Commentationes Mathematicae Universitatis Carolinae

11, 3 (1970)

ON ONE-PARAMETER FAMILIES OF DIFFEOMORPHISMS Pavol BRUNOVSKÍ, Bratislava

This paper is concerned with diffeomorphisms of manifolds, depending on a parameter. This means that we shall consider mappings $f: P \times M \longrightarrow M$, where Pis a 1-dimensional C^{κ} $(1 < \kappa < \infty)$ manifold, Mis an m-dimensional C^{κ} manifold, f is C^{κ} and such that for every $p \in P$, the mapping $f_p: M \longrightarrow M$ given by $f_p(m) = f(p,m)$ is a diffeomorphism. Given P, M, we denote by \mathcal{F} the set of all mappings f with the above properties, endowed with the C^{κ} Whitney topology. We shall be interested in the generic behavior of the periodic points of f_{n} (i.e. fixed points of f_p and its iterates) if p is varied.

We say that a property is generic in $\mathcal F$ if it is valid for every f from a residual subset of $\mathcal F$.

The first part of our results (§ 1) concerns the case of arbitrary m, the second (§ 2) takes place for m = 2.

The problems studied in this paper are to a great extent motivated by differential equations, where problems of dependence of critical points and periodic trajecto-

This research was partly done under the support of NASA (NGR 24-005-063) during the author's stay at the University of Minnesota.

ries on a parameter are frequent.

The present research has been stimulated by the work of K.R. Meyer [1] on two dimensional symplectic diffeomorphisms, to whom the author is indebted for valuable discussions. Similar problems have been studied by J. Sotomayor [2] whose work deals with two-dimensional flows. His setting of the problem and results are of a somewhat different character.

§ 1

Denote by $Z_{k} = Z_{k}(f) = P \times M$ the set of all kperiodic points of f, i.e. $Z_{k} = \{(p, m) \mid f_{p}^{k}(m) = m, f_{p}^{j}(m) \neq m$ for 0 < j < k. In this section, we shall study the sets Z_{k} . At will be called the prime period of a point $(p, m) \in Z_{k}$.

A closed subset Q of $P \times M$ will be called invariant, if $\{(p, f(p, m))|(p, m) \in Q\} \subset Q$ and $\{(p, f_{p}^{-1}(m))|$ $|(p, m) \in Q\} \subset Q$. By the orbit of a point (p, m) we shall understand the set of all points $(p, f_{p}^{*}(m))$, k integer.

Lemma 1. For every f from a certain open and dense subset \mathcal{F}'_1 of \mathcal{F} , \mathcal{E}_1 is a closed one-dimensional submanifold of $P \times M$.

<u>Proof</u>. It is obvious that Z_1 is closed. Associate with every $f \in \mathcal{F}$ a mapping $F: P \times M \longrightarrow P \times M$ given by F(n,m) = (m, f(n,m)). Then, $Z_1 = F^{-1}(\Delta)$ where Δ is the diagonal in $M \times M$ and by the transversality theorems 18.2, 19.1 of [3], the set of f's for which F meets Δ transversally, is open and dense in \mathcal{F} . The statement of the lemma follows by the implicit function theorem.

Denote by X_1 the set of those points $(p,m) \in \mathbb{Z}_q$ for which $df_n(m) - id$ (or, dF(p,m)) is singular (i.e. at least one eigenvalue of $df_n(m)$ is equal 1). Further, denote by $j = j_n \times j_M$ the imbedding of \mathbb{Z}_q into $\mathbb{P} \times \mathbb{M}$. From the implicit function theorem it follows that X_q is exactly the set of those points $z \in \mathbb{Z}_q$ for which $Tj_n(z)$ meets the submanifold $(TP)_o$ of those points from TP satisfying dp = 0.

Lemma 2. For every f from an open and dense subset $\mathcal{F}_1^{\prime\prime\prime}$ of $\mathcal{F}_1^{\prime\prime}$, $T_{\mathcal{F}_{12}}(z)$ meets (TP), transversally.

<u>Corollary 1</u>. For $f \in \mathcal{F}_{1}^{m}$, if $(p, m) \in X_{1}$, then there is a coordinate neighbourhood $(W_{,(\mathcal{U}\times X)}, W=\mathcal{U}\times V, of$ (p,m) such that $\mathcal{U}\times \times (p,m)=(0,0), \mathbb{Z} \cap W$ can be parametrized by X_{1} , i.e. $(\mathcal{U}\times \times)(\mathbb{Z}_{1}\cap W)=\{(\mathcal{U}, X)|_{\mathcal{U}}=\mathcal{G}_{0}(X_{1}),$ $X_{i}=\mathcal{G}_{i}(X_{1}), 2\leq i\leq m, x_{1}\in \mathcal{I}\}$ where \mathcal{G} is $C^{k}, 0\in \mathcal{I},$ \mathcal{J} is an interval, and $\frac{d^{2}\mathcal{G}_{0}}{d \times_{1}}(0) > 0$. (The last inequality is the coordinate representation of the transversality condition of Lemma 2.)

Based upon this corollary, we shall call the points of X_1 collapsation (fixed) points. Namely, there are exactly two points in $Z_1 \cap W$ with fixed $\omega > 0$ small enough; these points collapse at $\omega = 0$ and disappear for $\omega < 0$.

- 561 -

<u>Corollary 2.</u> For every $f \in \mathcal{F}_1^m$, the fixed points of f_n are isolated for every $p \in P$.

<u>Corollary 3</u>. For $f \in \mathcal{F}_{4}^{"}$, X, is discrete.

<u>Proof of Lemma 2</u>. Openness. Assume $f \in \mathcal{F}_{1}^{\prime\prime}$. We cover Z_{1} by a countable number of coordinate neighbourhoods $(U_{\alpha} \times V_{\alpha}, (u_{\alpha} \times x_{\alpha}))$. Using the implicit function formula for second derivatives, we can express the transversality condition of Lemma 2 by inequalities $\pi_{\alpha} \neq 0$, where π_{α} are polynomials in $(u_{\alpha} \times x_{\alpha}) \circ f$ $\circ (u_{\alpha} \times x_{\alpha})^{-1}$ and its first and second derivatives. Restricting suitably the coordinate neighbourhoods, we can assume that $|\pi_{\alpha}|$ are bounded away from zero by positive constants \mathcal{E}_{α} . If \tilde{f} is close enough to f (in the C^{n} Whitney topology), $Z_{1}(\tilde{f})$ will be contained in $\bigcup_{\alpha} (U_{\alpha} \times V_{\alpha})$ and $\pi_{\alpha}(\tilde{f})$ will be non zero on $U_{\alpha} \times V_{\alpha}$. Consequently, $Z_{1}(\tilde{f})$ will satisfy the transversality condition.

For the proof of density, we first prove the following lemma:

Lemma 3. Denote $B_{Q_i}(\varepsilon) = \{x \in \mathbb{R}^{Q_i} | |x| < \varepsilon\}$, $|\cdot|$ being the Euclidean norm. Let $f \in \mathscr{F}_1^{\prime}$ and $let(W_{,}(u \times x))$, $W = U \times V$ be a coordinate neighbourhood in $\mathbb{P} \times M$ such that ${}_{(U_i)}(U_i) = B_1(1)$, $x(V) = B_m(1)$ and $W \cap \mathbb{Z}_1$ is connected. Denote $W_i = U_i \times V_i = (u \times x)^{-1} [B_1(i/3) \times B_m(i/3)]$, i = 1, 2. Then, in any neighbourhood Q_i of f in \mathscr{F}_1^{\prime} there is an \widetilde{f} which coincides with f outside W and such that $T_{q_i}(\mathbb{Z}_1(\widetilde{f}) \cap W_1)$ meets $(TP)_o$ transversally, $T_{q_i}(\cdot)$ being the projection of $T(\cdot)$ into TP. <u>Proof.</u> Denote by \mathcal{G} the set of all \mathcal{C}^{κ} maps of $\mathbb{Z}_{1} \cap \mathbb{W}$ into \mathbb{U} , $\hat{\mathcal{G}} = \{T_{\mathcal{G}} \mid q \in \mathcal{G}\}$. We consider $\hat{\mathcal{G}}_{1}$ as a submanifold of the Banach manifold \mathcal{G}_{1} of all \mathcal{C}^{κ} maps $T(\mathbb{Z}_{1} \cap \mathbb{W}) \to TP$. By Theorem 19.1 of [3], there is a $\gamma \in \mathcal{G}_{1}$, arbitrary \mathcal{C}^{κ} -close to $\dot{\mathcal{J}}_{m}$ such that $T\gamma$ meets $(TP)_{0}$ transversally. In particular, γ can be chosen so that $|\mathcal{U} \circ \gamma - \mathcal{U} \circ \dot{\mathcal{J}}_{m}| \leq 1/4$. Let \mathcal{G} be a \mathcal{C}^{κ} bump function such that $\mathcal{G} = 1$ on W_{1} , $\mathcal{G} = 0$ on $\mathbb{W} \setminus W_{2}$. Define $\mathcal{G}(\mathbf{z}) = (u^{-1}(\mathcal{U} \circ \dot{\mathcal{J}}_{m} + \mathcal{G} \circ (\gamma \times \dot{\mathcal{J}}_{m}))$. Then, \mathcal{G} meets $(TP)_{0}$ transversally in W_{1} and coincides with $\dot{\mathcal{J}}_{m}$ outside W_{2} .

Since W is isomorphic with a subset of \mathbb{R}^{m+1} and $(\mu \times x)(\mathbb{Z}_1 \cap W)$ is a \mathbb{C}^n curve in \mathbb{R}^{m+1} , there is a \mathbb{C}^n tubular neighbourhood of $\mathbb{Z}_1 \cap W$, $h: \mathbb{Z}_1 \cap W \times \mathbb{Z}_n = \mathcal{J}(x)$ (for the concept of tubular neighbourhood cf.[4]). This tubular neighbourhood can be constructed e.g. so that $(\mu \times x) \circ h(x, \mathbb{B}_m(1))$ lies in the *m*-hyperplane passing through $(\mu \times x)(x)$ and orthogonal to the tangent to $(\mu \times x)(\mathbb{Z} \cap W)$ at (0, 0).

Denote π_1 , π_2 the natural projections of $Z_1 \cap W \times B_m(1)$ into $Z_1 \cap W$ and $B_m(1)$ respectively, $\psi: \mathbb{R}^m \to \mathbb{R}$ a \mathbb{C}^k bump function such that $\psi = 1$ on $B_m(1/2)$ and $\psi = 0$ outside $B_m(1)$. We define $\tilde{f}(n,m) = f(\mu^{-1}(\mu(n,m) + \psi \pi_2 h^{-1}(n,m) \cdot [\mu q \pi_1 h^{-1}(n,m) - \mu \dot{q}_n \pi_1 h^{-1}(n,m)],m)$ for $(n,m) \in h[(Z_1 \cap W) \times B_m(1)]$, $\tilde{f}(p,m) = f(p,m)$ elsewhere.

Then, $Z_{f}(\tilde{f}) \cap W = (g \times j_{M})(Z_{f}(f) \cap W)$, \tilde{f} coincides with f outside \mathcal{U} and \tilde{f} can be made arbitrary close to f by choosing g sufficiently close to j_{n} . This proves the lemma.

To prove the density part of Lemma 2, we find a countable family of coordinate neighbourhoods $(W_{\alpha}, (u_{\alpha} \times \dot{f}_{\alpha}))$ in such a way that every $(W_{\alpha}, (u_{\alpha} \times \dot{f}_{\alpha}))$ satisfies the assumptions of Lemma 3 and $Z_{1}(f) \subset \bigcup W_{1}(f) \subset \bigcup W_{1}(f)$ (the subscript 1 used as in Lemma 3). Then, we apply Lemma 3 stepwise for every α and choose the approximation of f at every step so close that the transversality condition is not destroyed in $\bigcup U_{1} \cap U_{\alpha 1}$. This is possible due to the first part of the proof.

The next lemma examines the behaviour of f in the neighbourhood of a collapsation point.

Lemma 4. For every f from an open and dense subset $\mathcal{F}_{1}^{(n)}$ of $\mathcal{F}_{1}^{(n)}$, the following is true: (a) for every $(p_{o}, m_{o}) \in X_{1}$, one eigenvalue of $df_{p_{o}}(m_{o})$ is 1, the moduli of the others being different from 1,

(b) locally, (p_o, m_o) divides $\mathbb{E}_q \setminus \{(p_o, m_o)\}$ into two components and the number of eigenvalues of df_{q_0} with modulus 1 at points from different components of $\mathbb{E}_q \setminus \{(p_o, m_o)\}$ differs by 1. (c) There is a neighbourhood \mathbb{W} of (p_o, m_o) such that

- 564 -

 $W \setminus Z_A$ contains no invariant set.

<u>Proof</u>. Since $(p_o, m_o) \in X_1$, $df_{p_o}(m_o)$ has l as an eigenvalue. This eigenvalue is simple because of Lemma 1.

If $(p_o, m_o) \in X_1$ and $f \in \mathcal{F}_1^m$, then there is a coordinate neighbourhood $(W, (u \times x))$ of (p_o, m_o) , $W = U \times V$ such that $(u \times x) (p_o, m_o) = (0, 0)$ and f can be in these coordinates represented by (1) $x_1' = x_1 + \alpha (u + \beta x_1^2 + \omega) (u, x_1, y_1)$,

(2)
$$y' = Ay + \chi(\mu, x_1, y)$$

where $y = (x_2, ..., x_m)$, the primed coordinates are those of the images, $\alpha < 0$,

(3) $\chi(0,0,0) = 0, \omega(\mu, x, 0) = \sigma(|\mu| + x_1^2)$.

Note that from the form of (2) it follows that every fixed point in W satisfies y = 0 (W possibly restricted).

We denote by $\mathcal{F}_{1}^{""}$ the set of all $f \in \mathcal{F}_{1}^{"}$, in the representation (1),(2) of which (i) $\beta \neq 0$ and (ii) the eigenvalues of \mathcal{A} have moduli $\neq 1$. It is obvious that the meaning of these conditions is independent of the choice of coordinates. Also, (ii) is equivalent with (a). We show that $\mathcal{F}_{1}^{""}$ is open dense.

Openness follows easily from the continuous dependence of the eigenvalues on f. To prove density, we note that there is a real o arbitrarily small in abso-

- 565 -

lute value such that $\beta + \sigma' \neq 0$ and for any eigenvalue λ of $df_{m_0}(m_0)$, $|\lambda + \sigma'| \neq 1$. We change f into $\tilde{\tau}$ by changing the terms A_{ij} and βx_1^2 in the representation (1), (2) of f into $(A + \psi(\mu, x) \sigma' E)_{ij}$ and $(\beta + \psi(\mu, x)\sigma')x_1^2$ (E being the unity matrix) respectively, where $\psi(\mu, x)$ is a C^{π} bump function vanishing outside W, and equal 1 at (0,0). By the choice of a sufficiently small σ' , f can be made sufficiently close to f. $df_{ij}(m)$ will then satisfy (a) and we do not introduce any new fixed points. Since X_1 is discrete for $f \in \mathcal{F}_1^{ij}$, this proves the density of \mathcal{F}_1^{ijj} .

To prove (b) we note that if f satisfies (a), only one eigenvalue can cross the unit circle at (p_o, m_o) and this eigenvalue is the eigenvalue of the restriction of df_{p_i} to the manifold y = 0, $df_{p_i}|_{y=0}$. This mapping is represented by (1) with y = 0.

Assume $\beta > 0$ (in the other case we change the sign of x_1). To prove (c), we note first that A is similar to a matrix $\begin{pmatrix} B & 0 \\ 0 & C \end{pmatrix}$, i.e. there is a nonsingular matrix Q, such that $Q^{-1}AQ = \begin{pmatrix} B & 0 \\ 0 & C \end{pmatrix}$, where the moduli of eigenvalues of B and C are <1 and >1 respectively. Applying first the linear coordinate transformation $y = Q\begin{pmatrix} \mathcal{U} \\ \mathcal{Z} \end{pmatrix}$ and then $z = w^{m+1}(x_1, \omega) + \frac{1}{2}$ $w = w^{m-1}(x_1, \frac{1}{2}) + \eta$ where $z = w^{m+1}(x_1, \omega)$ and $\omega =$ $w^{m+1}(x_1, \frac{1}{2}) + \eta$ where $z = w^{m+1}(x_1, \omega)$ are the equations of the center-stable and center-unstable manifolds respectively (cf.[3], Appendix C ⁽¹⁾, (1) and (2) is transformed into

(4)
$$\xi' = \xi + \alpha (\mu + \beta \xi^{2} + \Xi (\mu, \xi, \eta, \xi)),$$

(5) $\eta' = B\eta + \Theta (\mu, \xi, \eta, \xi),$
(6) $\xi' = C\xi + \Omega (\mu, \xi, \eta, \xi),$
where $\alpha < 0, \Xi, \Theta, \Omega$ are C^{μ} and
(7) $\Theta (\mu, \xi, 0, \xi) = 0, \Omega (\mu, \xi, \eta, 0) = 0,$
 $\equiv (\mu, \xi, \eta, \xi) = \sigma (|\mu| + \xi^{2}), d \equiv (0, 0, 0, 0) =$
 $= 0, d \Theta (0, 0, 0, 0) = 0, d \Omega (0, 0, 0, 0) = 0.$

From (5) and (7) it follows that the orbit of every point (p, m) which is contained entirely in some sufficiently small neighbourhood of (p_0, m_0) satisfies $\eta(f_p^{k}(m)) \rightarrow 0$ for $k \rightarrow \infty$ and $\zeta(f_p^{k}(m)) \rightarrow 0$ for $k \rightarrow \infty$ and $\zeta(f_p^{k}(m)) \rightarrow 0$ for $k \rightarrow \infty$ and $\zeta(f_p^{k}(m)) \rightarrow 0$ for $k \rightarrow \infty$. Thus, if there is an invariant set contained in this neighbourhood, it must be a part of the manifold $\eta = 0$, $\zeta = 0$. In particular, this implies

(8)
$$\eta(Z_{n} \cap W) = 0 \langle (Z_{n} \cap W) = 0 \rangle$$

(W possibly restricted).

(1) Actually, Appendix C in [3] deals with flows rather than mappings. Therefore, in order to use its results directly, we have to construct a flow from f as in [5] and then return to f by considering the cross-section mapping.

- 567 -

We therefore consider the restriction of f to the center manifold $\eta = 0$, $\xi = 0$, the representation of which is given by

(9)
$$\xi' = \xi + \alpha \mu + \beta \xi^2 + \equiv (\mu, \xi, 0, 0)$$

It follows from Corollary 1 and (8) that for $\mu > 0$ fixed, $Z_1 \cap W$ consists of two points $(\mu, \xi_1(\mu), 0, 0)$, $(\mu, \xi_2(\mu), 0, 0)$ satisfying $\xi_1(\mu) < 0$, $\xi_2(\mu) > 0$ and

(10)
$$\mathscr{B}_{1}(u^{1/2} \in [\xi_{i}(u)] \in \mathscr{B}_{2}(u^{1/2})$$
 $i = 1, 2$

for some positive constants \mathcal{H}_1 , \mathcal{H}_2 . From (9) and (10) it follows

(11) $\xi' - \xi > 0$ for $\omega = 0$, (12) $\xi_1(\omega) < \xi' < 0$ for $\omega > 0$, $\xi = 0$, (13) $\xi' - \xi > 0$ for $\omega > 0$, $(-4\alpha \beta^{-1} \omega)^{1/2} < |\xi| < 0^{\circ}$.

Since $\xi' - \xi$ can change its sign only at fixed points, for $\mu > 0$ from (12),(13) we conclude $\xi_1(\mu) < \xi' < \xi$ for $\xi_1(\mu) < \xi < \xi_2(\mu)$, $\xi' - \xi > 0$ for $\xi > \xi_2(\mu)$. This, together with (11), proves (c).

To prove (b) we note that if $f \in \mathcal{F}_{\eta}^{m}$, then only one eigenvalue of df_{η} can cross the unit circle at (η_o, m_o) and this eigenvalue is the eigenvalue of the restriction of df_{η} to the manifold $\eta = 0$, $\xi = 0$,

which is represented by (9). From (13) it follows $\frac{d\xi'}{d\xi}(\alpha,\xi_i(\alpha)) = 1 + 2\beta\xi_i + \sigma(\xi_i) \text{ which implies}$ $\frac{d\xi'}{d\xi}(\mu,\xi_1(\mu)) < 1, \frac{d\xi'}{d\xi}(\mu,\xi_2(\mu)) > 1 \text{ for small } \mu > 0.$

This completes the proof.

We summarize the results of Lemmas 1 - 4 together with their generalization for periodic points with higher prime period in the following theorem.

Denote $X_{\mathbf{e}} = Z_{\mathbf{e}} \cap X_{\mathbf{e}}(f^{\mathbf{f}})$.

Theorem 1. For every f from a residual subset F.cf:

(i) Z_{AE} are 1-dimensional submanifolds of $P \times M$; Z, is closed;

(ii) for fixed p, the k-periodic points of f_m are isolated;

(iii) X_{2.} is discrete;

(iv) for every $(n, m) \in \mathbb{Z}_{k} \setminus X_{k}$, there is a neighborhood $W = U \times V$ of (p, m) and a C^{κ} function φ : $: \mathcal{U} \to V$ such that $\mathbb{Z}_{ge} \cap W$ is the graph of φ ; (v) for every $(p_o, m_o) \in X_{\mathbf{k}}$, there is a coordinate neighbourhood (W; $\mu \times \chi$) of $(p_o, m_o), (\mu \times \chi)(p_o, m_o) =$ =(0,0) such that (a) there is a $C^{\mathcal{H}}$ function $\psi: \mathcal{U}_{\mathcal{A}} \to \mathcal{W}, \mathcal{U}_{\mathcal{A}} \subset \mathbb{R}$ open, such that $Z_{\underline{\alpha}} \cap W = \{\psi(X_{A}) \mid X_{A} \in U_{A}\}, X_{A} \circ \psi = id$ $\frac{d^2 \mu \circ \psi}{d x^2} (0) > 0 ;$

(b) $df_{1^{p}}^{h}(m)$ has one eigenvalue 1, the others having moduli different from 1; the number of eigenvalues with moduli > 1 in the components $x_{1} > 0$, and $x_{1} < 0$ of $Z_{h} \cap W$ is constant and differ by one; (c) $W \setminus Z_{h}$ contains no invariant set.

<u>Proof</u>. The statement for $\mathcal{H} = 1$ is proven in Lemmas 1 - 4. To prove the rest, we denote by $\mathcal{F}_{1\ell}(\mathcal{U})$ the set of all $f \in \mathcal{F}$ such that $f|_{\mathcal{U}}$ satisfies (i) - (v) for $1 \leq \mathcal{H} \leq \ell$.

Let d be a $\mathcal{C}^{\mathcal{K}}$ Riemannian metric on $\mathbb{P} \times M$, $\{K_{\sigma}\}$ an increasing sequence of compact sets, $\bigcup K_{\sigma} = \mathbb{P} \times M$. Denote $\mathbb{B}(N, \sigma) = \{(n, m) \mid d(N, (n, m)) < \sigma\}$ for $N \subset \mathbb{P} \times M$. We show that the sets $\hat{\mathcal{F}}_{\mathfrak{f}} = \mathcal{F}_{\mathfrak{f}}(K_{\mathfrak{k}} \setminus \mathbb{B}(\bigcup_{k < \mathfrak{f}} \mathbb{Z}_{\mathfrak{k}}, \ell^{-1}))$ are open and dense. Since $\mathcal{F}_{\mathfrak{f}} = \bigcap_{\ell, \mathfrak{f}} \hat{\mathcal{F}}_{\mathfrak{f}, \ell}$, this will complete the proof.

To prove density, we cover $Z_i \cap K_{\ell} \setminus B(\bigcup_{k < j} Z_k, \ell^{-1})$ by a countable family $\{W_i\}$ of open sets such that $\overline{W_i} \cap f(\overline{W_i}) \cap \dots \cap f^{j-1}(\overline{W_i}) = \emptyset$ and $W_i \cap Z_k = \emptyset$, k < j. Using Lemmas 1 - 4 we find that f^j can be arbitrarily closely approximated by a map \mathcal{H} such that $\mathcal{H} \in \mathcal{F}_i(W_i)$ and \mathcal{H} coincides with f^j outside W. We denote

 $\widetilde{T} = \begin{cases} f^{1-j} & \text{on } W_i, \\ f & \text{outside } W_i. \end{cases}$

Then, if h is close enough to f^{ij} , $W_i \cap \tilde{f}(W_i) \cap \dots$ $\dots \cap \tilde{f}^{ij-1}(W_i) = \emptyset$, $\tilde{f}^{ij} = h$ and, therefore, $\tilde{f} \in \mathcal{F}_{ij}(W_i)$. Repeating this for every *i* and taking into account the openness of $\mathcal{F}_1(W_i)$, one concludes the proof of density of $\hat{\mathcal{F}}_{i,\ell}$.

For the proof of openness we note that since $K_{\ell} \setminus B_{\ell_{k} < j} Z_{\ell_{k}}, \ell^{-1}$ is compact, from $f \in \hat{\mathcal{F}}_{j,\ell}$ it follows $f \in \mathcal{F}_{1j} (K_{\ell} \setminus B_{\ell_{k} < j} Z_{\ell_{k}}, \ell^{-1} - \sigma^{r})$ for some small $\sigma^{r} > 0$. If \hat{f} is close enough to $f, \bigcup_{k < j} Z_{\ell_{k}}(\hat{f}) \in B(\bigcup_{\ell_{k} < j} Z_{\ell_{k}}(f), \sigma^{r})$. Thus,

(14)
$$\mathbb{B}(\bigcup_{k < j} \mathbb{Z}_{k}(\tilde{f}), \ell^{-1}) \supset \mathbb{B}(\bigcup_{k < j} \mathbb{Z}_{k}(f), \ell^{-1} - \sigma^{-})$$

The openness of $\hat{\mathcal{F}}_{j,\ell}$ follows now from (14), Lemmas 1 - 4 and the fact that \hat{f}^{j} is arbitrarily close to f^{j} if \hat{f} is close enough to f.

<u>Remarks</u>. 1. In case m = 2, the points of one component of $Z_{\underline{k}} \cap W \setminus \{(n_o, m_o)\}$ are saddles, the points of the other are either sources or sinks.

2. The set \mathcal{F}_{11} of those $f \in \mathcal{F}$ satisfying (i) - (v) of Theorem 1 for $\mathcal{K} = 4$ is open dense in \mathcal{F} .

\$ 2.

The sets $Z_{\mathcal{H}}$ for $\mathcal{H} > 1$ are not closed in general. A point from $\overline{Z}_{\mathcal{H}} \setminus Z_{\mathcal{H}}$ is also a periodic point, its prime period being a divisor of \mathcal{H} . We shall call the points of $\overline{Z}_{\mathcal{H}} \setminus Z_{\mathcal{H}}$ branching (\mathcal{L} -periodic, according to their prime period) points. In this section, we shall study the behaviour of f in the neighbourhood of branching points in the case m = 2 which allows us to obtain some information about the sets \overline{Z}_{4p} .

If $f \in S_{\eta}$, a & -periodic point (μ, m) can be a branching point only if $df_{\mu}^{k}(m)$ has some root of unity different from 1 as an eigenvalue. For, if $df_{\mu}^{k}(m)$ has no root of unity as an eigenvalue, $df_{\mu}^{k}(m) - id$ is regular for every $\nu > 0$ and by the implicit function theorem there is a unique C^{n} 1-dimensional submanifold of periodic points with (not necessarily prime) period \mathcal{M}_{η} , $\nu > 0$; thus, this manifold coincides with \mathbb{Z}_{A} for every $\nu > 0$. The case of 1 being an eigenvalue is covered by Theorem 1.

Therefore, we need first to know how the eigenvalues cross the unit circle if p is changed, in the generic case.

Henceforth we shall assume m = 2 without repeating it. Let $f \in \mathcal{F}_1$ and denote $D_{Ae} = \{(p, m) \in \mathbb{Z}_{Ae} \mid df_n(m) \}$ has double eigenvalues $\}$.

From the implicit function theorem it follows that the eigenvalues $\lambda_1^{(k)}$, $\lambda_2^{(k)}$ of $df_n^{\mu}(m)$ are \mathcal{C}^{μ} functions on $\mathbb{Z}_k \setminus D_k$.

Denote by S the unit circle in the complex plane. <u>Theorem 2</u>. For a residual subset \mathcal{F}_2 of $\mathcal{F}, \mathcal{F}_2 \subset \mathcal{F}_1$: $\lambda_{i}^{(\mathbf{k}_i)}(\mathbf{D}_{\mathbf{k}_i}) \cap S = \emptyset$, i = 1, 2,

(ii) $\lambda_{i}^{(h)}$, i = 1, 2 meet S transversally.

(i)

- 572 -

(iii) If, for some $(n,m) \in \mathbb{Z}_{4\epsilon}$, $\lambda_1^{(4\epsilon)}(n,m) \in S$, then either $\lambda_2^{(4\epsilon)} \notin S$ or $\lambda_1^{(4\epsilon)}(n,m)$ is not a root of 1.

<u>Corollary</u>. Generically, (p, m) can be a branching point only if one of the eigenvalues of $df_{\tau}^{k}(m)$ is -1, the other being real $\neq 1$. We denote by Y_{k} the set of such points.

<u>Proof</u> of Theorem 2. We prove the statement of the theorem for $\mathcal{H} = 1$ (fixed points), the generalization to the case $\mathcal{H} > 1$ being similar as in the proof of Theorem 1.

From Theorem 1, (vc) and its proof it follows that for every $f \in \mathcal{F}_1$, if some eigenvalue meets S at 1, it is single and meets S transversally. Therefore, we can restrict our attention to $S > \{1\}$.

Let $f \in \mathcal{F}_{11}$, where \mathcal{F}_{11} is defined at the end of §1, $(n,m) \in \mathbb{Z}_1 \setminus X_1$. Then, according to Theorem 1, (iv), there is a coordinate neighbourhood $(W, (\mu \times \chi), W = U \times V$ such that $(\mu(n) = 0, \chi(m) = 0$ and the representation of f in these coordinates is given by

 $x' = A(\mu) x + \Omega(\mu, x) ,$

where $\Omega(u, 0) = 0$, $d \Omega(0, 0) = 0$.

The subset of matrices with both eigenvalues on the unit circle is a submanifold \mathcal{O} of co-dimension 1 in GL (2) (it is the set of matrices A such that $det A \approx -4$). Further, the set of all 2×2 matrices with

- 573 -

eigenvalues being ℓ -th roots of unity (the unity matrix E excluded), \mathscr{U}_{ℓ} is a 2-dimensional submanifold of GL (2), given by $\det A = 4$, $\operatorname{tr} A = \alpha_{j} + \alpha_{j}^{-1}$ for ℓ odd, and a union of the 2-dimensional manifold given as for ℓ odd and the isolated matrix -E for ℓ even, where α_{j} are the ℓ -th roots of unity; lying in the open upper complex halfplane.

Using the elementary transversality theorem, we can approximate the function $A: \mu(\mathcal{U}) \longrightarrow \operatorname{GL}(2)$ arbitrarily closely by $\widetilde{A}: \mu(\mathcal{U}) \longrightarrow \operatorname{GL}(2)$ so that \widetilde{A} coincides with A outside $U_1, \overline{U}_1 \subset \mu(\mathcal{U})$, \widetilde{A} meets \mathcal{U} transversally and does not meet \mathcal{U}_2 at all for $\mu \in U_2$, U_2 open, $\overline{U}_2 \subset U_1$. As a consequence we obtain that $\widetilde{A}(\mu)$ does not have -1 as double eigenvalue for any $\mu \in U_2$. This implies that the eigenvalues A_1, A_2 are C^{κ} functions of matrices in the neighbourhood of any $A(\mu)$, some eigenvalue of which is -1.

Therefore, in the neighbourhood of the values of $\widetilde{A}(\mu)$, $\mu \in U_2$, the subsets of GL (2), given by $\lambda_1 = -1$ and $\lambda_2 = -1$ are submanifolds of co-dimension 1. Thus, we can use the transversality theorem again (for \widetilde{A} and \mathcal{U}_{ℓ}) to obtain that arbitrarily near \widetilde{A} (and, thus, A) there is a function $\widetilde{A} : \mu(U) \rightarrow \text{GL}(2)$ such that for $\mu \in U_2$, -1 is not double eigenvalue of $\widetilde{A}(\mu)$ and the eigenvalues λ_1 and λ_2 cross the unit circle transversally at the points which are not ℓ -th roots of unity.

Let V_2 , V_1 be open, $\overline{V_2} \subset V_1$, $\overline{V_1} \subset V$, let $\mathcal{G}(\mathcal{U}, \times)$ be a bump function such that $\mathcal{G}(\mathcal{U}, \times) = 1$ for $(\mathcal{U}, \times) \in \mathcal{U}_2 \times V_2$, $\mathcal{G}(\mathcal{U}, \times) = 0$ outside $\mathcal{U}_1 \times V_1$. We denote by f the map that coincides with f outside $\mathcal{U} \times V$ and is given in W by its coordinate representation

$$X' = [A(\mu) + \varphi(\mu, \chi)(\widetilde{A}(\mu) - A(\mu))] \times + \Omega(\mu, \chi)$$

Then, if A is chosen close enough to A, f is arbitrarily close to f, satisfies (i),(ii) and (iii) if $\lambda_1 \in S$, then either $\lambda_2 \notin S$, or λ_1 is not an l-th root of unity, in $U_2 \times V_2$.

As usual, we can prove that f can be approximated by a function \tilde{f} having Properties (i),(ii),(iii_L) over all $Z_1 \setminus X_1$ by covering $Z_1 \setminus X_1$ by a countable family of coordinate neighbourhoods. It is obvious that the set of f's, having Properties (i),(ii),(iii) is open.

Since the subset $\mathcal{F}_{24} \subset \mathcal{F}$ of maps, having Properties (i),(ii),(iii) for $\mathcal{H} = 4$ is the intersection of the sets $\mathcal{F}_{21\mathcal{L}} \subset \mathcal{F}$, satisfying (i),(ii),(iii₂), the proof of Theorem 2 for $\mathcal{H} = 4$ is completed.

<u>Remark</u>. Note that the subset $\mathcal{F}_{2k\ell} \subset \mathcal{F}$ of maps, all iterates up to order \mathcal{K} of which satisfy (iii_ℓ), is open dense in \mathcal{F} .

We shall now study the behaviour of f in the neighbourhood of a branching point. <u>Theorem 3</u>. Assume $\kappa \ge 3$. Then, for a residual subset \mathcal{F}_3 of $\mathcal{F}, \mathcal{F}_3 \subset \mathcal{F}_2$, the following is valid: (i) $Y_{4\epsilon}$ coincides with the set of \mathcal{K} -periodic branching points. (ii) For every $(n_o, m_o) \in Y_{4\epsilon}$ there is a coordinate neighbourhood $(W, (\mathcal{L} \times \chi), W = \mathcal{U} \times V)$ of (n_o, m_o)

and

(a) $Z_{24e} \cap W$ consists of two components, separated by (p_o, m_o) ; all points of $Z_{24e} \cap W$ satisfy $(\mu > 0)$ and $Z_{24e} \cap W \cup \{(p_o, m_o)\}$ is a C^1 (but not C^2) submanifold of W.

such that $u(p_o) = 0$, $x(m_o) = 0$, $\mathbb{Z}_{\underline{w}} \cap W = \mathcal{U} \times \{0\}$

(b) Either the points of $Z_{\mu} \cap W$ are sinks for $\mu > 0$ saddles for $\mu \le 0$ (degenerated for $\mu = 0$), and the points of $Z_{2k} \cap W$ are saddles, or the same is true with sink replaced by saddle and conversely, or one of the above cases is true for the inverse of f.

(c) $W \setminus (Z_{\mu} \cup Z_{2\mu})$ contains no invariant set of f_{μ}^{μ} .

<u>Proof</u>. We again prove the theorem for k = 1, the generalization for $\mathcal{H} > 1$ being similar as in the proof of Theorem 1.

Assume $f \in \mathcal{F}_{21}$. Then, one eigenvalue of $df_{n_o}(m_o)$ is -1, the other, λ , is not on S. We can assume $|\lambda| < 1$, in the other case we consider the inverse of f. As in the proof of Theorem 1, using [3], Appendix C, we find that there is a coordinate neighbourhood (W, $(\mu \times \chi)$, $W = U \times V$, $(\mu \times \chi)(\mu_0, m_0) = (0, 0)$ such that the local representation of f in the coordinates (μ, χ) is given by (15) $x_1' = -x_1 + \alpha_1(\mu \times \chi_1 + \beta_1 \times \chi_1^2 + \gamma \times \chi_1^3 + \omega_1(\mu, \chi_1, \chi_2)),$ (16) $x_2' = \beta_1 \times \chi_2 + \beta_1(\mu, \chi_1, \chi_2)),$ where ω_1, β_2 are C^{μ} and (17) $\vartheta_1(\mu, \chi_1, 0) = 0, d \vartheta_1(0, 0, 0) = 0, \omega_1(\mu, \chi_1, \chi_2) = (|\chi_1^3| + |\mu \times \chi_1| + |\chi_2|))$.

Similarly, as in the proof of Lemma 4, it can be shown that every f can be arbitrarily closely approximated in \mathcal{F}_{21} by a map the local representation of which satisfies $\beta^2 + \gamma \neq 0$ at every point from Y_1 . We denote \mathcal{F}_{31} the set of such maps. The openness of \mathcal{F}_{31} is obvious.

We prove that if $f \in \mathcal{F}_{34}$ then f satisfies (i), (ii), of this theorem for $\mathcal{H} = 4$. We shall analyze the case $\alpha > 0$, $\beta^2 + \gamma < 0$. The other cases can be transformed to the above case by a suitable change of coordinates or lead to other cases of (ii b), which can be analyzed similarly.

From (15),(16) we obtain the representation of the second iterate of $f|_{X=0}$

(18)
$$x_1'' = x_1 - 2 \alpha \mu x_1 - 2(\beta^2 + \gamma) x_1^3 + \omega_2(\mu, x_1)$$
,

where $\omega_{\alpha}(\mu, x) = (|\mu x_{\alpha}| + |x_{\alpha}^{3}|)$. By a change of variables $x_{\mu} = \nu^2 \xi$, $\mu = \nu^2$ for $\mu > 0$, (18) is transformed into (19) $\xi'' = \xi - 2 \nu^2 [\alpha \xi + (\beta^2 + \gamma) \xi^3] + \chi(\nu, \xi)$, is $C^{\kappa-1}$ for where $\chi(\nu, \xi) = \nu^{-1}\omega_{\lambda}(\nu^2, \nu \xi)$ y > 0 and satisfies $\chi(\nu,\xi) = \sigma(\nu^2)$. (20)is a 2-periodic point of $f_{p_1}|_{X_1=0}$ for y > 0 if È satisfies Έ $\sigma \xi + (\beta^2 + \gamma) \xi^3 - \chi_1(\gamma, \xi) = 0,$ (21) where $\chi_{\lambda}(\nu,\xi) = \nu^2 \chi(\nu,\xi)$. From (20) it follows that if we define $\chi_{\mathcal{A}}(0,\xi) = 0$, then $\chi_{\mathcal{A}}$ is \mathcal{C}^{n-3} for $\gamma \ge 0$ and, in the case $\kappa = 3$, that $\frac{\partial \chi_1}{\partial \Sigma}$ is continuous. For y = 0, (21) has two non-zero solutions

 $\xi_1(0) = -\left[-\alpha \left(\beta^2 + \gamma^2\right)^{-1}\right]^{\frac{1}{2}}, \xi_2(0) = \left[-\alpha \left(\beta^2 + \gamma^2\right)^{-1}\right]^{\frac{1}{2}}$. Using the implicit function theorem of [6] and returning to the coordinates μ , χ_1 we obtain that for $\mu > 0$ sufficiently small there are two 2-periodic points (1 orbit) of $f_p|_{\chi_2=0}$ with coordinates

(22)
$$X_{11}(\mu) = -[-\infty(\beta^2 + \gamma)^{-1}\mu]^{\frac{1}{2}} + \psi_1(\mu)$$

$$\begin{split} x_{12}(\mu) &= \left[-\alpha \left(\beta^2 + \gamma\right)^{-1} (\alpha \right]^{1/2} + \psi_2(\alpha) ,\\ \text{where } \psi_1, \psi_2 \quad \text{are } C^{\alpha-3} \quad \text{and satisfy } \psi_i(\alpha) &= \sigma(\alpha^{1/2}) ;\\ \text{the eigenvalue of } df_{1^{\alpha}}^2|_{x_2=0} \quad \text{at the points } x_{11}, x_{12} \\ \text{is equal } 1 + 4 \propto (\alpha + \sigma(\alpha)) . \text{ Since from (16) it follows} \\ \text{that the other eigenvalue of } df_{1^{\alpha}}^2 \quad \text{at the points} \\ (\alpha, x_{11}(\alpha), 0), (\alpha, x_{12}(\alpha), 0) \text{ is of modulus less than one,} \\ \text{this proves that the points } (\alpha, x_{14}(\alpha), 0), (\alpha, x_{12}(\alpha), 0) \\ \text{are saddles for small } \alpha . \text{ From (15), (16) it follows further that for small } |\alpha|, \text{ the points of } \mathbb{Z}_4 \quad \text{are sinks} \\ \text{for } \alpha > 0 \quad \text{and saddles for } (\alpha < 0 . \text{ This proves (ii b)} \\ \text{if we show that } \mathbb{Z}_2 \cap W \quad (W \text{ possibly restricted) does \\ \text{not contain other points except of the points } (\alpha, x_{1i}(\alpha), 0), \\ \dot{\iota} = 1, 2 \quad . \end{split}$$

From (16),(17) it follows that every orbit that remains in $|x| < \sigma''$ (σ'' sufficiently small independent of $(\alpha \text{ for } |\alpha| \text{ small})$, approaches the submanifold $x_g = 0$ (in the positive sense). Therefore, in order to prove (ii c) and thus also to complete the proof of (ii b) it suffices to prove that for sufficiently small α the only periodic points of $f_{q_1}|_{x_g = 0}$ for $|x_g| < \sigma'_1 < \sigma''_1$, σ''_1 , sufficiently small, are the points $x_{1i}(\alpha)$, i = 1, 2, and 0.

From (17) it follows that

(23) $x_1'' - x_1 < 0$ for $\mu \leq 0$, $x_1 < 0$,

- (24) $x_{2}^{"} x_{1} > 0$ for $\mu \leq 0$, $x_{1} > 0$, (25) $x_{1}^{"} - x_{1} > 0$ for $\mu > 0$, $x_{1} > [-4 \propto (\gamma + \beta^{2})^{-1} \mu]^{1/2}$,
- (26) $x_1'' x_1 < 0$ for $\mu > 0$, $x_1 < -[-4\alpha(\gamma + \beta^2)^{-1}(\mu)]^{1/2}$,

and $|\mu| < \sigma_2', |x_1| < \sigma_2', \sigma_2'$ being sufficiently small. From (23),(24), it follows that the orbit of every point with $0 > \mu > -\sigma_2', |x_1| < \sigma_2'$ leaves $|x_1| < \sigma_2'$. From (22),(23),(24) and the implicit function argument used after (21) it follows that there are no periodic points with $|x_1| < [-4 \propto (/3^2 + \gamma)] (\mu 1)^{1/2}$

except of the points $x_{11}(\mu)$, $x_{12}(\mu)$. From this, (25), (26) and (19) it follows $x_1'' - x_1 < 0$ for $\sigma_2' < x_1 < < x_{11}(\mu)$ or $0 < x_1 < x_{12}(\mu)$ and $x_1'' - x_1 > 0$ for $x_{11}(\mu) < x_1 < 0$ or $x_{12}(\mu) < x_1 < \sigma_2'$, $\mu > 0$, so that every orbit both in the positive and negative sense tends to one of the points 0, $x_{11}(\mu)$, $x_{12}(\mu)$. This completes the proof of (iv c).

To complete the proof of (ii a), we denote by $\varphi(x_1)$ the real function, defined as the inverse of the functions $x_1 = x_{11}(\alpha)$ for $x_1 < 0$ and $x_1 = x_{12}(\alpha)$ for $x_1 > 0$. From (22) it follows (27) $\lim_{x_1 \to 0} \varphi(x_1) = \lim_{x_1 \to 0} \varphi(x_1) = \frac{d\varphi^+}{dx_1}(0) = \frac{d\varphi^-}{dx_2}(0) = 0$. Further, from the fact that the points $(\mu, x_{41}(\mu), 0)$ ($\mu, x_{42}(\mu), 0$) are nondegenerated for $\mu > 0$ it follows that φ is C^{n} . Using (22) and the implicit function theorem we obtain

(28)
$$\frac{d\varphi}{dx_{1}} = -\left[\alpha^{-1}(\beta^{2} + \gamma)\mu\right]^{1/2} + \sigma(\mu^{1/2}) \quad \text{for } x_{1} < 0,$$
$$\frac{d\varphi}{dx_{1}} = \left[-\alpha^{-1}(\beta^{2} + \gamma)\mu\right]^{1/2} + \sigma(\mu^{1/2}) \quad \text{for } x_{1} > 0.$$

This, together with (27) shows that φ can be completed into a C^1 function (which is not C^2) in some neighbourhood of 0 by defining $\varphi(0) = 0$.

As a corollary of Theorem 1 and 3 we obtain

Theorem 4. Let $\kappa > 2$. Then for every $f \in \mathcal{F}_3$: (i) for \mathcal{K} odd, $Z_{\mathcal{H}}$ is a closed submanifold of $P \times M$, (ii) for \mathcal{H} even, $\overline{Z}_{\mathcal{H}}$ is a closed C^1 (but not C^2) submanifold of $P \times M$; $\overline{Z}_{\mathcal{H}} \setminus Z_{\mathcal{H}}$ is discrete and coinci-

des with $Y_{se/2}$.

References

[1] K.R. MEYER: Generic bifurcation of/periodic points, to appear in Trans.Amer.Math.Soc.

- [2] J. SOTOMAYOR: Generic one-parameter families of vector fields. Bull.Am.Math.Soc.74(1968),722-726.
- [3] R. ABRAHAM, J. ROBBIN: Transversal mappings and flows. Benjamin 1967.

- [4] S. LANG: Introduction to differentiable manifolds, Interscience 1962.
- [5] S. SMALE: Differentiable dynamical systems. Bull. Am.Math.Soc.73(1967),747-817.
- [6] P. HARTMAN: Ordinary differential equations. Wiley 1964.

Ústav technickej kybernetiky SAV

Dúbravská cesta

Bratislava, Czechoslovakia

(Oblatum 16.2.1970)