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ON ONE-PARAMETER FAMILIES OF DIFFEOMORPHISMS
Pavol BRUNOVSKY, Bratislava

This paper is concerned with diffeomorphisms of
manifolds, depending on a parameter. This means th;t we
shall consider mappings f: PxM — M , where P
is & 1-dimensional C* (1 < & < o) manifold, M
is an m -dimensional (" manifold, f is C* and such
that for every nn € P, the mapping £, M—> M gi-
ven by f, (m) = #(n,m)is a diffeomorphism. Given P ,

M , we denote by % the set of all mappings ¥ with
the above properties, endowed with the C® Whitney to-
pology. We shall be interested in the generic behavior
of the periodic points of ﬁ” '(i.e. fixed points of ﬂ,
and its iterates) if o is varied.

We say that a property is generic in % if it ie
valid for every f from a residual subset of ¥ .

The first part of our results (§ 1) concerns the ca-
se of arbitrary m , the second (§ 2) takes place form= 2.

The problems studied in ;his paper are to a great ex-
tent motivated by differential equations, where problems

of dependence of critical points and periodic trajecto-

This research was partly done under the support of NASA
(NGR 24-005-063) during the author’s stay at the Univer-
sity of Minnesota.
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ries on a parameter are frequent.

The present research has been stimulated by the work
of K.R. Meyer [{1) on two dimensional symplectic diffeo-
morphisms, to whom the author is indebted for valuable
discussions. Similar problems have been studied by J.
Sotomayor (2] whose work deals with two-dimensional
flows. His setting of the problem and results are of a

somewhat different character.

§1

Denote by Z, = Z, (f) c Px M  the set of all k-
periodic points of f , i.e. Z‘b= {(—fz,m)lﬁ:(m) -m,

4-'::' (m) 2 m for O<z<h3?. In this section, we
shall study the sets Z & ° 4 will be called the prime
period of a point (p,m ) € Z, .

A closed subset @ of PxM will be called inva-
riant, if {Cn,f (n,m(p,m)e Gic O and{(n,f; (m)

[(p,m)e @} ¢ @ . By the orbit of a point (fs,m) we shall
understand the set of all points (p, 4:: (m)), & integer.

Lemma 1. For every f from a certain open and den-
se subset §' of ¥, Z  is a closed one-dimensional
submanifold of Px M .

Eroof. It is obvious that Z, is closed. Associate
with every £ ¢ & a mapping FsPx M — PxM given
by F(a,m) = (m,f (n,m)) . Then, Z = F-'(A) whe-
re A ie the diagonal in MxM and by the transversa-
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1ity theorems 18.2, 19.1 of [3], the set of f ‘s for
which F meeta A transversally, is open and dense
in ¥ . The statement of the lemma follows by the impli-
cit function theorem.

Denote by X, the set of those points (fn,m)e Z,
for which df, (m)-4id (eor, dF(y,m ) ) is singular
(i.e. at least one eigenvalue of dfﬂ (m) is equal 1).
Further, denote by 4 = pn > m the imbedding of Z 4
into Px M . From the implicit function theorem it fol-
lows that X  is exactly the set of those points z ¢ Z 4
for which Tj’” (z) meets the submanifold (T'P), of
those points from TP satisfying dn = 0.

Lemma 2, For every f from an open and dense sub-
set 7 of §’ Tz (z) meets(TP), transversally.

Corollary 1. For fe $” if (n,m)e X  then
there is a coordinate neighbourhood (W,wcxx),W=UxV ot
(fr,m) such that wxx (f,m )=(0,0), Z1nW can be pa-
rametrized by x , i.e. (e .x)(ZnW):U(«.,.xM‘«:q;(-x )
X, =g, (x), 2&i£m, X, e.7} where ¢ is C" 0eJ,

Y is an interval, and ———2-— (0) > 0. (The last
inequality is the coordinate rcp;elontation of the trans-
versality condition of Lemma 2.)

Based upon this corollary, we shall call the points
of x, collapsation (fixed) points. Namely, there are
exactly two points in Z N W  with fixed «w > 0 small
enough; these points collapse at “« = 0 and disappear
for @ < 0.
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Corollary 2. For every f € 3;" , the fixed points
of fﬂ are isolated for every n € P .

Corollary 3. For £ € §”, X,  is discrete.

Proof of Lemma 2. Openness. Assume f € 3:’ . We co-
ver Z_‘ by a countable number of coordinate neighbour-
hoods (U > V., @, = X,) . Using the implicit func-
tion formula for second derivatives, we can express the
transversality condition of Lemma 2 by inequalities

W * 0, where 7, are polynomialse in ((a‘x x )o €
'((“k." .x‘)"" and its first and second derivatives. Rest-
ricting suitably the coordinate neighbourhoods, we can
assume thet l?g‘ |  are bounded away from gero by positi-
ve constants €, . e ¢ :'F' is close enough to ¥ (in the
C® Whitney topology), Z;‘ (¥) will ve contained in
g(u“x \a/‘) and sy (¥) will be non zero on U x ¥ .
Consequently, 21 (F) will satiafy the transversality
condition.

For the proof of density, we first prove the fol-
lowing lemma: ’

Lemma 3. Denote B%CG) ={xeR*|Ixl<eji, I-I
being the Buclidean norm. Let f & ' and let (Wuxx),
W= UxVY be a coordinate neighbourhood in Px M such
that « (W)=B (1), x(V)=3B, (1) and WA Z is con-
nected. Denote W = U, \’i-(@cxx)’1[31(i/3)x_Bm(-i/.?)J s
<=1,2 . Then, in any neighbourhood @ of £ in 34"
there is an ¥ which coincides with f outside W and
such that T, (Z (¥)n W,) meets (TP), transversally,
Tp () being the projection of T (-) into TP .
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Proof. Denote by (] the set of all C™ maps of
Z,AW into U, § ={Tg /g e G . We consider §
as a submanifold of the Barnach manifold § of all C*
maps T(anW)—? TP . By Theorem 19.1 of (3], there
is a 9 € G , arbitrary C¥ -close to z, such that
Ty meets (TP )° transversally. In particular,
can be chosen 80 thatlw ey - @og |£ 1/4 . Let ¥ be
a C* bump function such that ¢ = 1 on k{,, =0
on W W, . Define g,(z)s-(af’((a,-jﬂi- gy =7, .
(wey —-(u,oa}ﬂ' ). Then, ¢ meets (TP), transver-
sally in W, and coincides with 3’1‘_ outside W, .

Since W is isomorphic with a subset of R™*?

and (= x)(ZAW) is a C* curve in R™*1 | there
is a C"™ tubular neighbourhood of Z1n W, h: Z AW
x B, (1)—> W such that h (2, 0) = F(z) (for
the concept of tubular neighbourhood cf.[4]). This tubu-
lar neighbourhood can be constructed e.g. so that
(wxx)e ,(z,B,(1)) lies in the m -hyperplane
passing through ((w x x )(z) and orthogonal to the tan-
gent to (e x X)(Z AW)at (0,0) .

Denote I , JT, the natural projections of 31 N

19
AW xB (1) into Z, AW and B, (1) respectively,

%:R™> R a C" bump function such that % = 1 on

B, (1/2) and y = O outside B, (1) . We define
Fip,m)=f (e (p,m)+y, K p,m). [ugm # ', m)-

~ Wi, WM, mI],m) for (p,m)€ L(ZAW)xB 1],
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?(/p,m) = f(f1,m) elsewhere.

Then, Z, (¥)n W= (g %4 )(Z (f)aW), ¥ coinci-
des with ¢ outside U and § can be made arbitrary
close to f Dby choosing g sufficiently close to F
This proves the lemma.

To prove the density part of Lemma 2, we find a
countable family of coordinate neighbourhoods
(W, ¢ % % ) in such a way that every (W, , w, x g, )
satisfies the assumptions of Lemma 3 and Z (f)c E‘J \A:“
(the subscript 1 used as in Lemma 3). Then, we apply Lem-
ma 3 stepwise for every o and choose the approximation

/
of £ at evoryf‘tep 80 close that the transversality con-
dition is not destroyed in /J&J“ um N Lla“ . This is pos-
sible due to the first part of the proof.
The next lemma examines the behaviour of £ in the
neighbourhood of a collapsation point.
Lemma 4. For every f from an open and dense sub-

" "

set 7" of 3';

(a) for every (p, ,m,) € X, , one eigenvalue of

the following is true:

d.fn (m,) is 1, the moduli of the others being diffe-
(-]

rent from 1,

(b) locally, (.pn,, m,) divides Z \{(n, m_ )} into two
components and the number of eigenvalues of df,, with
modulus 1 at points from different components of

Z \ {(f,,m,)} differs by 1.

(c) There is a neighbourhcod W of (41, ,m, ) such that
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WA\ Z contains no invariant set.

4
Proof. Since (f1,,m,)e X | af, (m, ) has 1

as an eigenvalue. This eigenvalue is simple because of
Lemma 1.
”
If ('ﬂ'o,mo) e X1 and f e ’t: , then there
is a coordinate neighbourhood (W, @« x x ) of (n,,m,),

W =WUxV such that (e x x) (12,,m )= (0,0) and
f can be in these coordinates represented by

(1) x;=x1+oc(¢4.+/3x: +w(w,x , y),

(2) o = Ag+x (e, x ,g)

where a4 = (x,, ..., % )  the primed coordinates are
those of the images, o < 0,

(3) 2400,0,0) =0, (e, x,0)= o (le | + x5 .

Note that from the form of (2) it follows that eve-
ry fixed point in W  satisfies 2 = 0 (W possibly
restricted).

We denote by ff” the set of all £ e ?1"” , in
the representation (1),(2) of which(i) A4 0 and
(ii) the eigenvalues of A have moduli x4 ,It is ob-
vious that the meaning of these conditions is indepen-
dent of the choice of coordinates. Also, (ii) is equiva-
lent with (a). We show that ?1'”’ is open dense.

Openness follows easily from the continuous de-
pendence of the eigenvalues on { .To prove density, we

note that there is a real ¢ arbitrarily emall in abso-
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lute value such that 3+ o % 0  and for any eigenve-

lue A of d.{-‘” (m,), 1A+ # 4 . We change f into
(]

¥ by changing the terms Ay eand ﬂx:’ in the re-

_presentation (1),(2) of £ into (A+1|r(‘u,.x)d'E)'y. and

(p+ v(@c,x)d')xf ( E being the unity matrix) respec-
tively, where y (w,x) is a C" bump function vanish-
ing outside W, and equel 1 at ((0,0) . By the choice of
a sufficiently small J°, f can be made sufficiently
close to f . d.fﬂ (m) will then satisfy (a) and we do not
introduce any new fixed points. Since X is discrete

1
for f e ?,," , thie proves the density of %' .

To prove (b) we note that if f satisfies (a), on-
ly one eigenvalue can cross the unit circle at (., , m, )
and this eigenvalue is the eigenvalue of the restriction
of d.'f‘” to the manifold 4 = 0, d’ﬁ-'q-a .This mapping is
represented by (1) with 4 = 0.

Assume 3 > 0 (in the other case we change the
sign of X, ). To prove (c), we note first that A is

similar to a matrix (g g ), i.e. there is a nonsingular
matrix @ such that Q~"AQ = (% g) , where the modu-

1i of eigenvalues of B and C are <41 and >1 res-
pectively. Applying first the linear coordinate transfor-

mation 4 = Q(%) and then z = w**(x,,«)+}
o= wh(x $)+7  where x=w**(x u) and «u =
= w* " (x, §) (w*+, w®" being C* ) are the e-

quations of the center-astable and center-unstable mani-
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folds respectively (cf.[3], Appendix C oY , (1) and (2)

is transformed into

(4) ;” fraw+pBEts = («,F,7,8) ,
(5) 7'=B7y+ ©(,§,7,8) ,

(6) §=Ct+ 2, t,7,8)

where o« <0, =, 6, 1 are c* ana

(7) 8(w,$,0,8)=0,2(«,§,m,0) =0,
=(w,,7,0) = o (lwl+ ), d=1(0,0,00) =
= 0,d 6(0,0,0,0) =0, d02(0,0,0,0) = 0.

From (5) and (7) it follows that the orbit of eve-
ry point (o, m ) which is contained entirely in some
sufficiently small neighbourhood of (.fn,, m,) satisfies
'Q(-F:(m)) — 0 for k& —>c0 and gw:cmn -0
for & —> - co . Thus, if there is an invariant set con-
tained in this neighbourhood, it must be a part of the
manifold 7 = 0, { = 0 . In particular, this imp-
lies
(8) m(Z AW)=20 $(Z,AW) = 0

(W possibly restricted).

(1) Actually, Appendix C in [3] deals with flows rather
than mappings. Therefore, in order to use its results di-
rectly, we have to construct a flow from f as in (5] and

then return to f by considering the crose-section mapping.

- 567 -



We therefore consider the restriction of £ to the
center manifold m = 0 , § = 0, the representation of

which is given by
(9) §' =+ + B+ = (w,§,0,0) .

It followa from Corollary 1 and (8) that for « >
> 0 fixed, Zq AW consists of two points
(@,t,(),0,0) , (, §,(),0,0) eatisfying
f‘(@)< o, fz(éo)>0 and

1Y 1%
(10) ®, w él&((a,)léaezca. i =1,2

for some positive constants 2¢, , ¢¢, . From (9) and (10)
it follows

11) §F-§>0 for w20,
(12) ¢ ()<’ < 0 for w >0, ¢ =10,

a3) - ¢ >0 for w>0, (—4mﬁ‘4@¢)4/2<
<lgl <o .

Since £’ — § can change its sign only at fixed points,
for w > 0 from (12),(13) we conclude §, ()< §’' < §
for f (W< $<f (), §'-§ >0 torf>§ (w).
This, together with (11), proves (c).

To prove (b) we note that if ¢ € Z ' _ then only
one eigenvalue of d.ﬁﬂ_ can cross the unit circle at

(n,,m,) and this eigenvalue is the eigenvalue of the
restriction of df,, to the manifold 7 = 0, : -0 ,
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which is represented by (9). From (13) it follows
?

d
:‘EE“ (‘a., f‘-(‘u)) =1+23 ;; + af(f‘,') which implies

df’ d§’
dt (@, f1 () < 4,j:'§—((a,,§2((a))> 1 for small w >0.
This completes the proof.

We summarize the results of Lemmas 1 - 4 together
with their generalization for periodic points with higher
prime period in the following theorem.

o

Denote X, = Zy N X_l(? ) .

Theorem 1. For every 4 from a residual subset
5:', c ¥:

(i) Z, are l1-dimensional submanifolds of P<xM; Z, is
closed;

(ii) for fixed g1, the (e -periodic points of #, are i-
solated;

(iii) Xg is discrete;

(iv) for every (p,m)e Z,~ X, , there is a neigh-
borhood W= UxV of(p,m) and a C* function ¢:

s W= Y such that Zg N W  is the graph of ¢ ;
(v) for every (n,, m,) € X, , there is a coordinate
neighbourhood (W; w x x ) of (g,,m), (e xx)(f, m,)=
= (0,0) such that

(a) there is a C®™ function y: u—> W, u, cR open,
ou:: that Z A W= {y(x)lx el 3, xoy =4 ,

“eo
Q0 .
Taxr 020
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(b) df:: (m ) has one eigenvalue 1, the others having
moduli different from l; the number of eigenvalues with
moduli >4 in the components x > 0 ,
Z.Nn W is constant and differ by one;

(¢) W\ Z,  contains no invariant set.

andx4<0 of

Proof. The statement for fe = 1 is proven in Lem-
mas 1 - 4. To prove the rest, we denote by .fz (U) the
set of all f ¢ ¥ such that fly  satisfies (i) - (v)
for 1 € &k £ 4

Let d be a C* Riemannian metric on PxM , K}

an increasing sequence of compact sets, %JKS =PxM.
Denote B (N,d")={(n,m)d(N,(nmN<o"} for N c PxM .

A
We show that the sets %, = % (K \B (U, Z,, £-"))  are

open and dense. Since 5-; = zﬂ ? this will complete

"3 F 2 ’
the proof.
To prove density, we cover Z,nKL\BJ(bL‘)’, Zy,2"")
by a countable family {W; } of open sets such that
WAtW)n.nt (W)= f edW,nZ =F, S <3 .

Using Lemmas 1 - 4 we find that £% can be arbitrarily
closely approximated by a mp‘ A such that h ¢ F( w;)
and b coincides with £# outside W. We denote

?' { ¢ i on W; ,

4 outside W, .

4

Then, if 4 is close enough to #3 y W, n\Z(w,.')n...

...ng’."(W‘) =f, ¥7 = S ana, therefore,
fe 34.1 (w,)
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Repeating this for every 4 and taking into account the

openness of 31' ( % ) , one concludes the proof of density
A

of ‘3‘;

For the proof of openness we note that since
KL\BL&J,' 2> £-") s compact, from f e ?".,‘ it fol-

lows f e '3:3. (K, B(“L‘J’. Ze s P8 for some small
Jd>0.
1t ¥ is close enough to LB eBLY 2, (5),0) .

Thus,

~ -1 o]
(14) BO. 2, (), o B(Y. Z, (£),27" - o)

The openness of §; follows now from (14), Lemmas 1 - 4
and the fact that F% is arbitrarily clese to f# if F
is close enough to f .

Remarks. 1. In case m = 2 , the points of one com-
ponent of Zo,AWNA (n,,m,) 3} are saddles, the points
of the other are either sources or sinks.

2. The set 3;1 of those f e F satisfying (i) -
(v) of Theorem 1 for &% = 4 is open dense in % .

§2.

The sete Z, for A& > 1 are not closed in gene-
ral. A point from Z ™\ Z, is aleo a periodic point,
its prime period being a divisor of f4e¢ . We shall call the
points of Z,\ Z, branching ( £ -periodic, according
to their prime period) points. In this section, we shall
study the behaviour of f in the neighbourhood of bran-
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ching points in the case m = 2 which allows us to ob-

tain some information about the sets Z

irfe ¥,

branching point only if d.f: (m) has some root of u-

a fe -periodic point (f2,m) can be a

nity different from 1 as an eigenvalue. For, if d.f’: (m)
has no root of unity as an eigenvalue, d.f: (m) - <«d

is regular for every » > 0 and by the implicit func-
tion theorem there is & unique C* 1-dimensional subma-
nifold of periodic points with (not necesearily prime) pe-
riod Y&, » > 0; thus, this manifold coincides with
Z4 Tfor every » > 0 . The case of 1 being an eigen-
value is covered by Theorem 1l.

Therefore, we need first to know how the eigenva-
lues cross the unit circle if o is changed, in the gene-
ric case.

Henceforth we shall assume m = 2 without repeating
it. Let f € ¥ and denote Dy, ={(f,m)e Z, | df, (m)
has double eigenvaluesji.

From the implicit function theorem it follows that
‘the eigenvalues .’A.f,”, .7\.;” of au!: (in) are C* func-
tions on Zgy \ D, .

Denote by S the unit circle in the complex plane.

Theorem 2. For a residual subset 4§, of %, % c .'f; s
W My AS=4, i=1,2,

(i) .9«.‘:') i=1,2 meet S transversally.

H
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(iii) I#, for some (n,m)e Z,, aj"’(@,m) € S ,

then either .l;” ¢ S or .ﬂ:") (p,m) is not a
root of 1.

Corollary. Generically, ({1, ) can be a bran-
ching point only if one of the eigenvalues of d.f:(rm.)
ie -1, the other being real #+ 4 ., We denote by Y, the
set of such points.

Proof of Theorem 2. We prove the statement of the
theorem for & = 1 (fixed points), the generalization
to the case & > 1 being similar as in the proof of
Theorem 1.

From Theorem 1, (vc) and its proof it follows that
for every f € 3; , if some eigenvalue meets S at 1,
it is single and meets S transversally. Therefore, we

can restrict our attention to S\ {13 .

Let f € §, , where %, is defined at the end
of §41, (n,m)e Z, \ X, . Then, according to Theo-
rem 1, (iv), there is a coordinate neighbourhood

Wuxx) W=UxV such that «(n) =0, x(m) = 0

and the representation of f in these coordinates is gi-
ven by

' = Al@)x + 0 (@,x) ,
where Q(w,0) =0, d2(0,0) = 0 .

The subset of matrices with both eigenvalues on the
unit circle is a submanifold ¢ of co-dimension 1 in
GL (2) (it is the set of matrices A such that det A =
= 41 ). Further, the set of all 2 x 2 matrices with
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eigenvalues being £ -th roots of unity (the unity mat-
rix E excluded), @, is a 2-dimensional submanifold
of GL (2), given byd&tA-'f,th-oc,-, +x;" for £
odd, and a union of the 2-dimensional manifold given as
for £ o0dd and the isolated matrix —E for £ even,
where o« are the .£ -th roots of unity, lying in the
open upper complex halfplane.

Using the elementary transversality theorem, we can
approximate the function A: «w (U) — GL (2) ar-

bitrarily closely by A : @ (U) — GL(2) so that

A coincides with A outside u, fl1 cmw (),
A  meets YL transversally and does not meet U, at

all for « € u’z , u.2 open, uz c u1 . As a conse-

quence we obtain that A () doea not have —1 as doud-
le eigenvalue for any w € uz . This implies that the ei-

genvalues .9\1 , A are C* functions of matrices in the

2
neighbourhood of any A(((.) , some eigenvalue of which
i‘ - 4 .

Therefore, in the neighbourhood of the values of A () ,

« € 112 , the subsets of GL (2), given by .&4 = ~41 and
A, = - 4 are submanifolds of co-dimension 1. Thus, we
can use the transversality theorem again (for K and
(74 P) ) to obtain that arbitrarily near A (and, thus,
A ) there is a function A s @ (W) — GL(2) such
that for w euz , -1 is not double eigenvalue ofz ()
and the eigenvalues A1 and az cross the unit circle
transversally at the voints which are not £ -th roots
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of unity.
Let V, , YV, boopen,T’;cl{,,V:cV,ht
g (et,x) bea bump function such that g(w,x) = 1

for (u,x) € U< V,, ¢, x) = 0 outside

u1 x 1{‘ . We denote by f the map that coincides with
£ outside Ux YV and is given in W by its coordi-

nate representation

' m LACW) + @ (@, x) (A(@)- Al@N) x+ D (e, x) .

Then, if A is chosen close enough to A, f is erbit-
rarily close to f , satisfies (i),(ii) and

i) if A e S, then either A,¢ S, or 2, is not an £-th root
of unity, in Uy x V .

As usual, we can prove that f can be approximated
by a function ¥ naving Properties (i),(ii),(iii‘) over
all 21 \ x1 by covering 21 N X1 by a countable fa-
mily of coordinate neighbourhoods. It is obvious that the
set of ¢ ‘s, having Properties (i),(ii),(iii) is open.

Since the subset 3‘;, c ¥ of maps, having Proper-
ties (i), (ii),(iii) for fe = 4 is the intersection of
the sets 9;_“: ¥, satisfying (i),(ii),(iii,), the
proof of Theorem 2 for &k = 41 is completed.

Remark. Note that the subset £, , c &  of maps,
all iterates up to order 4 of which satisfy (iii,) ,
is open dense in ¥ .

We shall now study the behaviour of f in the neigh-

bourhood of a branching point.
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Theorem 3. Assume & = 3 ., Then, for a residual sub-

set £ of §, % c £ , the following is valid:

’
1) Yh coincides with the set of _f¢ -periodic bran-
ching points.

(ii) For every (n,,m,) € Y,  there is a coordinate
neighbourhood (W, ux x), W= WU =V of (n,,m,)
such that w (n,) =0, x(m,)=0,Z, A W= Ux{0}
and

(a) Zzh nNw consists of two components, separated
by (n,, ’""o) ; all points of Z“‘ AW satisfy «>
>0 end Z, AWULln,m)} is a C'

(but not C2? ) submanifold of W

(b) Either the points of Z,NW are sinks for w« > 0
saddles for « % O (degenerated for @ = 0 ), and the
points of Z“‘ AW are saddles, or the same is true
with sink replaced by saddle and conversely, or one of the

above cases is true for the inverse of f .
(¢) WA (Z, L Zu‘) contains no invariant set of 4‘: .

Proof. We again prove the theorem for fe = 1, the
generaligation for & > 41 being similar as in the proof
of Theorem 1.

Aesune f & %, . Then, one eigenvalue of dfn.(nno)
is -1, the other, A, is not on S . We can assume
1Al <A1 , in the other case we consider the inverse of f .
As in the proof of Theorem 1, using [3], Appendix C, we
find that there is a coordinate neighbourhood

- 576 -



(W, @xx)’W-ruxV,((a,xx)(ﬂ”m‘) =(0,0) such that

the local representation of £ in the coordinates “, X

is given by

(15) X! ==X + @@ x +Bx)+7x; +(w,%,,%,),
16) x, = Ax, + (@, % x,),

where co , 1% are C* end

am P (@,%,,0)=0, da#0,0,0)= 0, (u,x,x,)=

= Uxdltlax l+lx 1) -

Similarly, as in the proof of Lemma 4, it can be
shown that every f can be arbitrerily closely approxima-
ted in ?'2 q by a map the local representation of which
satisfies /'A’ +9 &0 at every point from Y1 . We de-
note 9;1 the set of such maps. The openness of 3;1 is
obvious.

We prove that if ¢ « 5?;1 then ¥ satisfies (i),
(ii), of this theorem for 4 =1 . We shall analyze the
case « > 0, (3’ + 9 < 0 . The other cases can be trans-
formed to the above case by a suitable change of coordi-
nates or lead to other cases of (ii b), which can be ana-
lyged similarly.

From (15),(16) we obtain the representation of the

second iterate of

#l&- o

(18) .x;’ = x1-2w(wx1-2(/3" +a’)x3 +a,(e,x),
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where @, («,x) = (lex, | + !x: 1) . By a change of
veriables X = 91§ , @=»2 for w > 0,(18) is trans-

formed into

(19) §"=§-2» L §+ (B2+) 2D+ (v, §)

where % (»,§) = »‘402 (»2 »¢) is ¢*=1 for
» > 0  and satisfies

(20) x(», §) =»?) .

f is & 2-periodic point of fﬁ‘ Ixa -0 for » > 0 it
; satisfies

(21) wfr(pRey)f? -, (2,8 =0,

where 3 (2, §) = n‘q;(»,f) . From (20) it follows
that if we define %, (0,§) = 0,
then y  ie ™3 for » 20 and, in the case %~ = 3 ,

that O%4 is continuous.
9%

For » = 0, (21) has two non-zero solutions
_ 1,72 -
§,00) == [~ (A+ )37, £(0) = [~ (p2+ ) no,
Using the implicit function theorem of (6] and returning
to the coordinates « , x, we obtain that for @« > 0
sufficiently small there are two 2-periodic points (1 or-
bit) of £, | xy 0 with coordinates

- K
(22) X, (@)= =L-x(A2e ) wl™ + 9 (@),
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X, bqu) = [~ B+ 7w 1 ¥, (@),
where y,, vy, are c*-3 ama utistyz&((c)-o'((“’/"’i

2
the eigenvalue of df_ | s at the points X, X,
is equal 1 + 4 x « + 0’(ec) . Since from (16) it follows

that the other eigenvalue of df 1: at the points

(@, %, (w),0), (4%, («),0) is of modulus less than one,
this proves that the points (w,x  (w),0), («,, («),0)

are saddles for small « . From (15),(16) it follows fur-
ther that for small lw /!, the points of Z, are sinks

for w > 0 and saddles for « < O . This proves (ii b)

if we show that Z, A W ( W possibly restricted) does
not contain other points except of the points (w,x . (w),0),

1‘134’2 o

From (16),(17) it follows that every orbit that re-
mains in Ix 1< 0" ( 0 sufficiently small independent of
@ for le! small), approaches the submanifold X, = 0
(in the positive sense). Therefore, in order to prove
(ii ¢) and thus also to complete the proof of (ii b) it
suffices to prove that for sufficiently small @ the on-
ly periodic points of f” "‘a -0 for Ile <d/< d;

sufficiently small, are the points x, («), +=1,2,
and 0.

From (17) it follows that

(23) x-x <0 for @60,x1<0 ,
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(24) x] -x, >0 for « & 0, %, > 0,

(25) .x;’-.x,,>0_ for w >0,

- 1/
X >[-baly+p)Twl™
(26) .x;'- x, < 0 for w >0,

- 1
x <-l-box(y+p)y'wl™

?

and lwl<d,, Ix 1< d; , d, being sufficiently
small. From (23),(24), it follows that the orbit of eve-

ry point with 0 > « >-d; , Ix, 1 < d; leaves

I.x‘l < dz'. . From (22),(23),(24) and the implicit func-

tion argument used after (21) it follows that there are
-1

no periodic points with l.x1| <[-4x (/3"-1- T 1"

except of the points X4 (), X («) . From this, (25),

(26) and (19) it follows .x1" -x, < 0 fora; <x <

<x, (@) or Dex <x, («) endx’-x >0

for X, ((«,)<x4 < 0 orxﬂ((u)<x1< d;, «w>0,

8o that every orbit both in the positive and negative sen-
se tends to one of the points 0, x, (), X, () .
This completes the proof of (iv c).

To complete the proof of (ii a), we denote byq(.x")
the real function, defined as the inverse of the functions
X, = X, () for x, < 0 and x, = X, () for
x, > 0 . From (22) it follows

.~ O x

- : 22 e E2 0y = 0.
(21)_ Limy (%)=, tir @ () 0= (0= 25 (0) 0



Further, from the fact that the points(w, X («),0)

( @, X,(), 0 ) are nondegenerated for « > 0 it
follows that ¢ is C* ., Using (22) and the implicit func-

tion theorem we obtain

d -
(28) a—%=—[¢4(ﬂ2+ 3")((«1%'4- o (@™) for x,< 0,
1
-3—3—= [-«."(/324-9')4»]”’4- o'(y.”’) for x, > 0.
1
This, together with (27) shows that ¢ can be com-
pleted into a C' function (which is not C? ) in some
neighbourhood of 0 by defining @ (0) = 0 .
As a corollary of Theorem 1 and 3 we obtain

Theorem 4., Let s > 2, Then for every € € 5;' s

(i) for % odd, Z, is a closed submanifold of Px M ,

(i1) for R even, ih is a closea C' (but not C2 ) sub-
manifold of PxM; Z, \ Z, is discrete and coinci-
des with Yu/z .
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