Commentationes Mathematicae Universitatis Carolinae

12,4 (1971)

ON CNE-PARAMETER FAMILIES OF DIFFEOMORPHISMS II: GENERIC BRANCHING IN HIGHER DIMENSIONS

Pavol BRUNOVSKÝ, Bratislava

§ 1

In [1], we have studied the generic nature of the loci of periodic points of a diffeomorphism of a finite dimensional manifold M, depending on a parameter with values in a one dimensional manifold P, in $P \times M$. A part of the results (those concerning the branching of periodic points), we have proved for two dimensional M only. It is the purpose of this paper to extend these results for M of arbitrary finite dimension.

Since this paper is a direct continuation of [1], we shall frequently refer to [1] for results of technical character as well as techniques of proof. Nevertheless, for the sake of the reader's convenience, we re-introduce those concepts and results of [1] which are necessary for the understanding of this paper, in the rest of this section. The main results of this paper and their proofs are given in § 3. § 2 has an auxiliary character; it establishes certain generic properties of maps of an interval into the

AMS: Primary 54H20 Secondary 57D50 Ref. Ž. 7.977.3

set of matrices.

Denote \mathcal{F} the space of \mathcal{C}^{n} mappings $(1 < n \leq \infty)^{(x)}$ $f: P \times M \longrightarrow M$, where P, M are \mathcal{C}^{n} second countable manifolds of dimension 1, $m < \infty$ respectively, such that for every $p \in P$ the map $f_{n}: M \longrightarrow M$, given by $f_{n}(m) = f(p, m)$ is a diffeomorphism, endowed with the \mathcal{C}^{n} Whitney topology.

Let us note that, although this topology is not metrizable, it has the property that a residual set in \mathscr{F} (i.e. a countable intersection of open dense sets) is dense in \mathscr{F} (this can be proved similarly as the analogous statement for vector fields is proved in [2], using the openness of \mathscr{F} in the set of all $\mathcal{C}^{\mathbb{K}}$ mappings $P \times \mathcal{M} \longrightarrow \mathcal{M}$).

Denote by $Z_{\mathcal{H}} = Z_{\mathcal{H}}(f)$ the set of \mathcal{H} -periodic points of f, i.e. $Z_{\mathcal{H}}(f) = \{(\mu, m) \mid f_{\mathcal{H}}^{\mathcal{H}}(m) = m$, $f_{\mathcal{H}}^{\frac{1}{2}}(m) \neq m$ for $0 < j < \mathcal{H}$ }. In [1, Theorem 1] a residual subset \mathcal{F}_1 of \mathcal{F} was defined and it was shown that for every $f \in \mathcal{F}_1$, $Z_{\mathcal{H}}$ are one dimensional submanifolds of $P \times M$ (Z_1 being closed) and, if an eigenvalue of $df_{\mathcal{H}}^{\mathcal{H}}(m)$ at some point $(\mu, m) \in Z_{\mathcal{H}}$ is 1 (we denote the set of such points by $X_{\mathcal{H}}$), then it meets the unit circle \mathcal{S} in the complex plain transversally at (μ, m) (in the sense of Remark 3) and the remaining eigenvalues of $df_{\mathcal{H}}^{\mathcal{H}}(m)$ do not lie on \mathcal{S} . Also, it was shown that the subset $\mathcal{F}_{\mathcal{H}}$ of maps from \mathcal{F} , having the

x) In [1] we have assumed $1 < \pi < \infty$, but Theorems 1 - 4 of [1] are trivially true for the C^{∞} case.

above properties for $1 \leq \kappa \leq \kappa$, is open dense in \mathcal{F} .

§ 2

Denote by \mathscr{U} the set of all $m \times m$ matrices with the differential structure induced by its natural identification with \mathbb{R}^{n^2} . Further, denote by \mathscr{U}_1 the set of matrices having an eigenvalue of multiplicity ≥ 2 on

S, $\mathcal{F}_{2\ell}$ the set of matrices having an ℓ -th root of unity different from -1 as eigenvalue, $\mathcal{U}_{2} = \bigcup_{\ell=3}^{\omega} \mathcal{U}_{2\ell}$.

Let I be a closed interval on R. Denote by Φ the space of all C^{π} mappings $I \longrightarrow \mathcal{O}L$ endowed with the C^{π} uniform topology.

<u>Proposition 1</u>. Let $J \subset I$ be a closed interval, $J \subset int I$. Then, for every $\ell = 3, 4, ...$ the set $\Psi_{\ell}(J)$ of all $F \in \Phi$ such that $F(J) \cap (\mathcal{U}_{1} \cup \mathcal{U}_{2}) =$ $= \emptyset$ is open dense in Φ .

<u>Corollary 1.</u> Given J as in Proposition 1, the set $\Psi(J)$ of all $F \in \Phi$ such that $F(J) \cap (\mathcal{U}_1 \cap \mathcal{U}_2) =$ $= \emptyset$ is residual in Φ .

For the proof of Proposition 1 we shall need to prove several lemmas.

Consider the sets $\widetilde{\mathcal{H}}_{q} = f(A, \lambda_{1}, \lambda_{2}) \in \mathcal{H} \times \mathbb{R}^{2} | P_{q}(\lambda_{1}, \lambda_{2}) = P_{2}(\lambda_{1}, \lambda_{2}) = P_{1}^{*}(\lambda_{1}, \lambda_{2}) = \mathbb{P}_{2}^{*}(\lambda_{1}, \lambda_{2}) = \mathbb{P}_{2}^{*}(\lambda_{1}, \lambda_{2}) = 0, \lambda_{1}^{2} + \lambda_{2}^{2} = 1\} \text{ and } \widetilde{\mathcal{H}}_{2}(\lambda_{10}, \lambda_{20}) = \mathbb{P}_{1}^{*}(A, \lambda_{1}, \lambda_{2}) | P_{1}(\lambda_{1}, \lambda_{2}) = P_{2}(\lambda_{1}, \lambda_{2}) = 0, \lambda_{1}^{2} = \lambda_{10}, \lambda_{2} = \lambda_{20}$, where $P(\lambda_{1}) = P_{1}(\operatorname{Re} \lambda, \operatorname{Im} \lambda) + i P_{2}(\operatorname{Re} \lambda, \operatorname{Im} \lambda)$ is the characteristic polynomial of

 $A, P_1' + i P_2' = P' = \frac{\partial P}{\partial \lambda}$.

Being defined by polynomial equalities, $\widetilde{\mathcal{U}}_{1}$ and $\widetilde{\mathcal{U}}_{2}(\lambda_{10}, \lambda_{20})$ are real algebraic varieties and the sets $\mathscr{U}_{1}, \mathscr{U}_{22}$ are the projections of $\widetilde{\mathscr{U}}_{1}$ and $\bigcup \widetilde{\mathscr{U}}_{2}(\lambda_{10}, \lambda_{20})$ into \mathscr{U} respectively, where the union is taken over all $\lambda_{10}, \lambda_{20}$ such that $(\lambda_{10} + i \lambda_{20})^{2} = 1$ and $\lambda_{20} \neq 0$.

By [3, splitting (b) of § 11)], $\widetilde{\mathcal{H}}_1$ and $\widetilde{\mathcal{H}}_2$ can be written as a finite disjoint union of submanifolds of strictly decreasing dimensions, $\widetilde{\mathcal{H}}_1 = \bigcup_{j=1}^{U} \mathcal{M}_j$, $\widetilde{\mathcal{H}}_2(\mathcal{N}_{10}, \mathcal{N}_{20}) =$ $= \bigcup_{j=1}^{U} \mathcal{N}_j$ such that $\bigcup_{j=0}^{U} \mathcal{M}_j$, $\bigcup_{j=0}^{U} \mathcal{N}_j$ is closed for all $0 < \varphi \leq \pi$, $0 < \tilde{\sigma} \leq 5$.

<u>Lemma 1</u>. codim $M_{\dot{a}} \ge 4$ for all \dot{a} .

For the proof of this lemma we need some more lemmas. Lemma 2. For any $A \in \mathcal{U}$, the set of all matrices similar to A is an immersed submanifold of \mathcal{U} of codimension $\geq m$.

<u>Proof</u>. Consider the group GL(m), whose action ψ on \mathscr{U} is given by $\psi(T_A) = T^{-1}AT$ for $T \in GL(m)$, $A \in \mathscr{U}$. The set of matrices similar to \mathscr{U} is the orbit of A under this group action and, according to [4,2.2, Proposition 2], is an immersed submanifold of \mathscr{U} of codimention equal to the dimension of the closed Lie subgroup $\mathcal{H} = \{T \in GL(m) \mid \psi(T, A) = A\}$. It is easy to show that \mathcal{H} is identical with the subset of GL(m) of matrices that commute with A. It follows from [5,VIII, §2, Theorem 2] that \mathcal{H} has the dimension $\geq m$, q.e.d. <u>Corollary 2.</u> Denote by p the map $\mathscr{U} \to \mathbb{R}^m$ assigning to every matrix from \mathscr{U} the *m*-tuple of coefficients of its characteristic polynomial and $\tilde{p} : \widetilde{\mathscr{U}} \to \mathbb{R}^{m+2}$ as $\tilde{p} = p \times id$. Then, for any point $x \in \mathbb{R}^{m+2}$, $p^{-1}(x)$ is a finite disjoint union of immersed submanifolds of $\widetilde{\mathscr{U}}$ of codimension $\geq m$.

Denote by $V \subset \mathbb{R}^{n+2}$ the set of points $(\alpha_1, \dots, \alpha_n, \lambda_1, \lambda_2)$ such that $\lambda = \lambda_1 + i \lambda_2 \in S$ and is a root of the polynomial $P(\lambda) = \lambda^n + \alpha_1 \lambda^{n-1} + \dots + \alpha_n$ of multiplicity ≥ 2 . Obviously, $\widetilde{\mu}(\widetilde{\mathcal{M}}_1) = V$.

<u>Lemma 3.</u> The map $\widetilde{\mu} \mid_{\widetilde{\mathcal{U}}_{1}} : \widetilde{\mathcal{U}}_{1} \longrightarrow \mathcal{V}$ is open (in the topologies on $\widetilde{\mathcal{U}}_{1}$, \mathcal{V} induced by their imbedding into $\widetilde{\mathcal{U}}$, \mathbb{R}^{m+2} respectively).

<u>Proof</u>. Obviously, it suffices to prove that $p \mid_{\mathcal{U}_1} :$ $: \mathcal{U}_1 \longrightarrow \hat{V}$, where \hat{V} is the projection $(\mathbb{R}^m \times \mathbb{R}^2 \longrightarrow \mathbb{R}^m)$ of V into \mathbb{R}^m , is open. That is, we have to prove that given a neighbourhood \mathcal{U} of $A \in \mathcal{U}_1$, for any $P \in \hat{V}$ sufficiently close to p(A), there is a $B \in \mathcal{U}$ such that p(B) = P.

This statement is obvious if A has the real canonical form; its extension for A not in canonical form follows from $p(A) = p(T^{-1}AT)$ for $T \in GL(m)$.

<u>Proof of Lemma 1.</u> V is an algebraic variety in \mathbb{R}^{n+2} , defined by the polynomial identities $P_1(\lambda_1, \lambda_2) =$ $= P_2(\lambda_1, \lambda_2) = P_1'(\lambda_1, \lambda_2) = P_2'(\lambda_1, \lambda_2) = \lambda_1^2 + \lambda_2^2 - 1 = 0$, where $P_1(\lambda_1, \lambda_2) = \mathbb{R}e P(\lambda_1 + i \lambda_2)$ etc. Therefore, it can be written as a finite disjoint union of submanifolds of \mathbb{R}^{m+2} of decreasing dimension, $\mathcal{V} = \bigcup_{i=1}^{\infty} \mathcal{V}_i$.

We prove dim $V_1 \leq m-2$. To do this, we note that codim $V_1 \geq rank_X V$ for any $x \in V_1$ (cf. [3]), where $rank_X V$ is the dimension of the linear space spanned by the differentials at x of the polynomials of the ideal associated with V. Since V_1 is open in Y it suffices to prove that the set of those x for which $rank_X V \geq 4$ is dense in V.

For $x \in V$, $x = (\alpha_1, ..., \alpha_m, \lambda_1, \lambda_2)$ we have $dP_1 = (..., \lambda_1, 1, 0, 0)$, (1) $dP_1^* = (..., 1, 0, \frac{\partial P_1^*}{\partial \lambda_1}, \frac{\partial P_1^*}{\partial \lambda_2})$, $dP_2^* = (..., 0, 0, \frac{\partial P_2^*}{\partial \lambda_1}, \frac{\partial P_2^*}{\partial \lambda_2})$, $d(\lambda_1^2 + \lambda_2^2 - 1) = (..., 0, 0, 2\lambda_1, 2\lambda_2)$, and, since

$$-\det\begin{pmatrix}\lambda_{1}, 1, 0, 0\\ 1, 0, \frac{\partial P_{1}^{*}}{\partial \lambda_{1}}, \frac{\partial P_{1}^{*}}{\partial \lambda_{2}}\\ 0, 0, \frac{\partial P_{2}^{*}}{\partial \lambda_{1}}, \frac{\partial P_{2}^{*}}{\partial \lambda_{2}}\\ 0, 0, 2\lambda_{1}, 2\lambda_{2}\end{pmatrix} = 2 \left[\lambda_{2} \frac{\partial P_{2}^{*}}{\partial \lambda_{1}} - \lambda_{1} \frac{\partial P_{2}^{*}}{\partial \lambda_{2}}\right] =$$

 $= 2 \left[\mathcal{A}_{2} \frac{\partial P_{2}'}{\partial \mathcal{A}_{1}} + \mathcal{A}_{1} \frac{\partial P_{1}'}{\partial \mathcal{A}_{1}} \right] = 2 \operatorname{Re} \left(\mathcal{A}^{-1} P^{*}(\mathcal{A}) \right) .$ Thus, it suffices to prove that for a dense subset of V, Re $\left(\mathcal{A}^{-1} P^{*}(\mathcal{A}) \right) \neq 0$.

It is obvious that the set of those $x \in V$ for which P''(A) $\neq 0$ is dense in V. If A is real and $A \in S$, $P''(\lambda) \neq 0$, then also $\lambda^{-1}P''(\lambda) = \operatorname{Re} \lambda^{-1}P''(\lambda) \neq 0$.

Assume that λ is not real, $\Lambda \in S$ and $P^{n}(\lambda) \neq 0$. Then $\lambda^{-1}P^{n}(\lambda) = \overline{\lambda} P^{n}(\lambda) = \overline{\lambda} (\lambda - \overline{\lambda})^{2} R(\lambda)$, where $R(\omega)$ is real for ω real. For ε real denote $P_{\varepsilon}(\omega) = (\omega - \lambda)^{2}(\omega - \overline{\lambda})^{2}[R(\omega) + \varepsilon] = \omega^{m} + \alpha_{1\varepsilon} (\omega^{n-1} + \dots + \alpha_{n\varepsilon} + \varepsilon)^{2}]$ $P_{\varepsilon}(\omega)$ is real for ω real and $(\alpha_{1\varepsilon}, \dots, \alpha_{n\varepsilon}, \lambda_{1}, \lambda_{2}) \in V$. We have $\operatorname{Re}(\overline{\lambda} P_{\varepsilon}^{n}(\lambda)) - \operatorname{Re}(\overline{\lambda} P^{n}(\lambda)) = \varepsilon \operatorname{Re}[\overline{\lambda}(\lambda - \overline{\lambda})^{2}] =$ $= -4\varepsilon \lambda_{1}\lambda_{2}$. Since both $\lambda_{1} \neq 0$ and $\lambda_{2} \neq 0$, there is an $\varepsilon > 0$ arbitrarily small such that $\operatorname{Re}[\overline{\lambda} P_{\varepsilon}^{n}(\lambda)] \neq$ $\neq 0$. This proves the density in V of the set of points x for which $\operatorname{Re}(\lambda^{-1}P^{n}(\lambda)) \neq 0$.

Let *i* be such that $\tilde{\mu}(\mathcal{M}_{1}) \cap V_{i} \neq \emptyset$, $\tilde{\mu}(\mathcal{M}_{1}) \cap V_{j} \neq \emptyset$, $\tilde{\mu}(\mathcal{M}_{1}) \cap V_{j} \neq \emptyset$ for j < i. Since $\bigcup_{j=1}^{i} V_{j}$ is open, $\mathcal{M} = \tilde{\mu}^{-1}(V_{i}) = \tilde{\mu}^{-1}(\bigcup_{j=1}^{i} V_{j})$ is open in \mathcal{M}_{1} and, by Lemma 3, $\mu(\mathcal{M}_{0})$ is open in V_{i} . From this and the Sard's theorem ([6, Theorem 15.1]) it follows that there is a point $\tilde{A} \in \mathcal{M}_{0}$ at which $\tilde{\mu}$ is regular. Thus, locally $\tilde{\mu}^{-1}(\tilde{\mu}(\tilde{A}))$ is an imbedded submanifold of the dimension dim $\mathcal{M}_{1} - \dim V_{i} \geq \dim \mathcal{M}_{1} - m + 2$. On the other hand, from Corollary 2 it follows dim $\tilde{\mu}^{-1}(\tilde{\mu}(\tilde{A})) \leq$ $\leq m^{2} - m$. Consequently, dim $\mathcal{M}_{1} \leq m^{2} - 2$, q.e.d.

Lemma 4. If $\Lambda_{20} \neq 0$, then codim $\mathcal{N}_{1} \geq 4$.

The proof of this lemma is similar to that of Lemma 1, with V replaced by the set $W \subset \mathbb{R}^{m+2}$ of points $(\alpha_1, ..., \alpha_m, \lambda_{10}, \lambda_{20})$ for which $\lambda_0 = \lambda_{10} + i \lambda_{20}$ is a root of $P(\lambda) = \lambda^m + \alpha_1 \lambda^{m-1} + ... + \alpha_m$. This is again an algebraic variety defined by the equations $\lambda_1 - \lambda_{10} = \lambda_2 - \lambda_{20} = 0, P_1(\lambda_1, \lambda_2) = P_2(\lambda_1, \lambda_2) = 0$. The differentials of the polynomials at the points of W are

$$\begin{split} dP_1 &= (\dots, \lambda_{10}, 1, \frac{\partial P_1}{\partial \lambda_1}, \frac{\partial P_1}{\partial \lambda_2}) , \\ dP_2 &= (\dots, \lambda_{20}, 0, \frac{\partial P_2}{\partial \lambda_1}, \frac{\partial P_2}{\partial \lambda_2}) , \\ d(\lambda_1 - \lambda_{10}) &= (\dots, 0, 0, 1, 0) , \\ d(\lambda_2 - \lambda_{20}) &= (\dots, 0, 0, 0, 1) . \end{split}$$

Obviously, they are independent if $\lambda_{20} \neq 0$. The rest of the proof is analogous to the proof of Lemma 1.

<u>Proof of Proposition 1.</u> Openness follows from the fact that both $\mathcal{O}L_{a}$ and $\mathcal{O}L_{a}$ are closed.

For the proof of density we consider the sets $\widetilde{\mathcal{H}}_{1}, \widetilde{\mathcal{H}}_{2}(\lambda_{10}, \lambda_{20})$ with $\lambda_{20} \neq 0$ and the space $\widetilde{\Phi}$ of maps $F: int I \times \mathbb{R}^{2} \longrightarrow \widetilde{\mathcal{H}}_{1}$, defined by $\widetilde{F} =$ $= F|_{int I} \times id$, $F \in \overline{\Phi}$, endowed with the C^{n} uniform topology. Further, we denote by $\widetilde{\mathcal{H}}_{i} = i\widetilde{F}|\widetilde{F}(I) \cap$ $\cap_{j=n-i+1}^{n} \mathcal{M}_{i} = \mathscr{G}_{i}^{2}$ for $1 \leq i \leq n$, $\widetilde{\mathcal{H}}_{n+i} = i\widetilde{F}|\widetilde{F}(I) \cap$ $\cap \widetilde{\mathcal{H}}_{1} \cap_{j=n-i+1}^{n} \mathcal{N}_{i} = \mathscr{G}_{i}^{2}$ for $1 \leq i \leq n$. Since \mathscr{H}_{2} is the intersection of the projections of $\widetilde{\mathcal{H}}_{n+n}$ taken over all nonreal ℓ -th roots of unity, it suffices to prove that $\widetilde{\mathcal{H}}_{n+n}$ is dense in $\widetilde{\Phi}$. We prove this by induction showing that every $\widetilde{F} \in \widetilde{\mathcal{H}}_{i}$ can be approximated arbitrarily closely by an $\widetilde{F}' \in \widetilde{\mathcal{H}}_{i+1}^{n}$. Without loss of generality we assume $1 < i < \pi$.

The map $\varphi: \Phi \longrightarrow \widetilde{\Phi}$ given by $\varphi(F) = \widetilde{F}$ is a C^{κ} -representation (here and further in this proof we use the terminology of [6]) and the evaluation map meets $\mathcal{M}_{\kappa-i}$ transversally. Due to the dimension estimates of Lemma 1 and Lemma 4, the existence of the approximation of F not intersecting $\mathcal{M}_{\kappa-i}$ follows from the transversality theorem [6, Theorem 19.1] and the openness of $\widetilde{\Psi}_i$, q.e.d.

Denote \mathscr{U}_3 the subset of \mathscr{U}_1 consisting of matrices having an eigenvalue on \mathscr{S} . Again, we associate with \mathscr{U}_3 the algebraic variety $\widetilde{\mathscr{U}}_3$ in $\widetilde{\mathscr{U}}$, defined by $\widetilde{\mathscr{U}}_3 = \{(A, \mathcal{N}_1, \mathcal{N}_2) | P_1(\mathcal{N}_1, \mathcal{N}_2) = P_2(\mathcal{N}_1, \mathcal{N}_2) = \mathcal{N}_1^2 + \mathcal{N}_2^2 - 1 = 0\}$ whose projection is \mathscr{U}_3 . Thus, $\widetilde{\mathscr{U}}_3 = \underset{i=1}{\overset{\circ}{\smile}} \mathscr{K}_i$, where \mathscr{K}_i are mutually disjoint manifolds of decreasing dimension and $\underset{i=1}{\overset{\circ}{\smile}} \mathscr{K}_i$ is closed in $\widetilde{\mathscr{U}}_3$ for every i.

<u>Lemma 5</u>. codim $\mathcal{K}_1 = 3$.

<u>Proof</u>. The proof of the inequality dim $\mathcal{K}_1 \geq 3$ is analogous to that of Lemma 1. We only note that the differentials of the defining polynomials $P_1, P_2, \lambda_1^2 + \lambda_2^2 - 1$ of $\tilde{\mu}(\tilde{\mathcal{M}}_3) \subset \mathbb{R}^{n+2}$ ($\tilde{\mu}$ defined as in Corollary 2) are independent if $\operatorname{Re}(\Lambda P'(\Lambda)) \neq 0$; it can be shown similarly as in the proof of Lemma 1 that this is true for a dense subset of $\tilde{\mu}(\tilde{\mathcal{M}}_3)$.

To prove the opposite inequality assume I = [0, 2]and consider the map $F(t) = diag\{t, 0, ..., 0\}$. If codim $\mathcal{K}_{\gamma} < 3$ then it would follow from the transversality argument used in the proof of Proposition 1 that there should exist a small C^{κ} perturbation \hat{F} of F no value of which would have an eigenvalue on S. This, however, is obviously impossible.

<u>Proposition 2.</u> Let $\mathcal{J} \subset I$ be a closed interval, $\mathcal{J} \subset int I$. Then, for every $\ell > 2$ the subset $\Psi_{\ell}^{o}(\mathcal{J}) \subset \Psi_{\ell}(\mathcal{J})$ of all F such that F meets $\widetilde{\mathcal{U}}_{3}$ transversally (i.e. F meets transversally \mathcal{K}_{1} and does not meet \mathcal{K}_{i} for i > 1 at all) is open dense in $\Psi_{o}(\mathcal{J})$, and, thus, in Φ .

The proof is analogous to that of Proposition 1.

<u>Corollary 3.</u> Given J as in Proposition 2, the set $\Psi^{\circ}(J)$ of maps $F \in \Phi$ such that $F(J) \cap (\mathcal{U}_1 \cup \mathcal{U}_2) =$ = 0 and F meets $\widetilde{\mathcal{U}}_3$ transversally over J is residual in Φ .

Lemma 6. Let $F \in \Phi$ and let Λ_o be a simple eigenvalue of $F(t_o)$, where $t_o \in I$. Then there is a neighbourhood N of t_o in I and a unique function $\Lambda: N \longrightarrow C$ such that $\lambda(t_o) = \Lambda_o$ and $\lambda(t)$ is an eigenvalue of F(t) for $t \in N$. Further, there is a nonsingular $C^{\mathcal{H}}$ matrix C(t) on N such that $C^{-1}FC = B$, where the first column of B(t) is the transpose of $(\lambda(t), 0, \dots, 0)$.

<u>Proof</u>. Without loss of generality we may assume that $F(t_0)$ is in the Jordan canonical form with A_0 in the first column. Choose $C(t_0) = E$ (the unity matrix) and $C(t) = (c_1(t), \dots, c_m(t))$, A(t) as the solution of

the set of equations $F(t)c_1(t) = \lambda(t)c_1(t)$,

 $c_i(t) = c_i(t_o), i > 1, |c_1(t)| = 1$ (1.1 being the Euclidean norm). It is easy to check that the Jacobian of this set of equations at t_o is not zero. The implicit function theorem completes the proof.

<u>Remar</u> 1. Under the assumptions of Lemma 6, for Λ_o not real, starting from the real canonical form of $F(t_o)$, one can similarly prove that there is a C^n real matrix C(t) in some neighbourhood of t_o in I that brings F(t) into the form

$$\begin{pmatrix} B_{1}(t), B_{2}(t) \\ 0, B_{3}(t) \end{pmatrix}, \text{ where } B_{1}(t) = \begin{pmatrix} \operatorname{Re} \lambda(t), \operatorname{Im} \lambda(t) \\ -\operatorname{Im} \lambda(t), \operatorname{Re} \lambda(t) \end{pmatrix}.$$

<u>Corollary 4</u>. Let $F \in \tilde{\Phi}$, $t_0 \in I$ and let A_{10}, \cdots \dots, A_{k0} be simple eigenvalues of $F(t_0)$. Then, there is a neighbourhood N of t_0 in I and unique C^{N} functions $A_i : N \longrightarrow C$ such that $A_i(t_0) = A_{i0}$ and $A_i(t)$ are eigenvalues of P(t) for $t \in N$. Further, there is a C^{N} matrix C(t) on N such that $C^{-1}AC =$ = B, where B has the form $\begin{pmatrix} B_1 & B_2 \\ 0 & B_3 \end{pmatrix}$ and B_1 is triangular with A_1, \dots, A_{k} on the diagonal. Also, there is a real C^{N} matrix $\hat{C}(t)$ on N that brings P(t)into the form $\begin{pmatrix} \hat{B}_1(t), \hat{B}_2(t) \\ 0, \hat{B}_3(t) \end{pmatrix}$, where $\hat{B}_1(t)$ is block diagonal with blocks as in Remark 1.

<u>Proposition 3</u>. Let $F \in \mathcal{U}_{\ell}^{\circ}(J)$ for some $\ell > 2$. Then, the eigenvalues of F meet S transversally. By this proposition we mean that the functions λ , defined in Lemma 6 for $\lambda_o \in S$ (note that such Λ_o are simple) meet S transversally.

<u>Proof</u>. Let $\lambda(t_o) \in S$ be an eigenvalue of $F(t_o)$. By Lemma 6, there is a nonsingular C^{κ} matrix C(t) such that $C^{-1}(t)F(t)C(t) = B(t)$, where B(t) has the form specified in Lemma 6. Denote B(t, س) the matrix obtained from B(t) by replacing in the first column $\mathcal{A}(t)$ by μ . Denote by $\mu(t)$ the orthogonal projection of A(t) on S, ϕ the Euclidean distance. Since $C(t)B(t, u(t))C^{-1}(t) \in \mathcal{U}_3$ and \mathcal{H}_1 is open in $\widetilde{\mathscr{U}}_{4}$, (C(t)B(t, μ (t))C⁻¹(t), μ_{1} (t), μ_{2} (t)) $\in \mathscr{H}_{4}$, for t sufficiently close to t_a , where $\mu = \mu_a + i \mu_a$. We have $|\lambda(t)| - 1 = |\lambda(t) - \mu(t)| = o(B(t), B(t, \mu(t))) \ge |C(t)|^{-1},$ $|C(t)^{-1}|^{-1}\varphi(F(t), C(t)B(t, \mu(t))C^{-1}(t)) \geq \Re_{q}\varphi(\widetilde{F}(t), \mathcal{K}_{q}),$ where $k_{1} > 0$ is a suitable constant. If \widetilde{F} meets \mathcal{K}_{4} transversally, then obviously $\varphi(\widetilde{F}(t), \mathcal{H}_{1}) \geq \Re_{2}|t - t_{0}|$ for some $k_2 > 0$. Consequently, $\frac{d(\lambda(t))}{dt} = t \neq 0$, q.e.d.

<u>Corollary 5</u>. The number of such $t \in J$ for which an eigenvalue of F(t) is on S, is finite for every $F \in \mathfrak{T}_{p}^{o}(J)$.

<u>Theorem 1</u>. Let $\mathcal{I} \subset int \mathbf{I}$ be a closed interval. Then, the set $\Phi_{1\ell}(\mathcal{I})$ of those $\mathbf{F} \in \Phi$, satisfying (i) $\mathbf{F}(t)$ has no double eigenvalue on \mathcal{S} , (ii) $\mathbf{F}(t)$ has no non-real ℓ -th root of unity as eigenvalue,

(iii) the eigenvalues of F(t) meet S transversally, (iv) if an eigenvalue of F(t) lies on S, then no other eigenvalue of F(t) lies on S except of its complex conjugate,

for every $t \in J$, is open dense in Φ .

<u>Corollary 6</u>. The set $\Phi_1(J)$ of those $F \in \Phi$ satisfying (i),(iii),(iv) of Theorem 1 and such that for every $t \in J$, F(t) has no non-real root of unity as eigenvalue, is residual in Φ .

<u>Proof</u>. Openness is obvious. From Propositions 1 - 3 it follows that the set of maps from Φ , satisfying (i) -(iii) (i.e. the set $\Psi_{\ell}^{o}(\mathcal{J})$), is open dense in Φ . Therefore, it suffices to prove that every $\mathbf{F} \in \Psi_{\ell}^{o}(\mathcal{J})$ can be arbitrarily closely approximated by an $\hat{\mathbf{F}} \in \Psi_{\ell}^{o}(\mathcal{J})$ satisfying (iv). In virtue of Corollary 4 it suffices to show that if for some $t_{o} \cdot (iv)$ is not satisfied it is possible to perturb \mathbf{F} in an arbitrary small neighbourhood \mathbf{N} of t_{o} by an arbitrary small perturbation, without changing it outside \mathbf{N} , in such a way that (i) - (iv) will be true for the perturbation of \mathbf{F} for every $\mathbf{t} \in \mathbf{N}$.

Assume that for some $t_0 \in \mathcal{J}$, At pairs of conjugate eigenvalues λ_{j}^{o} , $\overline{\lambda_{j}^{o}}$, $j = 1, \ldots, At$ lie on S (the modification of the proof for the case of some eigenvalue being real is straightforward). Let ∞ be so small that the functions λ_{j} , defined by λ_{j}^{o} , t_{o} as in Lemma 6 exist and do not meet S except at t_{o} and no other eigenvalue of F(t) lies on S on $K \cap \mathcal{J}$, where $K = [t_0 - \alpha, t_0 + \alpha]$, and that there is a C^n matrix C such that $C^{-1}(t)F(t)C(t) = B(t)$ has the form

$$\mathbf{B} = diag \left\{ \begin{pmatrix} \lambda_{11}, \lambda_{12} \\ \\ \\ -\lambda_{21}, \lambda_{22} \end{pmatrix}, \dots, \begin{pmatrix} \lambda_{k_1}, \lambda_{k_2} \\ \\ \\ -\lambda_{k_2}, \lambda_{k_1} \end{pmatrix}, \mathbf{B}_1 \right\}$$

where $\lambda_{j} = \lambda_{j1} + i \lambda_{j2}$ (cf. Remark 1). Choose an $\varepsilon < \frac{\alpha}{2}$, so real mutually distinct numbers τ_{j} , j = 1, ..., sosuch that $|\tau_{j}| < \varepsilon$ and a bump function $\eta_{j}: \mathbb{N} \to \mathbb{R}$ such that $\chi(t) = 0$ outside K, $\chi(t) = 1$ for $t \in K_{p} =$ $= \int t_{0} - \frac{\alpha}{2}, t_{0} + \frac{\alpha}{2}]$, $\hat{\lambda}_{j}(t) = \lambda_{j}(t + \tau_{j} \chi(t))$,

$$\hat{B}(t) = diag \left\{ \begin{pmatrix} \hat{\lambda}_{11}(t) \, \hat{\lambda}_{12}(t) \\ -\hat{\lambda}_{21}(t) \, \hat{\lambda}_{11}(t) \end{pmatrix}, \dots, \begin{pmatrix} \hat{\lambda}_{k1}(t), \hat{\lambda}_{k2}(t) \\ -\hat{\lambda}_{k2}(t), \hat{\lambda}_{k1}(t) \end{pmatrix}, B_{1}(t) \right\},$$

 $F(t) = \begin{cases} F(t) \text{ for } t \notin K \\ C(t) \hat{B}(t) C^{-1}(t) \text{ for } t \in K \end{cases}$

It is obvious that $\hat{F} \in \Psi_{\ell}^{o}$ and, in $K \cap J$, $\hat{\lambda}_{j}$ meets S exclusively at the point $t_{o} - \tau_{j}$. If τ_{j} are chosen small enough, F will be arbitrarily close to F, q.e.d.

§ 3

In [1, 3 2] it was shown that for $f \in \mathcal{F}_{1}$, each point of $\overline{Z} \setminus Z_{A}$ (such points have been called branching points) is contained in some set Z_{2} with ℓ being a divisor of A_{n} and that some eigenvalue of df_{n}^{ℓ} at such point has to be a root of unity different from 1 .

<u>Theorem 2</u>. There is a subset \mathcal{F}_2 of \mathcal{F}_1 , residual in \mathcal{F} such that for every $f \in \mathcal{F}_2$, the following is true for every $(\mu_0, m_0) \in \mathbb{E}_{k_0}(f), k \geq 1$: (i) $df_{\mu_0}^{k_0}(m_0)$ has no double eigenvalue on S, (ii) $df_{\mu_0}^{k_0}(m_0)$ has no non-real root of 1 as an eigenvalue. (iii) The eigenvalues of $df_{\mu_0}^{k_0}(m)$ meet S transversally at (μ_0, m_0) . (iv) If an eigenvalue of $df_{\mu_0}^{k_0}(m_0)$ lies on S, then there is no other eigenvalue of $df_{\mu_0}^{k_0}(m_0)$ on S except of its complex conjugate.

<u>Corollary 7</u>. For $f \in \mathcal{F}_2$, $(n, m) \in \mathbb{Z}_k(f)$ can be a branching point only if one of the eigenvalues of $df_n(m)$ is -1, the other being outside S.

<u>Remark 2</u>. Denote $\mathscr{F}_{2,k,\ell}$ the subset of $\mathscr{F}_{1,k,\ell}$ of those mappings, satisfying (i),(iii),(iv) for $1 \leq k \leq k$ and (ii) with "roots" replaced by " ℓ -th roots" for $1 \leq k \leq k$. Then, $\mathscr{F}_{2,k,\ell}$ is open dense in \mathscr{F} .

<u>Remark 3</u>. (iii) should be understood as follows: If an eigenvalue Λ_o of $df_{\Lambda_o}^{k}(m_o)$ is on S, then in some neighbourhood N of (η_o, m_o) in Ξ_k , there is a unique C^{k} function $\Lambda: N \longrightarrow C$ such that $\lambda(\eta, m)$ is

an eigenvalue of $df_n^{k}(m)$ for $(p,m) \in \mathbb{N}$ and

 $\lambda(p_o, m_o) = \lambda_o$. This λ meets S transversally.

<u>Proof</u>. It suffices to prove Remark 2, from which Theorem 2 follows. We carry out the proof for h = 1, i.e. we prove that \mathcal{F}_{212} is open dense for any l; the extension for h > 1 is similar as in the proof of [1, Theorem 1].

The openness of $\mathcal{F}_{a,d}$ is obvious. To prove density, assume $f \in \mathcal{F}_{11}$. Then, by [1, Theorem 1], there is an open set U containing $X_{4}(f)$ such that for every $(p_a, m_a) \in \mathcal{U}$, (i) - (iv) is trivially satisfied. $\mathbf{Z}_{\mathbf{A}} \smallsetminus \mathbf{U}$ can be covered locally finitely by a countable family $(W_{\alpha}, (u_{\alpha} \times x_{\alpha}), W_{\alpha} = U_{\alpha} \times V_{\alpha}$ of coordinate neighbourhoods in such a way that for any $K \in P \times M$ compact, $W_{\alpha} \cap K \neq \emptyset$ for a finite number of ∞ 's only and $(W_{\alpha}, \mu_{\alpha} \times \chi_{\alpha})$ satisfy (iv) of [1, Theorem 1] (i.e. $W_{\infty} \cap \mathbb{Z}_{+}$ is the graph of a C^{k} function $\varphi_{\infty} : \mathcal{U} \to \mathcal{V}$). We show how for any open W'_{cc} , $\overline{W}'_{cc} \subset \overline{W}'_{cc} = \mathcal{U}'_{cc} \times Y'_{cc}$, f can be approximated by \hat{f} such that \hat{f} coincides with f outside W_{ee} and satisfies (i) - (iv) of Theorem 2 for every $(p_a, m) \in \mathbb{Z}_1 \cap W_{\infty}$. The construction of an approximation of f satisfying (i) - (iv) for any $(p_0, m_0) \in \mathbb{Z}_4$ is then standard. In the rest of the proof we drop the subscript & .

In the coordinates $(p, m) \mapsto (u, y), y = x - x_0 \varphi(p), f$ can be represented by

$$n_{\mu} = \mathbf{A}(\mu)n_{\mu} + \Upsilon(\mu, n_{\mu})$$

where the primed coordinates are those of the image,

 $Y(\mu, 0) = 0, dY(\mu, 0) = 0.$

By Theorem 1, we can approximate $A: \mu(\mathcal{U}) \longrightarrow \mathcal{U}$ by a map $\hat{A}: \mu(\mathcal{U}) \longrightarrow \mathcal{U}$ such that A satisfies (i) -(iv) of Theorem 1 on \mathcal{U} .

Let $\psi : (\mu \times x)(W) \longrightarrow \mathbb{R}$ be a $\mathcal{C}^{\mathcal{K}}$ bump function such that $\psi = 1$ on $(\mu \times x)(\overline{W}^{*})$ and $\psi = 0$ outside $(\mu \times x)(W)$. Denote by \hat{f} the map which coincides with f outside W and is given in W by the coordinate representation

 $y' = [A(\mu) + \psi(\mu, \eta)(\hat{A}(\mu) - A(\mu))]y + Y(\mu, \eta)$. If we choose A sufficiently close to A, \hat{f} will be arbitrarily close to f and will satisfy (i) - (iv) for every $(\mu_a, m_a) \in W'$.

Denote by Y_{Re} the set of points $(\mu, m) \in \mathbb{Z}_{Re}$ for which one eigenvalue of $df_{1}^{k}(m)$ is -1. For $(\mu, m) \in \mathbb{Z}_{Re}$ denote $h(\mu, m)$ the number of eigenvalues of $df_{1}^{k}(m)$ with modulus less than 1.

<u>Theorem 3</u>. Assume n > 2. Then, there is a subset \mathcal{F}_{3} of \mathcal{F}_{2} , residual in \mathcal{F} , such that every $\mathbf{f} \in \mathcal{F}_{3}$ has the following properties:

(i) $Y_{g_{R}}$ coincides with the set of g_{R} -periodic branching points,

(ii) for every $(n_o, m_o) \in Y_{ke}$, there is a coordinate neighbourhood $(W, (u \times x), W = U \times V \text{ of } (n_o, m_o)$ such that $\mu(n_o) = 0$, $x(m_o) = 0$, $Z_{ke} \cap W = U \times \{0\}$ and (a) $Z_{2ke} \cap W$ consists of two components, separated by (η_o, m_o) ; all points $(\eta, m) \in \mathbb{Z}_{2k} \cap W$ satisfy $\mu(\eta) > 0$ and $\mathbb{Z}_{2k} \cap W \cup \{(\eta_o, m_o)\}$ is a C^1 (but not C^2) submanifold of W.

(b) No eigenvalue of $[(Z_{k} \cup Z_{2k}) \cap W] \setminus \{(p_{q}, m_{o})\}$ is on S; either h(p, m) = h(p', m') = h(p', m') + 1 or h(p, m) = h(p', m') = h(p'', m'') - 1 for any $(p, m) \in Z_{k} \cap W$, $\mu(p) < 0$, $(p', m') \in Z_{2k} \cap W$, $(p'', m'') \in Z_{k} \cap W$, $\mu(p'') > 0$,

(c) $W \setminus (Z_{2} \cup Z_{2})$ contains no invariant set.

<u>Proof</u>. Again, we carry out the proof for $\mathcal{H} = 4$, the proof of its extension for $\mathcal{H} > 4$ being as in [1, Theorem 1].

Let $f \in \mathcal{F}_{21\ell}$. Then, $Y_1(f)$ is discrete and, if $(p_0, m_0) \in Y_1$, one eigenvalue of $df_{p_0}(m_0)$ is -1 and the remaining ones can be divided into two groups according to whether their moduli are < 1 or > 1, the number of the former ones being $h(p_0, m_0)$. Thus, using [6, Appendix 3] as in [1, Lemma 4], it follows that we can choose the coordinates (μ, χ) in such a way that $\chi = (\chi_1, \eta, \chi)$, dim $\chi_1 = 1$, dim $\eta = h(p_0, m_0)$ and the coordinate representation of f in these coordinates is as follows:

$$\begin{aligned} x_{1} &= -x_{1} + \alpha (u x_{1} + \beta x_{1}^{2} + \beta' x_{1}^{3} + \omega (u, x_{1}, u, z)), \\ (3) \quad y &= A_{1}y + Y(u, x_{1}, u, z)), \\ z &= Cz + Z(u, x_{1}, u, z), \end{aligned}$$

where ω, Y, Z are C^{κ} and

 $\omega, Y, Z \text{ are } C^{n} \text{ and } Y(u, x_{1}, 0, z) = 0, Z(u, x_{1}, y, 0) = 0, \\ \omega(u, x_{1}, y, z) = 0(|x_{1}^{3}| + |u x_{1}| + |y| + |z|), \\ d\omega(0, 0, 0, 0) = 0, \\ dY(0, 0, 0, 0) = 0, \\ dZ(0, 0, 0, 0) = 0.$

We denote by \mathcal{F}_{31} the subset of \mathcal{F}_{11} of those maps in the coordinate representation (3) of which $\beta^2 + \gamma \neq 0$ for every $(p_0, m_0) \in Y_1(f)$. The definition of \mathcal{F}_{31} does not depend on the choice of particular coordinates and the set \mathcal{F}_{31} is open dense in \mathcal{F} . The proof of this as well as the proof that the maps of \mathcal{F}_{31} satisfy (i),(ii) for k = 1does not differ from the corresponding part of the proof of [1, Theorem 3], except of the proof of (ii)(c), where, because of the possible presence of the eigenvalues of moduli both < 1 and > 1 one has to use the argumentation of the proof of [1, Lemma 4].

As a corollary of [1, Theorem 1] and Theorem 3 we obtain <u>Theorem 4</u>. Assume κ > 2. Then, for every f ∈ S₃ :
(i) for k odd, Z_k is a closed submanifold of P × M ,
(ii) for k even, either Z_k is closed and Y_{k/2} is empty, or Z_k is a C¹ (but not C²) submanifold of P × M and Z_k \ Z_k is discrete and coincides with Y_{k/2}.

<u>Remark 4.</u> This theorem corrects the erroneous formulation of its two dimensional version [1, Theorem 4], in which the possibility of Z_{b} being closed was omitted.

References:

[1] P. BRUNOVSKY: On one-parameter families of diffeomorph-

isms, Comment.Math.Univ.Carolinae 11(1970),
559-581.

- [2] M.M. PEIXOTO: On an approximation theorem of Kupka and Smale, Journal of Differential Equations 3 (1966), 214-227.
- [3] H. WHITNEY: Elementary structure of real algebraic varieties, Annals of Mathematics 66(1957), 545-556.
- [4] R. THOM, H. LEVINE: Singularities of differentiable mappings, Russian translation, Mir, Moscow, 1969.
- [5] F.R. GANTMACHER: Teorija matric, Nauka, Moscow, 1966.
- [6] R. ABRAHAM, J. ROBBIN: Transversal mappings and flows, Benjamin, 1967.

Matematický ústav SAV

Bratislava

Československo

(Oblatum 28.4. 1971)