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1. Introduction

Consider a control system

(1) x =f(x, U),

where x E R" and U E U (we do not specify the set U at this point) and a set of ad
missible controls OIl which is a subset of the set of mappings U of intervals [0, T(u)],
T(u) ~ °into U, having the property that for any u E OIl the solution cp(t, xo, u) of
the differential equation

with cp(O, X o, u) = Xo is uniquely defined on [0, T(u)]. We denote by 9l(xo) the
reachable set of (1) from xo, i.e., 31!(xo) = {cp (T(u), xo, u)1 U E OIl} and call (1)
locally controllable at X o if Xo E int9l.cxo).

The well-known theorem of Kalman gives necessary and sufficient conditions
of local controllability at °for the class of linear systems (/(x, u) = AX+Bu) with
U being a subset of B" containing 0 in its interior (the bang-bang controllability
theorem makes the choice of Olt irrevelant in this case). For nonlinear systems,
sufficient conditions for local controllability at a rest point of the uncontrolled
system are given by the theorem of Lee and Markus ([4]). However, since the theorem
of Lee and Markus uses only the linearization of the system (in both x and u), it
is not difficult to see that its sufficient condition is far from being necessary.

A more recent approach, going back to Hermann ([21, cf. also [5], [6]) relates
the problem of controllability to the study of orbits of families of vector fields.
Given a family of vector fields Pl' = {Xi liE I} on R", the orbit of X o is defined
as Q(xo) = {cp:: 0 •.• 0 cp;:(xo)I p ~ 0; ij E I, tj E R,j = 1, ... , p}, where by cpi we de
note the flow of Xi. It is immediately seen that if OIl is taken as the set of piecewise
constant controls and we associate with (1) the family of vectors fields Pl'
= {XUI u E U} defined by XU(x) = f'(», u), then ~(xa) = Q+-(xo) , were Q+ (xo) is the
positive semiorbit of xo, defined by Q+ (x o) = {cp~: 0 ••• 0 q>~ll(xo)1 p ~ 0, u, E U,
ti ~ 0, i = 1,... ,p}.

[39]
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It is not true in general that Q+ (x o) = Q(xo). The only simple (but rather
restrictive) condition guaranteeing this is the symmetry condition: for every x and
every i E I there exists a j E I such that Xi = - Xi in some neighbourhood of x (cf.
[5]).

For families of analytic vector fields, the classical theorem of Chow gives
a certain rank condition (cf. Theorem 1 below), which is necessary and sufficient
for Xo E int Q(xo) and which, if applied to linear systems, is equivalent to the rank
condition of Kalman (cf. [2],[5]). However, Chow's theorem does not yield a general
ization of Kalman's One since the family of vector fields, associated with a linear
system is not symmetric in general.

The aim of this paper is to prove the equivalence of Chow's rank condition
to local controllability for systems exhibiting a different kind of symmetry which is
satisfied for linear systems-a theorem which does contain Kalman's controlla
bilitytheorem as its-special case.

In § 2, we formulate the main theorem in. the language of families of vector
fields and three lemmas from which the proof of the theorem easily follows. The
applications of the main theorem to local controllability of control systems are given
in § 3 and § 4 contains the proof of Lemma 3.

2.. Main theorem

We shall call a family of vector fields f!(. = {.o<¥i! i E I} odd if for every i E I there
exists a j E I such that X i ( -x) = -Xi(x) for all x. An odd family of vector fields
can always be indexed in such a way that I contains symbols + i and ~ i in such
a way thatX-i(x) = -Xi ( -x) (sometimes Xi and X- i may coincide). When dealing
with an odd family of vector fields we shall always assume that it is indexed in this
w~. _

Further, we shall always. assume that all the vector fields under consideration
are complete, i.e., that the domain of existence of their integral curves is R. This
assumption, just as the assumption that the vector fields are defined and satisfy the
oddness assumption over all R" (instead of a neighbourhood of 0) is not essential
and is made only for the sake of simplicity.

With a family PI of COO vector fields we associate the family [f!(], which is the
smallest family of vector fields containing PI' and closed under the formation of Lie
brackets (cf. [2], [5], [6]). We write £lex) = {X(x) I X E PI}.

TUEOREM 1. Let PI be an odd family of analytic vector fields on R". Then
oE int Q+ (0) ifand only Chow's rank condition is satisfied at 0, i.e., dim span [.~] (0) = n.

For the proof we need the following three lemmas.

LEMMA 1. Let PI = {Xii i E I} be a family of Coo vector fields on R" satisfying
Chow's rank condition at xo. Then, for every l5 > 0, there exist i1, ... , in E I,
81' ... , Sn E [0, <5) such that the map (t 1 , ... , tn) ~ qJ:: 0 ••• 0 qJ:~(xo) is a local diffeomor
phism at (s1, ... , Sn).
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For the proof, cf. [3].

LEMMA 2. Let £( = {Xii i E I} be a family of coo vector fields, y E int Q+(x),
Z E.Q+(y). Then, Z E int Q+(x).

Proof From Z = ~:: 0 ••• 0 ~:~(y) it follows that

Z E <p;: 0 ••• 0 <p:~(int ..0+ (x)) c int (<p:: 0 ••• 0 ~:~(Q+ (x))) c int Q+(x),

since <p;; 0 ••• 0 <p; ~ is a local diffeomorphism.
To make the formulation of Lemma 3 easier, we define for a given family of

analytic vector fields, a stream on VeRn open as an analytic map X: (-!5, t5) x

x V ~ R", t5 > 0 (write Xt(x) = x(t, x)) such that
1. for every t E ( - t5, t5), Xt is a diffeomorphism V -4 Xt(V),
2. for all x E V, Xo(x) = x,
3. for every t E [0, !5) and. all x E V, Xt(x) E Q+ (x).
Note that if X, 1fJ are s.treams on V and iI, i 2 are analytic functions on

a neighbourhood of 0 such that

then t ~ XT l(t) 01fJT2(t) is also a stream on V. If for two streams X, VJ there exists
a stream 'YJ and analytic functions i 1, 7:2 satisfying (2) such that 1fJt = 'YJT1(t) 0 XT2(t)
for It I sufficiently small, we shall write X -< 1jJ. The relation < is obviously transitive.

LEMMA 3. Let PI be an oddfamily of analytic vector fields. Thenfor every stream

X there exists a stream {} ?> X such that (}t(O) = O.for t ~ 0 sufficiently small.

Proof of Theorem 1. Sufficiency. Write Xt(x) = <P:~n 0 ••• 0 ~~~l(X), where
t., ... , in, S1' .•. , Sn are chosen as in Lemma 1. Obviously, X is a stream on some
neighbourhood of O. The Jacobian of Xt at 0 is an analytic function of t which does
not vanish for t = 1. Therefore, it must be non-zero for t > 0 sufficiently small.
Consequently, Xt(O) E int Q+ (0) for t > 0 sufficiently small. Let {} be as in Lemma 3.
Then there exist analytic functions 7:1, 7:2 satisfying (2) and a stream 'YJ such that
'YJT2(t) 0 XTl(t) (0) = 0 (which implies 0 EQ+ (Xt(O))) for t > 0 sufficiently small. By
Lemma 2, 0 E int Q+ (0).

The necessity of Chow's condition follows from the fact that Q+(O) c Q(O)

and that, if Chow's condition is not satisfied, Q(O) is a submanifold ofR" of dimension
< n (cf. [5], [6]).

Let us note that although Theorem 1 is formulated in B", its nature is local.
Thus, we can replace R" by an n-dimensional analytic manifold, provided the oddness
assumption is satisfied in some local chart at O. This is the situation.if e.g. Chow's
condition is not satisfied and we consider the restriction of f!{ to the orbit Q(O),
which is an analytic submanifold of R" of dimension < n (note that Q(O) is symmetric

~ with respect to 0 if f!{ is odd!); cf. [5], [6]. Thus we have

THEOREM 2. Let E be an odd family of analytic vector fields. Then 0 E int Q+ (0)
in the topology ofQ(O).
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3. Application" to control systems

Consider a control system

(3)
- p

x = fo(x) + 2.:>Ji(x) , U;E Uj = [-1, +1],
i= 1

U = U1 X U2 X ••• x Up. We associate with (3) the family of vector fields!!l" = {fo ±.til
i = 1, ... , p}. If we take as 0lI the set of piecewise constant bang-bang controls
(i.e., the set of piecewise constant controls with values ±1), then obviously 8l(x)
= Q+ (x). Let us also note that since £l(x) and {.til i = 0, ... , p} (x) span the same
linear subspace, so do [£l](x) ana [{Iii i = 0, ... ,p}](x). Thus we obtain the follow
ing corollary of Theorem 1:

THEOREM 3. Letfi, i = 0, ... , p be analytic, let fo be odd, and let fi, i = 1, ... , p,
be odd or even. Then (3) is locally controllable at O. if and only if rank [{iii i =

0, ... , p }](0) is n.
We omit the obvious reformulation of Theorem 2 in the language of control

systems.

Let us note that the conditions of Theorem 3 are satisfied if fo is linear and
.fi, i = 1, ... , p, are constant and so Kalman's controllability theorem is obtained
as a special case of Theorem 3.

The perturbation theory of [1] allows us to extend the controllability result
of Theorem 3 to "allmost odd" control systems:

THEOREM 4. Given a system (3) satisfying the assumptions of Theorem 3 such
that dimspan [{iii i = 0, ... , p}] = n, there exist 8 > 0 and 'YJ > 0 such that for any
function g(x, u) which is Lipschitz continuous in x and continuous in u and satisfies
Ig(x, u)1 < 8 for Ixl < 'YJ the system

p

x = fo(x) +Lu;fi(x) +gtx, u)
i=l

is locally controllable at o.
The proof follows from [1], Proposition 111-6. One has merely to note that

the homogenity assumption is not essential in this proposition.

4. Proof of Lemma 3

For the sake of brevity we make the following convention: By a stream 'we shall
always understand a stream on some neighbourhood of the origin. In statements
concerning t we shall drop "for It I sufficiently small".

Let us note that if £l is odd, for any stream X the symmetric map X- defined
by x:(x) = - It( - x) is also a stream. For the proof it suffices to note that Xt(x)
= qJ;; 0 ••• 0 qJ~; (x) implies

Xt(x) = - It( -x) = - qJ;; 0 ••• 0 qJ:~( -x) = qJt;,ip
0 ••• 0 qJ~il(X) E Q+ (x).
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(5)

In the sequel we shall always denote pairs of symmetric streams by the same
letter with superscripts +, -, sometimes dropping +. When dealing with them
simultaneously we shall use the letter ~ to indicate the signs; if multiplied, +, - will
be understood to behave like +1, -1.

In order to prove Lemma 3 we prove the following induction statement:

Let Xi, i = 1, ... , k, 1j)k be streams such that

(4k) Xi, teO) = ai tPt+o(tPt+1), 1jJk, teO) = bktqk+o(tqk+1),

where ai, i = 1, ... , k, are linearly independent and bk does not belong to any subspace

__spanned by k -1 of the vectors a., i = 1, ... , k.

Then either there exists a stream 1j)k+ 1 >- 1j)k such that 1j)k+ 1, teO) = 0 or there

exist streams Xk+ 1, 1j)k+ 1 such that 1j)k+ 1 >- 'ljJk and Xi, i = 1, ... , k +1, and 1j)k+ 1
satisfy (4k+1).

The assertion of the lemma results from this induction statement as follows:
If Xt(O) == 0, we write {} = X. Otherwise, (41) is satisfied for Xl = 1j)1 = X. Using
the induction statement we construct a sequence of streams 1j)1 -< 1j)2 -< ... (and the
auxiliary streams Xl' X2' ... ) until we reach ko such that 1j)ko,t(O) = 0 and we write
{} = 1j)ko • Since (4n+1) is impossible, ko ~ n +1. r

To prove the induction statement we write

~i,t = Xi,St(t), where Si(t) = tPl Pt-1Pt+l ...Pk9k,

'YJk,t = 1j)k,rk(t), where rk(t) = t P1 »,
~i, i = 1, ... , k, and 'YJk are streams, ~i >- Xi, 17k >- 1j)k and

~i,t(O) = aitQ+O(tQ+1),

l7k,t(O) = bkt Q+O(tQ+ 1),

where Q = Pi > Pkqk. Further we have
Q

~i.t(X) = x+ 2..: (Xij(X)ti +O(t Q+1),
j=l

Q

11k.t(X) = X+ 2..: tJiCx)t i+O(tQ+1) ,
j=l

where rLij(x) = O(lxl), Pj(x) = O(lxl) for j = 0, ... , Q-1 and rLiQ(X) = a,+O(lx!),
fJQ(x) = bk+O(/x!).

Assume that there exists no stream1jJk+1 >- 1jJk such that 1j)k+1,t(O) = o. Write
Tk = span {ai/ i = 1, ... , k} and choose such a complement Sk to Tk that if 7lk

denotes the projection onto Tk along Sk' then nk(bk) does not lie in any subspace
spanned by k -1 of the vectors a., i = 1, ... , k. This is possible owing to the assump
tion that bk itself does not belong to any such subspace. We show that there exist
functions 7:1' ... , 7:k and signs b1, ... , ~k such that 'riCO) = 0, 7:i(O) > 0 for t > 0,
'i = 1, ... , k, and

(6)
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Denote F~l""t~k: Rn+ l ~ Tk by

F~l""t~k(7:1' ... , 7:k, t) = 1'tk 0 ~~~7:1 0 ••• 0 ~Z~7:k 0 'YJk,t(O).

By (5) we have
k

F"1.···."k(1'l' ... , 1'b t) = l:: ~iai1'?+Jrk(bk)tQ+W(1'l' ... , 1'k, t),
i=1

where co is analytic and satisfies

(7)

Write

Then we have
k

G"1.···."k(0'1' ... , O'b t) = t Q [2: ~iaiO'? + Jrk(bk)] +W(O'l t, ... , O'k t, t).
i=1

By (7) we have oi1+...+ik+lw(al t, ... , (Jk t, t)/oa{l ... oa~k otJk+1(0) = 0 as soon

as jk+1 ~ Q. Thus, by the Weierstrass preparation theorem, w(alt, ... , akt, t) =
tQ + 1 - ( t) h _. I t' . Tho cco a1 , ••. , ak, ,were co IS ana y IC In a1 , ••• , ak, t. ererore,

k

G"1.· ..'''~(O'l' ... , O'ko t) = t Q [l:: ~iai O'? + Jrk(bk)+ tm(O'l' ... , O'k' t)]
i=1

n ......,1auu

where
k

H"1.·..."k(0'1' ... , O'k, t) = l:: ~iaiO'?+Jrk(bk)+t(V(O'l' ... , O'k, t).
i=1

Since a., i = 1, ... , k, form a basis of Tk and 1'tk(bk) does not belong to any
subspace spanned by k - 1 of the vectors ai, there exists a unique k- tuple of reals

k

Yh all of them :f:= 0, such that ~1't(bk) = ~ aiYi' We write ~i = sign y, and
i=1

k

choose aT = (~iYi)1/Q. Since H~1''''t(jk(aI, ... , a:, 0) = L aiYi+1'tk(bk ) =0 and
i=1

oH(jlt'''t(Jkjoa (ar, ... , af, 0) = Q(~1 aIQ-1a
1 , ••. , ~ka:Q-1ak) is nonsingular

(here a = (a1, ... , ak)), there exists a unique k-tuple of analytic functions ai(t)
such that ai(O) = aT and H(jlt "'t(Jk (a 1 (t), ... , ak(t), t) = o. Moreover, ai(t) ~ o.
If we write 7:i(t) = t ai(t), i = 1, ... , k, then 7:i will be analytic and will satisfy
7:i(O) = 0, 7:i(t) > 0 for t > o and F~lt'''t~k(7:l(t), ... , 7:k(t), t) = O.

Write

Xk+Lt(X) = ~1~7:1(t) 0 ••• 0 ~Z~7:k(t) 0 'Y}ktt·

Obviously Xk+ 1 >- 'ljJk; thus Xk+ 1 t t(O) :f:= 0 by assumption. By (6) and the definition
of Xk+ 1, 1'tk 0 Xk+ 1 t teO) = 0, which implies that the first non-zero coefficient in the
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expansion of Xk+l,t(O) must be linearly independent of the vectors a., i= 1, ... , k,
Therefore, Xl' ... , Xk+l satisfy (4k+ l ). •

To obtain "Pk+ 1 we choose another complement S" to Ti; the intersection of
which with the span {ai I i = 1, ... , k +1} does not lie in any subspace spanned by
k of the vectors ai, i.= 1, ... , k+ 1. We construct "Pk+l by the same construction
as Xk+ 1 with Sk replaced by Sk and -Ttk replaced by Tt", the projection' onto Tk along
Ske Since "Pk+l,t(O) i= 0, owing to the choice of Sk, Xh i = 1, ... ,k+l, and "Pk+l
will satisfy (4k+ 1).

References

[1] P. B run 0 v sky, C. Lob r y, Controlabilite bang bang, contrtilabilite differentiable et per
turbations des systemes non lineaires, to appear in Annali Mat. Pura Appl.

[2] R. Her man n, On the accessibility problem in control theory, in Internat. Symp, on Nonlin,
Dif, Eq, and Nonlin. Mech., J. P. LaS all e and S. L e f s c h e t z editors, Academic
Press, New York 1963, pp. 325-332.

[3] A. K r e n e f, A generalization of Chow's theorem and the bang-bang theorem to nonlinear
systems, SIAM J. Control 12 (1974), No.1.

14] E. B. Lee, L. Mar k u s, Foundations 0/ optimal control theory, Wiley, New York 1967.
[5] C. Lob r y, Controlabilite des systemes non lineaires, SIAM J. Control 8 (1970), pp. 573-605.
[6] H. J. Sus sma n n, Orbits offamilies ofvector fields and integrability ofsystems with singularities,

. Bull. Am. Math. Soc. 79 (1973), pp. 197-199.




