be made sufficiently close to $f . d f_{p}(m)$ will then satisfy (a) and we do not introduce any new fixed points. Since X_{1} is discrete for $f \in \mathcal{F}_{1}^{\prime}$, this proves the density of $\mathcal{F}_{1}{ }^{\prime \prime}$,

To prove (b) we note that if f satisfies (a), only one eigenvalue can cross the unit circle at (\imath_{0}, m_{0}) and this eigenvalue is the eigenvalue of the restriction of $d f_{12}$ to the manifold $y=0,\left.d f_{n}\right|_{y=0}$. This mapping is represented by (1) with $y=0$.

Assume $\beta>0$ (in the other case we change the eign of x_{1}.). To prove (c), we note first that A is eimilar to a matrix ($\left.\begin{array}{ll}B & 0 \\ 0 & C\end{array}\right)$, i.e. there is a nonsingular matrix Q such that $Q^{-1} A Q=\left(\begin{array}{ll}B & 0 \\ 0 & C\end{array}\right)$, where the moduli of eigenvalues of B and C are <1 and >1 respectively. Applying first the linear coordinate transformation $y=Q(\underset{x}{\mu})$ and then $x=w^{*+}\left(x_{1}, u\right)+\zeta$ $\mu=w^{*-}\left(x_{1}, \xi\right)+\eta$ where $x=w^{*+}\left(x_{1}, \mu\right)$ and $\mu=$ $=w^{*-}\left(x_{1}, \zeta\right) \quad\left(w^{*+}, w^{*-}\right.$ being $\left.C^{k}\right)$ are the equations of the center-atable and center-unstable mani-
folds respectively (cf.[3], Appendix $C^{(1)},(1)$ and (2) is transformed into
(4) $\xi^{\prime}=\xi+\alpha \mu+\beta \xi^{2}+\equiv(\mu, \xi, \eta, \zeta)$,
(5) $\eta^{\prime}=B \eta+\theta(\mu, \xi, \eta, \xi)$,
(6) $\xi^{\prime}=C \xi+\Omega(\mu, \xi, \eta, \zeta)$
where $\alpha<0, \equiv, \Theta, \Omega$ are C^{n} and
(7) $\Theta(\mu, \xi, 0, \zeta)=0, \Omega(\mu, \xi, \eta, 0)=0$,

$$
\begin{aligned}
& \equiv(\mu, \xi, \eta, \zeta)=\sigma\left(|\mu|+\xi^{2}\right), \alpha \equiv(0,0,0,0)= \\
& =0, \alpha \Theta(0,0,0,0)=0, d \Omega(0,0,0,0)=0
\end{aligned}
$$

From (5) and (7) it follows that the orbit of every point (p, m) which is contained entirely in some sufficiently small neighbourhood of (η_{0}, m_{0}) satisfies $\eta\left(f_{k}^{k}(m)\right) \rightarrow 0 \quad$ for $k \rightarrow \infty \quad$ and $\zeta\left(f_{k}^{k}(m)\right) \rightarrow 0$ for $h \rightarrow-\infty$. Thus, if there is an invariant set contrained in this neighbourhood, it must be a part of the manifold $\eta=0, \zeta=0$. In particular, this implies
(8) $\quad \eta\left(Z_{1} \cap W\right)=0 \quad \zeta\left(Z_{1} \cap W\right)=0$
(W possibly restricted).
(1) Actually, Appendix C in [3] deals with Plows rather than mappings. Therefore, in order to use its results directly, we have to construct a flow from f as in [5] and then return to f by considering the crose-section mapping.

We therefore consider the restriction of f to the center manifold $\eta=0, \zeta=0$, the representation of which is given by
(9) $\xi^{\prime}=\xi+\alpha \mu+\beta \xi^{2}+\equiv(\mu, \xi, 0,0)$.

It follows from Corollary 1 and (8) that for $\mu>$ >0 fixed, $Z_{1} \cap W$ consists of two points $\left(\mu, \xi_{1}(\mu), 0,0\right),\left(\mu, \xi_{2}(\mu), 0,0\right)$ satisfying $\xi_{1}(\mu)<0, \xi_{2}(\mu)>0$ and
(10) $\quad x_{1} \mu^{1 / 2} \leq\left|\xi_{i}(\mu)\right| \leq x_{2} \mu^{1 / 2} \quad i=1,2$
for some positive constants x_{1}, e_{2}. From (9) and (10) it follows
(11) $\xi^{\prime}-\xi>0$ for $\mu \leq 0$,
(12) $\quad \xi_{1}(\mu)<\xi^{\prime}<0$ for $\mu>0, \xi=0$,

$$
\begin{gather*}
\xi^{\prime}-\xi>0 \text { for } \mu>0,\left(-4 \alpha \beta^{-1} \mu\right)^{1 / 2}< \tag{13}\\
<|\xi|<\sigma .
\end{gather*}
$$

Since $\xi^{\prime}-\xi$ can change its sign only at fixed points, for $\mu>0$ from (12), (13) we conclude $\xi_{1}(\mu)<\xi^{\prime}<\xi$ for $\xi_{1}(\mu)<\xi<\xi_{2}(\mu), \xi^{\prime}-\xi>0$ for $\xi>\xi_{2}(\mu)$. This, together with (11), proves (c).

To prove (b) we note that if $f \in \delta_{1}{ }^{\prime \prime}$, then only one eigenvalue of $d f_{q}$ can cross the unit circle at (n_{0}, m_{0}) and this eigenvalue is the eigenvalue of the restriction of $d f_{\mu}$ to themifold $\eta=0, \xi=0$,
which is represented by (9). From (13) it follows

$$
\begin{aligned}
& \frac{d \xi^{\prime}}{d \xi}\left(\mu, \xi_{i}(\mu)\right)=1+2 \beta \xi_{i}+\sigma\left(\xi_{i}\right) \quad \text { which implies } \\
& \frac{d \xi^{\prime}}{d \xi}\left(\mu, \xi_{1}(\mu)\right)<1 \frac{d \xi^{\prime}}{d \xi}\left(\mu, \xi_{2}(\mu)\right)>1 \text { for mall } \mu>0
\end{aligned}
$$

This completes the proof.
We summarize the results of Lemmas $1-4$ together with their generalization for periodic points with higher prime period in the following theorem.

Denote $X_{k}=Z_{k} \cap X_{1}\left(f^{k}\right)$.
Theorem 1. For every f from a residual subset $\mathcal{F}_{1} \subset \mathfrak{F}:$
(i) $Z_{f e}$ are l-dimensional submanifolds of $P \times M ; Z_{1}$ is closed;
(ii) for fixed p, the k-periodic points of f_{k} are i solated;
(iii) $X_{\&}$ is discrete;
(iv) for every $(\uparrow, m) \in Z_{k} \backslash X_{k}$, there is a neighborhood $W=U \times V$ of $(1, m)$ and a c^{k} function φ : $: u \rightarrow V$ such that $Z_{\& e} \cap W$ is the graph of φ; (v) for every (η_{0}, m_{0}) $\in X_{k}$, there ia a coordinate neighbourhood (W; $\mu \times \times$) of $\left(\eta_{0}, m_{0}\right),(\mu \times \times)\left(\eta_{0}, m_{0}\right)=$ $=(0,0)$ such that
(a) there is a C^{μ} function $\Psi: U_{1} \rightarrow W, U_{1} \subset R$ open, such that $Z_{k} \cap W=\left\{\psi\left(x_{1}\right)!x_{1} \in u_{1} 3, x_{1} \cdot \psi=i d\right.$, $\frac{d^{2} \mu \cdot \psi}{d x_{1}^{2}}(0)>0 ;$
(b) $d f_{p}^{k}(m)$ has one eigenvalue 1 , the others having moduli different from 1 ; the number of eigenvalues with moduli >1 in the components $x_{1}>0$, and $x_{1}<0$ of $Z_{k} \cap W$ is constant and differ by one; (c) $W \backslash Z_{k}$ contains no invariant set.

Proof. The statement for $k=1$ is proven in Lemmas 1-4. To prove the rest, we denote by $\mathcal{F}_{1 \ell}(U)$ the set of all $f \in \mathcal{F}$ such that f / u satisfies (i) - (v) for $1 \leq k \leq \ell$.

Let d be a C^{n} Riemannian metric on $P \times M,\left\{K_{\sigma}\right\}$ an increasing sequence of compact sets, $\bigcup_{\sigma} K_{\sigma}=P \times M$. Denote $B\left(N, \delta^{\sim}\right)=\left\{(n, m) \mid d(N,(p, m))<\sigma^{\sim}\right\}$ for $N \subset P \times M$. We show that the sets $\hat{F}_{j \ell}=\mathcal{F}_{1 j}\left(K_{l} \backslash B\left(\cup_{k j j} Z_{k l}, \ell^{-1}\right)\right)$ are open and dense. Since $\mathcal{F}_{1}=\bigcap_{\ell, j} \hat{\mathcal{F}}_{j \ell}$, this will complete the proof.

To prove density, we cover $Z_{1} \cap K_{l} \backslash B\left(\bigcup_{\ell<j} Z_{k}, \ell^{-1}\right)$ by a countable family $\left\{W_{i}\right\}$ of open sets such that $\bar{W}_{i} \cap f\left(\bar{W}_{i}\right) \cap \ldots \cap f^{j-1}\left(\bar{W}_{i}\right)=\varnothing \quad$ and $W_{i} \cap Z_{k}=\varnothing$, se $<j$. Using Lemmas 1 - 4 we find that $f j$ can be arbitrarily closely approximated by a map h such that $h \in F_{1}\left(W_{i}\right)$ and h coincides with f^{j} outside W. We denote

$$
F= \begin{cases}f^{1-j h} & \text { on } W_{i}, \\ f & \text { outside } W_{i}\end{cases}
$$

Then, if h is close enough to $f^{j}, W_{i} \cap \tilde{f}\left(W_{i}\right) \cap \ldots$ $\ldots \cap \tilde{f}^{j-1}\left(W_{i}\right)=\varnothing, \tilde{f} j=h \quad$ and, therefore, $\tilde{f} \in \mathcal{F}_{i \ell}\left(W_{i}\right)$.

Repeating this for every i and taking into account the openness of $\mathcal{F}_{1}\left(W_{i}\right)$, one concludes the proof of density of $\hat{\hat{F}_{j \ell}}$.

For the proof of openness we note that since
$K_{l} \backslash B\left(\bigcup_{\ell \in j} Z_{k l}, l^{-1}\right)$ is compact, from $f \in \hat{F}_{j l}$ it follows $f \in \mathcal{F}_{1 j}\left(K_{l} \backslash B\left(\bigcup_{k j} Z_{k}, l^{-1}-\sigma^{2}\right)\right)$ for some small $\sigma>0$.
If \tilde{f} is close enough to $f, \bigcup_{k<j} Z_{k}(\tilde{f}) \in B\left(\bigcup_{k<j} Z_{k}(f), \sigma\right)$. Thus,
(14) $B\left(\bigcup_{k<j} Z_{k l}(\tilde{f}), l^{-1}\right) \supset \overline{B\left(\bigcup_{k<j} Z_{k c}(f), l^{-1}-\sigma^{\prime}\right)}$.

The openness of $\hat{\mathcal{F}}_{j \ell}$ follows now from (14), Lemmas 1 - 4 and the fact that \bar{f}^{j} is arbitrarily close to f^{j} if \tilde{f} is close enough to f.

Remarks. 1. In case $n=2$, the points of one component of $Z_{k} \cap W \backslash\left\{\left(n_{0}, m_{0}\right)\right\}$ are saddles, the points of the other are either sources or sinks.
2. The set \mathcal{F}_{11} of those $f \in \mathcal{F}$ satisfying (i) (v) of Theorem 1 for $h=1$ is open dense in \mathcal{F}.
82.

The sete Z_{k} for $f=1$ are not closed in general. A point from $\bar{Z}_{k} \backslash Z_{k}$ is also a periodic point, its prime period being a divisor of he. We shall call the points of $\bar{Z}_{k} \backslash Z_{k}$ branching (ℓ-periodic, according to their prime period) points. In this aection, we shall study the behaviour of f in the neighbourhood of bran-
ching points in the case $n=2$ which allows us to obtain some information about the sets $\bar{Z}_{\mathfrak{R}}$.

If $f \in \mathcal{F}_{1}$, a fe-periodic point ($\{, m$) can be a branching point only if $d f_{k}^{k}(m)$ has some root of u pity different from 1 as an eigenvalue. For, if $d f_{k}^{\boldsymbol{n}}(\mathrm{m})$ has no root of unity as an eigenvalue, $d f_{p}^{k}(m)$ - id is regular for every $\nu>0$ and by the implicit fundlion theorem there is a unique C^{n} l-dimensional summanifold of periodic points with (not necessarily prime) perind $\nu k, \nu>0$; thus, this manifold coincides with Z_{k} for every $\nu>0$. The case of 1 being an eigenvalue is covered by Theorem 1 .

Therefore, we need first to know how the eigenvalues cross the unit circle if \nsim is changed, in the generice case.

Henceforth we shall assume $n=2$ without repeating it. Let $f \in \mathcal{F}_{1}$ and denote $D_{k}=\left\{(\eta, m) \in Z_{k f} \mid d f_{k}(m)\right.$ has double eigenvalues 3.

From the implicit function theorem it follows that the eigenvalues $\lambda_{1}^{(k)}, \lambda_{2}^{(k)}$ of $d f_{2}^{k}(m)$ are c^{μ} fundtions on $Z_{k} \backslash D_{k}$.

Denote by S the unit circle in the complex plane.
Theorem 2. For a residual subset \mathcal{F}_{2} of $\mathcal{F}_{2} \mathcal{F}_{2} \subset \mathcal{F}_{1}$:
(i) $\quad \lambda_{i}^{(h)}\left(D_{\Omega k}\right) \cap S=\varnothing, \quad i=1,2$,
(ii) $\lambda_{i}^{(k)}, i=1,2$ meet S tranaversally.
(iii) If, for some $(\eta, m) \in Z_{k}, \lambda_{1}^{(k)}(\eta, m) \in S$, then either $\lambda_{2}^{(m)} \notin S$ or $\lambda_{1}^{(k)}(\eta, m)$ is not a root of 1.

Corollary. Generically, ($1, m$) can be a branching point only if one of the eigenvalues of $d f_{\uparrow}^{k}(m)$ is -1 , the other being real $\neq 1$. We denote by $Y_{\text {f }}$ the set of such points.

Proof of Theorem 2. We prove the atatement of the theorem for $k=1$ (fixed points), the generalization to the case te >1 being similar as in the proof of Theorem 1.

From Theorem 1, (vc) and its proof it follows that for every $f \in \mathbb{K}_{1}$, if some eigenvalue meets S at 1 , it is single and meets S transversally. Therefore, we can restrict our attention to $S \backslash\{1\}$.

Let $f \in \mathbb{F}_{11}$, where \mathbb{F}_{11} is defined at the end of $\S 1,(\notin, m) \in Z_{1} \backslash X_{1}$. Then, according to Theorem 1 , (iv), there is a coordinate neighbourhood $(W, \mu \times \times), W=U \times V \quad$ such that $\mu(p)=0, \times(m)=0$ and the representation of f in these coordinates is given by

$$
x^{\prime}=A(\mu) x+\Omega(\mu, x),
$$

where $\Omega(\mu, 0)=0, d \Omega(0,0)=0$.
The subset of matrices with both eigenvalues on the unit circle is a submanifold el of co-dimension 1 in OL (2) (it is the set of matrices A such that $\operatorname{det} A=$ $=1$). Further, the set of all 2×2 matrices with
eigenvalues being ℓ-th roots of unity (the unity matrix E excluded), φl_{ℓ} is a 2-dimensional submanifold of GL (2), given by $\operatorname{det} A=1, \operatorname{tr} A=\alpha_{j}+\alpha_{j}^{-1} \quad$ for l odd, and a union of the 2-dimensional manifold given as for l odd and the isolated matrix - E for l even, where α_{j} are the l-th roots of unity; lying in the open upper complex halfplane.

Using the elementary transversality theorem, we can approximate the function $A: \mu(U) \longrightarrow G L(2)$ arbitrarily closely by $\tilde{A}: \mu(U) \longrightarrow G L(2) \quad$ so that \tilde{A} coincides with A outside $u_{1}, \bar{u}_{1} \subset \mu(U)$, \tilde{A} meets $\mathscr{C l}$ transversely and does not meet $\mathcal{U l}_{R}$ at all for $\mu \in U_{2}, U_{2}$ open, $\bar{U}_{2} \subset U_{1}$. As a consedquince we obtain that $\tilde{A}(\mu)$ does not have -1 as doubsle eigenvalue for any $\mu \in U_{2}$. This implies that the iigenvalues λ_{1}, λ_{2} are C^{n} functions of matrices in the neighbourhood of any $A(\mu)$, some eigenvalue of which is -1 .
Therefore, in the neighbourhood of the values of $\tilde{A}(\mu)$, $\mu \in U_{2}$, the subsets of GL (2), given by $\lambda_{1}=-1$ and $\lambda_{2}=-1$ are aubmanifolds of co-dimension 1 . Thus, we can use the transversality theorem again (for $\tilde{\mathcal{A}}$ and φ_{l}) to obtain that arbitrarily near \tilde{A} (and, thus, A, there is a function $\not{\mathcal{A}}: \mu(u) \rightarrow G L(2)$ such that for $\mu \in U_{2},-1$ is not double eigenvalue of $\mathbb{A}(\mu)$ and the eigenvalues λ_{1} and λ_{2} cross the unit circle transversely at the points which are not l-th roots
of unity.
Let V_{2}, V_{1} be open, $\bar{V}_{2} \subset V_{1}, \bar{V}_{1} \subset V$, let $\varphi(\mu, x)$ be a bump function such that $\varphi(\mu, x)=1$ for $(\mu, x) \in U_{2} \times V_{2}, \varphi(\mu, x)=0 \quad$ outside $U_{1} \times V_{1}$. We denote by f the map that coincides with f outside $U \times V$ and is given in W by its coordinate representation

$$
x^{\prime}=[A(\mu)+\varphi(\mu, x)(\tilde{A}(\mu)-A(\mu))] x+\Omega(\mu, x)
$$

Then, if A is chosen close enough to A, f is orbitracily close to f, satisfies (i), (ii) and
(iii) if $\lambda_{1} \in S$, then either $\lambda_{2} \notin S$, or λ_{1} is not an l-th root of unity, in $U_{2} \times V_{2}$.

As usual, we can prove that f can be approximated by a function \tilde{f} having Properties (i),(ii), (iii $)$ over all $Z_{1} \backslash X_{1}$ by covering $Z_{1} \backslash X_{1}$ by a countable fawily of coordinate neighbourhoods. It is obvious that the set of f 's, having Properties (i), (ii), (iii) is open.

Since the subset $\mathcal{F}_{21} \subset \mathcal{F}$ of maps, having Properties (i), (ii), (iii) for te $=1$ is the intersection of the sets $\mathcal{F}_{21 \ell} \subset \mathcal{F}$, satisfying $(i),(i i),\left(\right.$ iii $\left._{l}\right)$, the proof of Theorem 2 for $h^{2}=1$ is completed.

Remark. Note that the subset $\mathcal{F}_{2 k \ell} \subset \mathcal{F}$ of maps, all iterates up to order te of which satisfy (ii il), is open dense in F.

We shall now study the behaviour of f in the neighbourhood of a branching point.

Theorem 3. Assume $r \geq 3$. Then, for a residual subset \mathscr{F}_{3} of $\mathcal{F}_{,} \mathcal{F}_{3} \subset \mathcal{F}_{2}$, the following is valid:
(i) Y_{k} coincides with the set of \&e-periodic branching points.
(ii) For every (n_{0}, m_{0}) $\in Y_{k}$ there is a coordinate neighbourhood $(W, \mu \times x), W=U \times V$ of (η_{0}, m_{0}) such that $\mu\left(n_{0}\right)=0, x\left(m_{0}\right)=0, z_{m} \cap W=u \times\{0\}$ and
(a) $Z_{2 \&} \cap W$ consists of two components, separated by (\imath_{0}, m_{0}); all points of $Z_{2 k} \cap W$ satisfy $\mu>$ >0 and $Z_{2 k} \cap W \cup\left\{\left(\eta_{0}, m_{0}\right)\right\} \quad$ is a C^{1} (but not C^{2}) submanifold of W.
(b) Either the points of $Z_{k} \cap W$ are sinks for $\mu>0$ saddles for $\mu \leq 0$ (degenerated for $\mu=0$), and the points of $Z_{2 k} \cap W$ are saddles, or the same is true with sink replaced by saddle and conversely, or one of the above cases is true for the inverse of f.
(c) $W \backslash\left(Z_{k} \cup Z_{2 k}\right)$ contains no invariant set of f_{k}^{k}.

Proof. We again prove the theorem for se $=1$, the generalization for $k>1$ being similar as in the proof of Theorem 1 .

Assume $f \in \mathfrak{F}_{21}$. Then, one eigenvalue of $d f_{n_{0}}\left(m_{0}\right)$ is -1 , the other, λ, is not on S. We can assume $|\lambda|<1$, in the other case we consider the inverse of f. As in the proof of Theorem 1, using [3], Appendix C, we find that there is a coordinate neighbourhood
$(W, \mu \times x), W=U \times V,(\mu \times x)\left(p_{0}, m_{0}\right)=(0,0)$ such that the local representation of f in the coordinates μ, x is given by

$$
\begin{align*}
& x_{1}^{\prime}=-x_{1}+\alpha \mu x_{1}+\beta x_{1}^{2}+\gamma x_{1}^{3}+\omega\left(\mu, x_{1}, x_{2}\right), \tag{15}\\
& x_{2}^{\prime}=\lambda x_{2}+\vartheta\left(\mu, x_{1}, x_{2}\right), \tag{16}
\end{align*}
$$

where ω, ϑ are C^{n} and

$$
\begin{align*}
& v\left(\mu, x_{1}, 0\right)=0, d v(0,0,0)=0, \omega\left(\mu, x_{1}, x_{2}\right)= \tag{17}\\
& =\left(\left|x_{1}^{3}\right|+\left|\mu x_{1}\right|+\left|x_{2}\right|\right)
\end{align*}
$$

Similarly, as in the proof of Lemma 4, it can be shown that every f can be arbitrarily closely approximated in \mathcal{F}_{21} by a map the local representation of which satisfies $\beta^{2}+\gamma \geq 0$ at every point from Y_{1}. We denote \mathcal{F}_{31} the set of such maps. The openness of \mathbb{F}_{31} is obvious.

We prove that if $f \in \mathcal{F}_{31}$ then f satisfies (i), (ii), of this theorem for $k=1$. We shall analyze the case $\alpha>0, \beta^{2}+\gamma<0$. The other cases can be transformed to the above case by a suitable change of coordinates or lead to other cases of (ii b), which can be analyzed similarly.

From (15),(16) we obtain the representation of the second iterate of

$$
\left.f\right|_{x_{2}}=0
$$

(18) $x_{1}^{\prime \prime}=x_{1}-2 \alpha \mu x_{1}-2\left(\beta^{2}+\gamma\right) x_{1}^{3}+\omega_{2}\left(\mu, x_{1}\right)$,
where $\omega_{2}(\mu, x)=\left(\left|\mu x_{1}\right|+\left|x_{1}^{3}\right|\right)$. By a change of variables $x_{1}=\nu^{2} \xi, \mu=\nu^{2}$ for $\mu>0$, (18) ia transformed into
(19) $\xi^{n}=\xi-2 \nu^{2}\left[\alpha \xi+\left(\beta^{2}+\gamma\right) \xi^{3}\right]+\chi(\nu, \xi)$,
where $x(\nu, \xi)=\nu^{-1} \omega_{2}\left(\nu^{2}, \nu \xi\right)$ is c^{k-1} for $\nu>0$ and satisfies
(20)

$$
x(\nu, \xi)=\sigma\left(\nu^{2}\right)
$$

ξ is a 2-periodic point of $f_{t} \mid x_{2}=0 \quad$ for $\nu>0$ if ξ satisfies

$$
\begin{equation*}
\alpha \xi+\left(\beta^{2}+\gamma\right) \xi^{3}-x_{1}(\nu, \xi)=0 \tag{21}
\end{equation*}
$$

where $x_{1}(\nu, \xi)=\nu^{2} x(\nu, \xi)$. From (20) it follows that if we define $x_{1}(0, \xi)=0$,
then x_{1} is $c^{\mu-3}$ for $\nu \geq 0$ and, in the case $r=3$, that $\frac{\partial x_{1}}{\partial \xi}$ is continuous.

For $\nu=0$; (21) has two non-zero solutions

$$
\xi_{1}(0)=-\left[-\infty\left(\beta^{2}+\gamma\right)^{-1}\right]^{1 / 2}, \xi_{2}(0)=\left[-\alpha\left(\beta^{2}+\gamma\right)^{-1}\right]^{1 / 2}
$$

Using the implicit function theorem of [6] and returning to the coordinates μ, x_{1} we obtain that for $\mu>0$ sufficiently small there are two 2-periodic points (l orbit) of $\left.f_{p}\right|_{x_{2}}=0 \quad$ with coordinates
(22) $x_{11}(\mu)=-\left[-\propto\left(\beta^{2}+\gamma\right)^{-1} \mu\right]^{1 / 2}+\psi_{1}(\mu)$,

$$
x_{12}(\mu)=\left[-\alpha\left(\beta^{2}+\gamma\right)^{-1} \mu\right]^{1 / 2}+\psi_{2}(\mu),
$$

where ψ_{1}, ψ_{2} are C^{k-3} and satisfy $\psi_{i}(\mu)=\sigma\left(\mu^{1 / 2}\right)$; the eigenvalue of $\left.d f_{12}^{2}\right|_{x_{2}}=0 \quad$ at the points x_{11}, x_{12} is equal $1+4 \alpha \mu+\sigma(\mu)$. Since from (16) it follows that the other eigenvalue of $d f_{\mu 2}^{2}$ at the points $\left(\mu, x_{11}(\mu), 0\right),\left(\mu, x_{12}(\mu), 0\right)$ is of modulus less than one, this proves that the points $\left(\mu, x_{11}(\mu), 0\right),\left(\mu, x_{12}(\mu), 0\right)$ are saddles for small μ. From (15),(16) it follows furthen that for small $|\mu|$, the points of Z_{1} are sinks for $\mu>0$ and saddles for $\mu<0$. This proves (ii b) if we show that $Z_{2} \cap W$ (W possibly restricted) does not contain other points except of the points $\left(\mu, x_{1 i}(\mu), 0\right)$, $i=1,2$.

From (16), (17) it follows that every orbit that remains in $|x|<\sigma^{\prime}\left(\sigma^{r}\right.$ sufficiently small independent of μ for $|\mu|$ small), approaches the submanifold $x_{2}=0$ (in the positive sense). Therefore, in order to prove (ii c) and thus also to complete the proof of (ii b) it suffices to prove that for sufficiently mall μ the only periodic points of $f_{1} \mid x_{2}=0 \quad$ for $\left|x_{2}\right|<\delta_{1}<\sigma^{r}, \delta_{1}$ sufficiently small, are the points $x_{1 i}(\mu), i=1,2$, and 0 .

From (17) it follows that
(23) $x_{1}^{\prime \prime}-x_{1}<0$ for $\mu \leqslant 0, x_{1}<0$,
(24) $x_{2}^{\prime \prime}-x_{1}>0 \quad$ for $\mu \leqslant 0, x_{1}>0$,
(25) $x_{1}^{\prime \prime}-x_{1}>0$ for $\mu>0$,

$$
x_{1}>\left[-4 \alpha\left(\gamma+\beta^{2}\right)^{-1} \mu\right]^{1 / 2}
$$

(26) $x_{1}^{\prime \prime}-x_{1}<0$ for $\mu>0$,

$$
x_{1}<-\left[-4 \alpha\left(\gamma+\beta^{2}\right)^{-1} \mu\right]^{1 / 2},
$$

and $|\mu|<\delta_{2},\left|x_{1}\right|<\delta_{2}, \delta_{2}$ being sufficiently small. From (23), (24), it follows that the orbit of every point with $0>\mu>-\delta_{2},\left|x_{1}\right|<\delta_{2} \quad$ leaves $\left|x_{1}\right|<\delta_{2}$. From (22), (23), (24) and the implicit funcion argument used after (21) it follows that there are no periodic points with $\left|x_{1}\right|<\left[-4 \alpha\left(\beta^{2}+\gamma\right)^{-1} \mu\right]^{1 / 2}$
except of the points $x_{11}(\mu), x_{12}(\mu)$. From this, (25), (26) and (19) it follows $x_{1}^{\prime \prime}-x_{1}<0$ for $\delta_{2}<x_{1}<$ $<x_{11}(\mu)$ or $0<x_{1}<x_{12}(\mu)$ and $x_{1}^{\prime \prime}-x_{1}>0$ for $x_{11}(\mu)<x_{1}<0 \quad$ or $x_{12}(\mu)<x_{1}<\delta_{2}, \mu>0$, $s 0$ that every orbit both in the positive and negative sence tends to one of the points $0, x_{11}(\mu), x_{12}(\mu)$. This completes the proof of (iv c).

To complete the proof of (ii a), we denote by $\varphi\left(x_{1}\right)$ the real function, defined as the inverse of the functions $x_{1}=x_{11}(\mu)$ for $x_{1}<0$ and $x_{1}=x_{12}(\mu)$ for $x_{1}>0$. From (22) it follows
(27) $\lim _{x_{1} \rightarrow 0_{-}} \varphi\left(x_{1}\right)=\lim _{x_{1} \rightarrow 0_{+}} \varphi\left(x_{1}\right)=\frac{d \varphi^{+}}{d x_{1}}(0)=\frac{d \varphi^{-}}{d x_{1}}(0)=0$.

Further, from the fact that the points $\left(\mu, x_{11}(\mu), 0\right)$ ($\mu, x_{12}(\mu), 0$) are nondegenerated for $\mu>0$ it follows that φ is C^{n}. Using (22) and the implicit function theorem we obtain
(28) $\frac{d \varphi}{d x_{1}}=-\left[\alpha^{-1}\left(\beta^{2}+\gamma\right) \mu\right]^{1 / 2}+\sigma\left(\mu^{1 / 2}\right)$ for $x_{1}<0$, $\frac{d \varphi}{d x_{1}}=\left[-\alpha^{-1}\left(\beta^{2}+\gamma\right) \mu\right]^{1 / 2}+\sigma\left(\mu^{1 / 2}\right)$ for $x_{1}>0$.
This, together with (27) shows that φ can be completed into a C^{1} function (which is not \mathcal{C}^{2}) in some neighbourhood of 0 by defining $\varphi(0)=0$.

As a corollary of Theorem 1 and 3 we obtain
Theorem 4e Let $r>2$. Then for every $f \in \mathcal{F}_{3}$:
(i) for he odd, $Z_{\text {g }}$ is a closed submanifold of $P \times M$, (ii) for se even, $\bar{Z}_{k c}$ is a closed C^{1} (but not C^{2}) submanifold of $P \times M ; \bar{Z}_{k} \backslash Z_{k}$ is discrete and coincides with $Y_{\text {fe/2 }}$.

$$
R \in f \in r e n c e s
$$

[1] K.R. MEYER: Generic bifurcation of:feriodic points, to appear in Trans.Amer.Math.Soc.
[2] J. SOTOMAYOR: Generic one-parameter families of vector Pields. Bull.Am.Math.Soc.74(1968),722726.
[3] R. Abraham, J. ROBBIN: Traneversal mappings and flowe. Benjamin 1967.
[4] S. LANG: Introduction to differentiable manifolds, Interacience 1962.
[5] S. SMALE: Differentiable dynamical aystame Bull. An.Math.Soc.73(1967),747-817.
[6] P. HARTMAN: Ordinary differential equations. Wiley 1964.

Ustav technickej kybernetiky SAV Dabravaka cesta

Bratislava, Czechoslovakia
(Oblatum 16.2.1970)

[^0]: This research was partly done under the support of NASA (NGR 24-005-063) during the author s stay at the University of Minnesota.

