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A Classification of Linear Controllable 
Systems* 

PA VOL BRUNOVSKY 

The concept of feedback (F-) equivalence of linear controllable systems is defined and the 
classification of such systems based upon this equivalence concept is discussed. 

1. INTRODUCTION 

This paper is concerned with linear control systems, which can be represented by 
systems of linear differential equations of the form 

(1) x = Ax + Bu 

where x and u are n- and m-vectors respectively, A and B are matrices of appropriate 
size, in general time-dependent. 

Since the system (1) is uniquely determined by the pair of matrices A, B, we shall 
frequently call it <A, B). 

The basic question, which leads to the classification studied in this paper, can be 
formulated as follows: 

Having two systems <A, B) and <A', B'), is there a linear feedback which, added 
to <A, B), yields a system, which behaves like <A', £'>? 

We shall make this question more precise in the next section. At this point let us 
note that the feedback will be required to be constant, time varying or periodic in t 
according to the system itself. 

We shall see, that this question gives rise to a classification of controllable auto
nomous systems into a finite number of classe seach of which can be represented by 
a very simple canonical form. For time-varying systems, such a classification will be 
given for an important subclass of controllable systems. 

* This research was supported by NASA under grant No. NGR-24-005-063 during the 
author's stay at Center for Control Sciences, University of Minnesota, Minneapolis, Minnesota, 
U. S. A. 



Let us note that this paper is related to [ l ] , [2], [3], where similar concepts of 
equivalence have been introduced, though for different purposes. For time-varying 
systems, this paper extends a result of [4]. The point of view of studying control 
system is to a certain extent related to that of [5]. 

2. AUTONOMOUS SYSTEMS 

In this section, we shall assume that A, B are constant matrices and that the system 
is completely controllable, i. e., 

(2) rank(B, AS,..., A"~LB) = n . 

To formulate the question raised in the preceding section more precisely, we trans
late it into an algebraic form. 

By adding a linear feedback to <A, £>, we mean that in (1), we substitute u = Qx + 
+ v, where Q is m x n constant. As a result of this transformation, we obtain a 
system <A", B">, with A" = A + BQ, B" = B. 

By saying that <A", B"> behaves like <A', B'} we mean that by nonsingular linear 
transformations of the state (output) and input variables, <A", B"} can be brought 
into <A', B'} or, algebraically, there are nonsingular matrices C and D of type 
n x n, m x m respectively, such that A' = C_1A"C, B' = C~LBD. 

Summarizing, we find that the question of the preceding section asks, whether 
for given systems <A, B}, <A', B'} there are matrices C(m x n), Q{m x n), 
D(m x m), C, D being nonsingular, such that 

(3) A' = C~l(A + BQ)C, B' = C-lBD. 

If the answer is positive, we shall say that <A, B} and <A', B') are feedback (or, 
briefly, F-) equivalent. 

By a straightforward computation it can be checked that F-equivalence is actually 
an equivalence relation, i. e., it is symmetric, reflexive and transitive. Moreover, 
the order of transformations, by which <A', B'> is obtained from <A, J5>, can be 
changed. 

It will be frequently convenient to express that a system <A', B'> can be obtained 
from <A, B> by one of the transformations, occuring in the definition of inequiva
lence, only. 

Referring to our definition, <A, B} and <A', £'> will be called 

-C-equivalent, if Q = 0, D = E, 

- 6-equivalent, if C = £„, D = Em, 

-D-equivalent, if C = E, Q == 0 , 

where E is the unity matrix, the index indicating its size. It is easy to check, that these 
relations are equivalence relations. 



We associate with a given system <A, B> n numbers r0, ru ..., r„_i as follows: 175 

(4) r0 = rank B , 

rj = rank (B, AB, ..., AJB) - rank (B, AB, ...,AJ~1B), l g j g » - l . 

Geometrically, if we denote by Lj(A, B> the linear subspace of R", spanned by the 
column vectors of B, AB, ..., AJB, by A} the orthogonal complement of Ly_ _ in Lj 
and by 71//) the orthogonal projection of a vector / into Aj, then r, is the dimension 
of Aj, which is equal to rank (nj(AJB)). 

n~ 1 

Obviously, 0 ^ r_ :£ m for O ^ j ^ n — 1 and, because of (2), ]T r_ = n. More
n o 

over, since AJb( = _>_ AJ_>V„ / e { 1 , . . . , m} implies A J + 1fo; = ]T A J + 1 5 V , we have 
ve/ ver 

r0 __: r_ __;,..., >. rn„t and we can choose a basis S of R" from the column vectors 
of (B, AB, ...,A"~1B) in such a way that the vectors {nJ{Aib^\AJbi e S, j fixed} 
span Aj (consequently, their number is r_) and if AJ'_>( ,_ S, than AJ' + 1fr( $ S. Such a 
basis we shall call pyramidal. 

Assuming that we have chosen a pyramidal basis 5, we can associate with every 
column _>; a number ph such that AJ_>( e S for 0 _s j __S p. — 1, but AP'_>( $ S. By 
re-ordering suitably the columns of B (this is a D-transformation) we can achieve 
that pi >. p2 >.,...,>. pm. Consequently, the p-numbers can be uniquely determined 
by the r-numbers, associated with <A, B>, as follows: 

(5) pi is the number of r / s , which are ^ . . 

Conversely, the r-numbers are evidently uniquely determined by the p-numbers of 
<A,B>. 

As a result of our discussion we have: 

Lemma 1. For every controllable system <A, J_>, the finite sequences of numbers 
R<A, B> = {r ,}" : 0 , P<A, B} = {Pi}7=u defined respectively by (4), (5), have the 
following properties: 

n - l 

(i) OSrjSm, r0 _> r . ^ . . . ^ >-_._. > 0 , rj = 0 for j _> P l , £ r, = it , 
, -o 

(ii) 0 _g p. ^ n, p_ > .. . ^ p ro > 0 , pi = 0 /o r i > p.., £ p, = n , 
i= 1 

im) P<A , B> = P<A ', B'> 1/ and onty 1/ R<A, B> = /_<__', B'> . 

(iv) There is a system <A, B'> D-equivalent with <A, B> suc/t that the vectors 
AJbi, 1 _g i _g r0, 0 _g j _g p( - 1 /orm a basis of _.„. 

Now we are able to formulate 



176 Theorem 1. <A, B) is F-equivalent with <A', P/> if and only if R<A, B) = 
= R<A', B') (or, P<A, B) = P<A', B'». 

Theorem 2. Let P<A, R> = {p,}7=1, R<A, B) = {ry}}:0. Then, <A, R> is F-equi
valent with a decoupled system of r0 integrators: 

(6) v„,- + i = J* i + 2. •-•>}'_,•,-i = yki + 1 , h,+t = ».+ i> i = 0, ..., r 0 - 1 

where fe{ = J] p v . 
v = l 

We first prove theorem 2, with the aid of 

Lemma 2. Let P<A, R> = {p;}'f=l, R<A, R> = {rj}"Zl Then, <A, R> is C-equi-
valent with a system (A', B') of the following form: 

A'= /A'lu...,A'lr\, P ' = IB\ 

\A;0l,...,A;0J \B;, 

where Aj. are p, x pj., 

i/ i+Л 

,...,0 

, . . . , 0 

, + 1 , , •••> aikjl 

A'и = /0 ,1 o \ 

0 ,0 , . . . , 1 

\<-IIt,_,+ l> a i l í , - 1 + 2 , •••> aifci 

fci = z_ Pv, 5J are pt x m, 
v = l 

R; = /o, ,o 

0, , 0 
\0, . . . ,0 , l ,7 ( ( + 1 , . . . ,y , 

(1 is in the i-th column), i,j =},..., m. 
This lemma is proved in [6] and, in fact, is also a special case of lemma 8 of this 

paper. 

P roof of t h e o r e m 2. In virtue of lemma 1, we can assume that <A, P> has the 

special form, given in its formulation. Denote by B the submatrix of B, consisting 

of its /crth rows, i = 1, . . . , r0 (those are precisely the non-zero rows of B), by B the 



submatrix of B, consisting of its first r0 columns. B is a nonsingular triangular 
r0 x r0 matrix and, furthermore, the columns bh i > r0 of B are linear combinations 
of the columns of B, i. e., there are r0-vectors dh such that — bt = Bd„ r0 < i <, m. 
Denote 

D = (B-\dro+1,...,d, 

VO ,Em.ro 

Then, JJD = (Ero, 0) and, consequently, B' = BD has all elements zero except for 
b'kli, which are equal 1; <A, B') is £)-equivalent with <A, £>. To complete the proof, 
we define Q as follows: qu = -a 0 - , 1 < i < r0, 1 < j <. n, qu = 0, r0 < i ^ m, 
1 <. j ^ n. Then, the system <A', B'> with A' = A + B'g is E-equivalent with 
<A, P> and has the required form. 

P roof of t h e o r e m 1. The E-equivalence of the systems with the same R (or P) 
follows directly from theorem 2. 

To prove the opposite implication, it suffices to show that none of the C-, D-, 
g-transformations changes the r-numbers of a controllable system. 

For C- and D-transformations, this statement is trivial. If <A', B> is a g-transform 
of <A, B), A' = A + BQ, then we have A'JB = (A + BQ)J B = AJB + G, where 
G is an n x m matrix, whose columns are contained in Lj^^A, B} and the state
ment follows by induction in ;'. 

The system (6) of theorem 2 can be considered as a canonical form for a particular 
class of systems. 

Let us also note that besides other things, theorem 1 justifies our restriction to 
controllable systems. Namely, it shows that there is no C-, D- or g-transformation, 
which will make a controllable system from a non-controllable one and conversely. 

It is apparent that for given m and n, there is only a finite number of equivalence 
classes. From lemma 1 and theorem 1 it follows that the number of classes is equal 
to the number Qmn of ways in which n can be written as a sum of n nonnegative in
tegers (or the number of ways, in which n can be written as a sum of n nonnegative 
integers, not exceeding m). However, there is no formula known for the computation 
of Qmn. The problem of finding the numbers Q,m is an old numbertheoretical problem 
called "partition problem". It goes back to Euler, who gave a "generating function" 
for Qmn, which is 

F (x) = \ 

•y (i-x)(i-x2).. .(i- .<r 
This means that if we expand E formally into Taylor series, Em(x) = 1 + X &IIX"> 

n = 1 

than Qmn are the numbers, defined above. For details, cf. [10]. 

The following two corollaries illustrate the usefulness of theorems 1 and 2. For 
other applications of theorem 2 (or, rather, lemma 2) the reader is referred to [6], [7]. 



178 Corollary 1 (cf. [1], [2], [7], [8], [9]). To any n-th degree polynomial P(X) and 
any controllable system <A, B>, there is a system <A', B>, Q-equivalent with 
<A, B>, such that the characteristic polynomial of A' is P(X). In particular, every 
controllable system can be stabilized by an appropriate linear feedback. 

Let us note, that also the converse is true, but we shall not prove it here (cf. [1], 

[2], M). 
Proof. Since C- and D-transformations do not change the characteristic poly

nomial of A, we can assume that <A, B} is in the canonical form (6). Then, we define 
the Q-transformation by vt = xki+1 + wt, 1 <£ i g r0 — 1, vro = - ( j S ^ + . . . + 
+ p„xn) + wro, where P(X) = X" + j V " _ 1 + ••• + Pn-v 

Corollary 2 (cf. [7]). / / <A, B> is controllable, then for any non-zero vector 
/ e L 0 < A , B}, there is an m x n-matrix Q such that <A + BQ,f} is controllable. 

Proof. We can obviously again assume that <A, B> is in the canonical form (6). 
ro 

Let / = ]_ Xtbi, and let A, + 0. Then, if I + r0, we define 
j = i 

f 1 if either i + I, i + r0,j = k, + 1, or i = r0,j = 1, 

( 0 otherwise. 

If / = r0, we define 

_ f 1 if J = k, + 1, i * r0, 

0 otherwise . 

It can be easily verified that the matrix H = (f,A'f, ...,A'"~lf), where A' 
= A + BQ, has the following form: 

VII21, !I22 

where H11iskl x k,, both H11 and H 2 2 are supper triangular with A, on the diagonal. 
Consequently, H is non-singular, q. e. d. 

3. TIME-VARYING SYSTEMS 

In this section, we apply some of the ideas of the preceding section to time-varying 
systems. 

We consider systems 

(7) x = A(t) x + B(t) u 

where A(t) and B(t) are defined and of continuity class W' on some interval J. 



For time-varying systems, we modify the concept of E-equivalence, by allowing 
the matrices C, Q, D to be time-varying. So, (7) and 

(8) y = A'(t) y + B'(t) v 

will be called E-equivalent on J, if there are matrices C(t), Q(t) and D(t) on J, all of 
class ci'x>, such that the transformations u = Qx + Dv and x = Cy bring (7) into 
(8). Translated completely into the language of time-varying matrices, defining the 
system, <A, B) will be said to be E-equivalent with <A', B') on J, if there are C€'K-
matrices C, Q, D on J such that A' = C_1[(A + BQ) - C] C, B' = ClBD for 
teJ. 

It can again be easily verified that E-equivalence is actually an equivalence relation. 
In a similar way, the definitions of C-, Q-, Z)-equivalence can be modified. 

There is no reason to expect that a classification of controllable time varying 
systems similar to that of autonomous ones can be obtained, whatever geometric 
definition of controllability we use. This is partly due to the fact, that for none of 
those concepts of controllability there is an equivalent algebraic condition, correspond
ing to (2). 

However, there is a condition for time-varying systems, generalizing (2), which 
implies controllability in any reasonable geometric sense. This condition can be 
formulated as follows: 

For E being a _?°° n x s-matrix function for some s, denote 21 E(f) = A(t) (Ft) + 
+ F(t). Then, for every t, 

(9) rank (B, 2IB,. . . , « •" 1 B) = n . 

Let us now ask the following question: When is a time-varying system E-equivalent 
to an autonomous one? Those systems, which are equivalent to autonomous ones, 
we are of course able to classify. It turns out, that the systems, E-equivalent to auto
nomous ones, are precisely those, which satisfy "a somewhat strengthened condition (9). 

For time-varying systems, we define R<A, B) as the n-tuple of functions {r//)}"!0 

on J, where 

r}(t) = rank (B(t) 2IJ' B(t)) - rank (B(t),..., W'1 B(t)) . 

P<A , B> is the m-tuple of functions pt(t) defined for every t by (5). L}, A} and n} 

are defined similarly as for autonomous systems with A replaced by 21. They also 
depend on t. 

Theorem 3. The system <A, B) is F-equivalent with a controllable autonomous 
system on J if and only if the functions r0(t),..., r„_l(t)from R<A, B) are constant 
on J and r0(t) + ... + r._i(f) = n. 

For better orientation, we divide the proof of this theorem into several lemmas. 



Lemma 3. Denote S/f) = {W bt(t)\0 <; v = j , i e Mv), where Mv are subsets of 
{ 1 , . . . , m). Let Sj(t0) be a basis of L-(t0). Then, 

(i) S,(f) is a basis of Lj(t) in a neighbourhood U of t0. 

(ii) I//(t) e Lj(t) and f is ^°° on U, then 

f(t)= I 7uWH*) 
O g v g j 

ieMv 

where yiv are ^70° functions on U and bt(t) are the columns of B(t). 

Proof. Let Qj = _] rv. Then, there is a Qj X QJ nonsingular submatrix Sj(t0) of 

S_,-(f0). Since det S,(f) is continuous, we have det Sj(t0) 4= 0 in some neighbourhood 
U of f0. Since yiv can be expressed as polynomials of the entries of /(f) and 5,(f) 
divided by det S/t), the lemma follows. 

Chose a norm [|. | in R". As an immediate consequence of lemma 3 we obtain 

Lemma 4. Lef the functions of R{A, B) be constant on J. Then, the subspaces 
Lj(t) and A}(t) depend continuously on t on J in the following sense: 

To any ball NR — {x\\\x\\ 5S R} in R", any t0e J and s > 0 there is a d > 0 
such that for |f — f0| < d, 

Lj(t)r\NR, Lj(t0)f)NR, Aj(t)riNRt Aj(t0)nNR 

are contained in the s-neighbourhoods of Lj(t0), Lj(t), Aj(t0), Aj(t) respectively. 

Lemma 5. i / {A, B) and <A, B') are D-equivalent, then Lj(A, B)(t) = 
= Lj{A, B')(t) and A;(A, B)(t) = A/A, B')(t) for all t e J. 

Proof. We have Wb[ = f 2 T ' ( V y = X (*-'**) d„i - £ (®'~1-,n) <V From 
/ J = I ii=i ii=i 

this we obtain by induction L,-<A, B') a Lj(A, B), 0 < ;' < n - 1. By symmetry 
of D-equivalence, we have the opposite inclusion and, thus, equality. The equality 
of A/s follows trivially. 

Lemma 6. Let for some t, Sj(t) be a pyramidal basis of Lj(t). Then, Sj(t) can be 
completed into a pyramidal basis o/L„_1(f). 

Proof. We prove that Sj(t) can be extended into a pyramidal basis S;+i(t) of 
LJ + 1(f). The rest follows then by induction. 

Let Wbi e S/f), if and only if i e M3. Then we have for every bk, 1 ^ k g m, 
Mh-ZWbi + g,, where gkeLj^(t). 

ieMj 

Thus, 

W + lbk = ^ ^ % - X Wbi +Wk = Z W}*% +fk 
ieMj • ieMj ieMj 



where fk e Ly(f). From this it is clear that to complete the basis for Sj+ x(t), we can 
add to Sj(t) any rk+1(t) linearly independent vectors from W + 1bh i e Mj, q. e. d. 

Corollary 3. m ^ r0(f) ^ rx(t) ^ ... ^ r . -^ f ) _: 0 for all t. 

Lemma 7. Let the functions o /R<A , B> be constant on J. Then, <A, B) is D-equi-
valent with a system <A, _?'> such that 

S'i(f) = {2T-;(.)|0 ^ v ^ j , 1 g i g rv} are bases of Lj(t) for teJ. 
Note that the theorem of [11] is a special case of lemma 7. 

Proof. The matrix D(t) will be constructed as a product of n matrices D — D0 ... 
... !>„_, in such a way that for <A, BD0 Dk} the statement of the lemma will 
be valid for j g fc. 

Assume that we have already constructed the matrices D0,..., Dk^l. In virtue of 
lemmas 3, 6 we can cover J by a sequence of open intervals J'„ = (a„, _>„), — co < 
< p. < oo in such a way that | (a„ + _>„) is an increasing sequence, £>„ < a^+2 for 
all \x and for every /i there is a subset M„ <= { 1 , . . . , rfc_,} such that {nk('ii

kbi(t))\i e M„} 
span Ak(t) for f e ./„. Dft will again be constructed in steps. First we define Dk(t) on 
[_»_!,«.] as follows. 

We put d; = eai, I ^ i ^ rk, dt = et for r t_j < i ^ m and the remaining d:s 
we put equal to the remaining e:s arbitrarily. There M0 = {<ru ..., ark}, dh et are 
the columns of Dk, Em respectively. By multiplication of B by Dk, the columns 
{i>,|i e M0} are brought into the first rk positions and the columns bhi > rk_l 

remain without change. 
We proceed by introduction assuming that Dk(t) has been constructed on [£>_„, aj] 

with following properties: (which are obviously satisfied for fi = 1). 
Denote _,„(.) = Dk(t) for f e [_ .„ ,«„] , Bjjt) = _>_(&_„) for t < __„, _3„(t) = 

= _>k(a„) for f > a;, 5(.) = B(t) _*„(*). Then: 

(i) D,,(f) is nonsingular and <_'c° for all t 

(ii) The vectors {9IV£,|0 £ v ^ fc - 1, 1 __ i __ r¥} span Lfc_t for all f 

(iii) The vectors {.r/c(5l'-/_>i)|l <; i <; r j span Afc(f) fora_M + 1 S t __ &„-, and there 
are subsets M,„ M_„ of { 1 , . . . , r t _i} such that 

{nk(K
kb)\ieM„}, {n^b^ieN,} span At(f) for f e [_„, 6„] 

and f e [a_„, £>_„] respectively. 
We show that Dk(t) can be extended so the interval [i>_^+1, a„ + 1 ] in such a way 

that (i)-(iii) remains valid with fi replaced by n + 1. We show only the extension 
forwards, the extension backwards being entirely similar. 

We divide [a„, 6„_i] into r t subintervals of equal length x = rj1(bll-l — a j 
and denote ac = a„ + £T. Again Dk(t) will be extended by induction. We assume 



that Dk(t) has been extended for t % ac_i, C __ » in s u c n a way that if we denote 

5 c - i ( t ) = Dk(t) for . < a c_j , 5 c _i (0 = At fa - i ) for t ^ ac_i , 

_.(.) = B(t) 5c_i(f), then we have 

(a) I>c_i(t) is <_'°0, nonsingular for all f, 

(b) The vectors {8PF,|0 < v < fc - 1, 1 < i £ rv} span L,_.(.) for all . , 

(c) The vectors {7rfc(3Ife5I.)| 1 < i < r j span Ak(t) for . < ftM_i, 

(d) There is a subset -Vc of (£, . . . , r t _.} such that 

{„X«'E,)|1 <_ i < f or i e/Vc} is a basis of Ak(t) for ac_, ^ . < &_. 
We show that Dk(t) can be extended for t ^ a. so that (a) — (d) remain valid with 

f — 1 replaced by £. 
From (c) and (d) it follows that there is an / e Nc such that WBl is not contained 

in the subspace A(t) of Ak(t), spanned by {7rfc(9lfc5,)|l < i < r^, i 4= £} for any 
. e [ac_!, fc^-i]. If / = C, we simply define Dk(t) = _)c_i for . e [a c_ t , ac], i. e. we 
extend Dk(t) continuously as a constant. If / + C (note that then / > rk) then nk(il

kE^) 
and either 7rfc(9lfeZj;) or its negative lie in the interior of the same one of the two 
halfspaces, into which A(t) divides Ak(t), for all ( e [ac_,, ac]. In the first case, we 
define for t e [-;_•., ac], Dk(t) = D(t) Z(t), where Z(t) = (z ,•/.)) is defined as follows: 

(10) zK(.) = 1 - ,/,(«,-1 + r) , zCi = - ^ ( a c _ i + t) , 

-.c(0 = «K«.-i + 0. z» = ! - #* . - i + 0 > 

zu(.) = 5(J- otherwise and ij/(t) is a nonnegative _"° real function such that i^(0) = 0 
for t <; 0, i/>(.) = 1 for . ^ T, 0 <; i^(f) < 1 for 0 S t __ ?. In the second case, we 
define zci and zJC with opposite signs. 

Now, the validity of (a) for £ is obvious. For the proof of (b) - (d) denote 5(f) = 
= B(t) T)(t), where D is defined as D(t) with C - 1 replaced by £. We have 

9T5 = 9IV(5Z) = (2PI?) Z + F 

where E e Lv_ i(f), which implies 

(11) 7rv(2Tlf) = (7rv(5TB)) Z . 

If we denote B, B the submatrices of B, B respectively, formed by their first rv 

columns and _.„ the submatrix of Z, formed by its first rv columns and rv rows then, 
because all elements of the first rv columns, not belonging to Zv, are zero, we have 
from (11) 

nJ{W%) = (7rv(<Hvi?v)) Zv for 0 < v = k - 1 

which implies (b). 



(c) follows from the fact that by (10) and ( l l ) , nk(~lkB^) is for all t a convex com
bination of two vectors, both of which lie in the interior of the same one of the half-
spaces, into which A(t) divides Ak(t) and the other vectors of {nk(~lkBi)\l < i <: rk} 
are not affected by multiplication of B by Z. 

(d) follows from the fact that for t ^ o?, nk(~lkB,) = nk(U%). 

After extending Dk(t) for t ^ bll-1 stepwise in the described way, we extend Dk(t) 
for t < aM+1 by setting Dk(t) = _>t(b„_,) for te[bll^u a,,+ 1 ] . Then, it is easy to 
verify that Dk satisfies (i) —(iii) for t < ~„+ 1 . 

This, by introduction, proves the existence of Dk(t) and, thus, of D(t). 

Remark 1. By a refinement of the above argument it can be shown that if the 
matrix (B, 2TB,..., 9In-1.B) and all its p derivatives (p = max p,) are bounded on 

J and for each t there is an n x n-subdeterminant of this matrix;the absolute value 
of which is bounded below by a positive constant, independent of t on J, then D(t) 
can be constructed in such a way that (£?', 11B',..., ~l"~1B') is bounded and 
|detS-_<(.)| is bounded below by a positive constant, independent of t. This will 
be seen to be important for the stabilization problem. 

The refinement is essentially based on the facts, that under the above boundedness 
assumptions the covering {J„) of J, which occurs in the proof of Lemma 7 can be 
for every k constructed in such a way that on every interval J^ the absolute value 
of some pyramidal basis and also the length of the intersections of the consecutive 
intervals are bounded below by a positive constant, which is independent on \i. 

Lemma 8. Let for all teJ, the vectors {Wb^O | v g n - l , 1 < i < rv}, be 
linearly independent. Then, <A, B} is C-equivalent with a system <A', B'}, where 
A', B' have the form of lemma 1 with a's and y's time-dependent. 

In essence, this lemma is proved in [4], but we shall give an alternate proof, which 
is modeled after the proof of lemma 2 of this paper from [6]. 

Proof. Let P<A , B} = {pt\l S i _= m), ki = Yjpv and let C be the submatrix 
v = l 

of C, consisting of its /c,-th columns, G the submatrix of B', consisting of its fcrth 
rows. Then, C, G have to satisfy 

(12) AC = CA' + C , B = CG, 

G being triangular, so is G~l. We define G~l = (yvi) as follows: yvi for 1 g v < rp. 
are the unique nunbers such that 

nPt(^
p,bi + rfiyViW%) = 0, 

v = l 

yfi = 1 and all remaining y's are equal to zero. 



184 From lemma 3 it follows that yvi are Wv. Since C = BG'1, we have npfi\
pick) = 

= nPi(W"b, - _>_ yviWbv) = 0, or Wicki eLp l__. Moreover, 
v = i 

(13) {_V_.|0 __ v __ _•, 1 _S i g rv} 

are bases of L_. 
Decomposing the first equality of (12) into columns, we obtain 

ro 
c*,-,+. = 3tc„._1+_ + 1 - S a"*i-.+j+i c*v' i = - J»i - L ' = 1 m , 

v = l 

0 = Stcjt^. + j - __>v_._1 + i c _ v , i = 1 , . - . , m . 
v = l 

Consequently 

(14) ck i_1 + , = w-jcki - Y ^ - ^ I ^ ^ H ^ , 
, . = 1 v = l 

(15) 0 = ««c_, - £ 91" '-" £ «-_,-,,+_-_,. 
M = l v = l 

Since for any <^c0 a(f) scalar and b(t) n-vector functions 

d6) ^=j.(;)(-r_^« 
is valid, we can re write (15) as 

« " - * , • - ' l 1 £ £ ( / ;1(-i) J '""«ii7- ' '1
)+j+i«%v 

J' = 0 v = l „ = 0 \ / l / 

- "z1 £ « v Y H(-iy_M«+.+i. 
„ = o „ = i .=„ \flj 

If we define <pvli = 0 for /. __ _>v, then by (13) <pv„, l _ _ v _ S r 0 , 0 __/.__ p ( — 1 
are uniquely determined by the equation 

*"**,="£ £^v</v 
,1 = 0 v = l 

and they are ^,co on J. 
cpVfl being known, av_ can be determined by solving r0 triangular systems with l's 

in the diagonal 

J=» w 
Obviously, the a's obtained from these equations are also <_"*' on J. The a's being 
known, we can determine C by (14) and it can be readily verified that (12) is satisfied. 



Since by (14) and (16), ck._i + j = Wi~t~ick. + / , whe re / e Lp._ ;, it follows from 
(13) that C is nonsingular. 

Remark 2. It can be easily checked that if we want the a's and y's to be merely 
continuous, it is sufficient to assume that (B, WB,..., W~1B) has max pt — 1 
derivatives. Moreover, if these derivatives are bounded and |detS(f)|, where S(t) is 
the matrix, consisting of the columns {3lvfo;|0 <J v :£ n — 1, 1 S i .5 r} is bounded 
below by a positive constant, C, C_1 and A', B' are also obtained bounded. 

Proof of t heo rem 3. If: By lemma 7 and 8, <A, B} can be brought to <A', £'> 
with A', B' having the special form of lemma 2 with a's and y's time dependent. In 
the same way as in theorem 2, we construct Q (which will be, of course, time depend
ent) in such a way that <A', B') will be Q-equivalent to the decoupled system of 
r0 integrators (6), which is autonomous. 

Only if: Lemma 5 proves that the r-numbers are invariants of a ^-transformation. 
The theorem will be proved if we show that they are also invariant of the C- and 
Q-transformation. 

For the C-transformation if follows from Wf = C_1(AC - C) C~'f - c-1/ + 
+ C"1/ = C"1 21/for every <g'0° vector function/, where <A', B') is theC-transform 
of <A, B} and W = (A ' - d/dt). 

For the E-transformation we note that if <A', B> is a g-transform of <A, 5>, 
then Wf = (A + BQ)f - f = S&f + BQf, from which it follows Lj < A1', B > c 
c: Lj<A, By. From the symmetry of Q-equivalence it follows Ly<A, B> c L7<A', B> 
and, thus, L ;<A, B> = L / A ' , By, q. e. d. 

Those systems, which satisfy the assumptions of theorem 3 we shall call auto
nomous-equivalent, or A-systems. 

We have also proved 

Theorem 4. Two A-systems <A, B> and <A', 2?'> are F-equivalent if and only if 
R<A, By = R<A', B'y. They are both equivalent to the canonical system (6). 

Corollary 4. For autonomous systems, we obtain the same classification, whether 
we allow the transformation matrices to be time-dependent or not. 

Corollary 5. To any n-th order polynomial P(X) and any A-system <A, B> there 
is an autonomous system <A', B'y, F-equivalent with <A, 5> such that P(X) is the 
characteristic polynomial of A' (cf. [4]). 

Remark 3. Corollary 5 is of use for the stabilization problem only if J = [t0, oo) 
and the transformation matrices and the inverses of the C- and D-matrices are bound
ed. In virtue of remarks 1 and 2, this will be true if the assumptions of remark 1 are 
satisfied on some interval J = [f0, oo). Let us also note that for the stabilization 
problem solely, it is sufficient to assume that the matrix (B, ~IB,..., W~tB), p = 



186 = max p{ has n — 1 bounded continuous derivatives. Our results, therefore, improve 
l g i g m 

the result of [4], where it is in essence assumed that the system satisfies the assumptions 
of Remark 2. We assume that A, B are #°° merely for the classification theory. Namely, 
if <A, B> is not assumed to be (^co, then the system <A', B'> of lemma 8 is obtained 
with much fewer continuous derivatives, which is inconvenient. 

Corollary 6. Let <A, £> be an A-system and let f(t) bea <g'=0 vector function such 
that for all te J,f(i) e L0<A, By (t), Then, there is a system <A', £'>, F-equivalent 
with <A, By, such that <A ' , /> is an A-system. 

The idea of proof is the same as that of the proof of Corollary 2; we omit the 
details. 

4. REMARKS ON DISCRETE AND PERIODIC SYSTEMS 

For discrete systems, autonomous as well as time-dependent, a similar classification 
theory can be developed. We are not going to formulate the results, which can be 
drawn from those of 2 — 3 by simple analogies. 

Time-varying periodic systems with continuous time can be regarded as a parti
cular case of general time-varying systems. It is natural to require from the trans
formation matrices to be periodic in this case but this requirement does not intro
duce new difficulties. 

Sometimes, however, one does not need the information about the behaviour of 
the system for all t, but only about its behaviour in discrete moments, the period of 
the system apart. For instance the stability properties of the system are completely 
determined by the discretized system. 

To make this point more precise, assume that the matrices of the system <A, B> 
are T-periodic and of class <^1. The solutions of the system x — Ax + Bu can be 
expressed as 

x(t) = Y(t)x(0) + ('Y(t)Y(-s)B(s)u(s)ds 

where Y(t) is the fundamental matrix of j> = Ay with initial condition Y(0) = E. 
Then, the corresponding discrete system is 

Zk+l-Y(T)Zk + F(t,k) 

where £,k = x(kT), r\k is the piece of control function u(s), kT g s ^ (k + 1) T and 
F is the linear operator, mapping r\k into 

f Y(T)Y(~s)B(0)u(kT+s)ds. 

It can be immediately seen that if we try to use the concept of D-transformation 



to this system, difficulties arise. Namely, a general linear transformation in the 

>7-space would involve the future values of the control, which is physically unthinkable. 

However, there is a result of the type of corrollary 1, which may be worthwhile 

to mention in this context: 

Theorem 5. A T-periodic system <A, £> with <A, B} bein (€i is controllable if 

and only if to every n-th degree polynomial P(X) with positive absolute term there 

is a T-periodic m x n matrix Q (which can be choosen piecewise constant or ar

bitrarily smooth) such that the characteristic multipliers of the system y = (A + 

+ BQ) y are exactly the roots of P(X). In particular, periodic controllable systems 

can always be stabilized by an appropriate periodic feedback. 

This theorem is in a sense stronger than corollary 4, since controllability in it is 

assumed only in its weakest geometrical sense, i. e. that we can join any two points 

in R" by a trajectory of the system in sufficiently long time, with the aid of an appro

priate control. 

For the p roo f of t h e o r e m 5, see [7]. 

(Received April 2, 1969.) 
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Klasifikácia lineárnych riaditelných sústav 

PAVOL BRUNOVSKÝ 

Vyšetřuje sa relácia F-ekvivalencie a na nej založená klasifikácia lineárnych 
riaditelných sústav. Dve lineárně sústavy riadenia x = Ax + Bu a ý = Ay + Bv 
(A, B, A', B' konstantně), splňujúce předpoklad riaditelnosti (2) sa nazývajú F-ekvi-
valentné, ak existujú matice Q, C, D (C, D regulárně) také, zeje splněné (3). Odvozuje 
sa nutná a postačujúca podmienka ekvivalencie sústav, spočívajúce v rovnosti ko
nečného počtu čísel, zviazaných s maticami A, B, resp. A', B'. Ukazuje sa, že v kaž-
dej triede ekvivalencie existuje kanonická sústava, pozostávajúca z nezávislých 
integrátorov, ktorých počet a rády úplné charakterizujú triedu ekvivalencie. 

Pojem E-ekvivalencie sa zovšeobecňuje pre sústavy závislé od času a to tak, že sa 
povolujú matice Q, C, D závislé od času. Vyšetřuje sa trieda sústav, F-ekvivalentných 
s časovo nezávislými sústavami — sú to právě tie, ktoré splňujú podmienku (9). 

Nakoniec sa stručné diskutuje případ sústav periodických a diskrétnych v čase. 

RNDr. Pavol Brunovský CSc, Ústav technické}kybernetiky SAV, Dúbravská cesta, Bratislava 9. 




