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1. Introduction

Consider a control system
€] x = f(x, u),

where x € R” and u € U (we do not specify the set U at this point) and a set of ad-
missible controls % which is a subset of the set of mappings u of intervals [0, T(»)],
T(u) = 0 into U, having the property that for any u € % the solution (¢, x,, u) of
the differential equation ‘

x = f(x,u(t))

with @(0, X, 4) = X, is uniquely defined on [0, T(»)]. We denote by Z(x,) the
reachable set of (1) from X, ie., Z(x,) = {@(T@W), X0, u)| ue ¥} and call (1)
locally controllable at x, if x, € int Z(x,).

The well-known theorem of Kalman gives necessary and sufficient conditions
of local controllability at 0 for the class of linear systems ( f(x,u) = Ax+Bu) with
U being a subset of R™ containing O in its interior (the bang-bang controllability
theorem makes the choice of % irrevelant in this case). For nonlinear systems,
sufficient conditions for local controllability at a rest point of the uncontrolled
system are given by the theorem of Lee and Markus ([4]). However, since the theorem
of Lee and Markus uses only the linearization of the system (in both x and u), it
is not difficult to see that its sufficient condition is far from being necessary.

A more recent approach, going back to Hermann ([2], cf. also [5], [6]) relates
the problem of controllability to the study of orbits of families of vector fields. -
Given a family of vector fields & = {X*|ie I} on R" the orbit of x, is defined
as Q(x,) = {giro...ogii(xo)l p=0,i;eL,t;e R,j =1, ..., p}, where by ¢' we de-
note the flow of X', It is immediately seen that if % is taken as the set of piecewise
constant controls and we associate with (1) the family of vectors fields &
= {X"| u € U} defined by X*“(x) = f(x, u), then Z(xs) = Q% (x,), were 2% (x,) is the
positive semiorbit of x,, defined by 2% (x,) = {¢i?o ...0 ¢} (x0)] p = 0, ;€ U,
ti>0,i=1,...,p}. -

[39]
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It is not true in general that Q+*(x,) = 2(x,). The only simple (but rather
restrictive) condition guaranteeing this is the symmetry condition: for every x and
every i € I there exists a j € I such that XY = —X* in some neighbourhood of x (cf.
[5D.

For families of ahalytic vector fields, the classical theorem of Chow gives
a certain rank condition (cf. Theorem 1 below), which is necessary and sufficient
for x, €int Q(x,) and which, if applied to linear systems, is equivalent to the rank
condition of Kalman (cf. [2],[5]). However, Chow’s theorem does not yield a general-
ization of Kalman’s one since the family of vector fields, associated with a linear
system is not symmetric in general.

The aim of this paper is to prove the equivalence of Chow’s rank condition
to local controllability for systems exhibiting a different kind of symmetry which is
satisfied for linear systems—a theorem which does contain Kalman’s controlla-
“bility theorem as its special case.

In §2, we formulate the main theorem in.the language of families of vector
fields and three lemmas from which the proof of the theorem easily follows. The
applications of the main theorem to local controllability of control systems are given
in § 3 and § 4 contains the proof of Lemma 3.

-

‘ 2. Main theorem

exists a j e I such that X(—x) = —XY(x) for all x. An odd family of vector fields
can always be indexed in such a way that I contains symbols +i and =i in such
away that X~!(x) = —X*(—x) (sometimes X’ and X~! may coincide). When dealing
with an odd family of vector fields we shall always assume that it is indexed in this
way. )

Further, we shall always assume that all the vector fields under consideration
are complete, i.e., that the domain of existence of their integral curves is R. This
assumption, just as the assumption that the vector fields are defined and satisfy the
oddness assumption over all R" (instead of a neighbourhood of 0) is not essential
and is made only for the sake of simplicity.

With a family & of C* vector fields we associate the family [%], which is the
smallest family of vector fields containing & and closed under the formation of Lie
brackets (cf. [2], [5], [6]). We write Z'(x) = {X(x)| X € Z'}.

THEOREM 1. Let & be an odd family of analytic vector fields on R'. Then
0 eint 2+ (0) if and only Chow’s rank condition is satisfied at 0, i.e., dimspan[Z](0) = n.

For the proof we need the following three lemmas.

LEMMA 1. Let Z = {X'| i eI} be a family of C* vector fields on R" satisfying
Chow’s rank condition at x,. Then, for every 6 > 0, there exist iy, ...,i,€l,
Sty s Su € [0, ) such that the map (ty , ..., t) & glvo ... o @ii(xo) is a local diffeomor-
phism at (s, ..., S,).
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For the proof, cf. [3].

LEMMA 2. Let & ={X'|iel} be a family of C°° vector fields, y € int Q% (x),
z €% (). Then, z € int 2% (x).

Proof. From z = g{Zo ... o p}1(y) it follows that
ze@i?o ... oqi(int 2*(x)) < int (qa'l’ °...0 ¢§;(Q+(x))) c int 2% (x),

since @ifo ... 0 (;o,l is a local diffeomorphism.

To make the formulation of Lemma 3 easier, we define for a given family of
analytic vector fields, a stream on V < R" open as an analytic map y: (—9, 0) X
xV > R", 8 > 0 (write y,(x) = x(¢, x)) such that

1. for every ¢t € (— 9, d), x, is a difftomorphism V — x,(V),

2. forall x eV, yo(x) = x,

3. for every ¢t € [0, ) and all x e V, y,(x) € 27 (x).

Note that if y, ¢ are streams on V and 7,, 7, are analytic functions on
a neighbourhood of 0 such that

2) 7100 = 7,000 =0 and 7,(¢) >0, 7,(¢) >0 for t > 0,

then 7+ Y7, © ¥,y IS also a stream on V. If for two strems y, v there exists
astream 7 and analytic functions 7,, 7, satisfying (2) such that v, = 7, ° Xz,
for | ¢| sufficiently small, we shall write ¥ < . The relation < is obviously transitive.

LEMMA 3. Let & be an odd family of analytic vector fields. Then for every stream '
X there exists a stream & > y such that 9,(0) = 0 for t > 0 sufficiently small.

Proof of Theorem 1. Sufficiency. Write x,(x) = @iz o ... o ¢it (x), where
g5 ey in, 815 ..., 8, are chosen as in Lemma 1. Obviously, ¥ is a stream on some
neighbourhood of 0. The Jacobian of y, at 0 is an analytic function of ¢ which does
not vanish for ¢ = 1. Therefore, it must be non-zero for ¢ > 0 sufficiently small.
Consequently, #,(0) € int 2+ (0) for ¢ > 0 sufficiently small. Let ¢ be as in Lemma 3.
Then there exist analytic functions 7,, 7, satisfying (2) and a stream 7 such that
Mayity © Xeyry (0) = O (which implies 0 € 2+ (,(0))) for ¢ > 0 sufficiently small. By
Lemma 2, 0 €int 2% (0).

The necessity of Chow’s condition follows from the fact that 2+(0) = £2(0)
and that, if Chow’s condition is not satisfied, £2(0) is a submanifold of R" of dimension
< n (cf. [5], [6]).

Let us note that although Theorem 1 is formulated in R", its nature is local.
Thus, we can replace R" by an n-dimensional analytic manifold, provided the oddness
assumption is satisfied in some local chart at 0. This is the situation.if e.g. Chow’s
condition is not satisfied and we consider the restriction of & to the orbit 2(0),
which is an analytic submanifold of R" of dimension < # (note that £2(0) is symmetric
* with respect to 0 if Z is odd!); cf. [5], [6]. Thus we have

THEOREM 2. Let & be an odd family of analytic vector fields. Then 0 € int 2+ (0)
in the topology of 2(0).
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3. Application to control systems

Consider a control system

©) % = fo)+ D whi),  weU=[-1, +1],

U=U,xU,x ... xU,. Weassociate with (3) the family of vector fields ' = {f, +fi|
i=1,...,p}. If we take as % the set of piecewise constant bang-bang controls
(i.e., the set of piecewise constant controls with values +1), then obviously 2(x)
= 0Q%*(x). Let us also note that since Z'(x) and {f;] i =0, ..., p} (x) span the same
linear subspace, so do [Z](x) and [{f;| i =0, ..., p}](x). Thus we obtain the follow-
ing corollary of Theorem 1: ,

THEOREM 3. Letf;,i =0, ..., p be analytic, let f,, be odd, and let f;,i = 1, ..., p,
be odd or even. Then (3) is locally controllable at 0 if and only if rank[{fj| i =
0,...,p}(0) is n.

We omit the obvious reformulation of Theorem 2 in the language of control
systems.

Let us note that the conditions of Theorem 3 are satisfied if f; is linear and
fi, i =1, ..., p, are constant and so Kalman’s controllability theorem is obtained
as a special case of Theorem 3.

The perturbation theory of [1] allows us to extend the controllability result
of Theorem 3 to “allmost odd” control systems:

THEOREM 4. Given a system (3) satisfying the assumptions of Theorem 3 such
that dimspan [{fi| i =0, ..., p}] = n, there exist ¢ > 0 and 5 > 0 such that for any
Sfunction g(x, u) which is Lipschitz continuous in x and continuous in u and satisfies
lg(x, w)| < e for |x| < n the system

% =fo()+ ) wfi(x)+50 )

is locally controllable at 0.

The proof follows from [1], Proposition III-6. One has merely to note that
the homogenity assumption is not essential in this proposition.

4. Proof of Lemma 3

For the sake of brevity we make the following convention: By a stream we shall
always understand a stream on some neighbourhood of the origin. In statements
concerning ¢ we shall drop “for |¢| sufficiently small”.

Let us note that if & is odd, for any stream j the symmetric map x~ defined
by y(x) = —y,(—x) is also a stream. For the proof it suffices to note that y,(x)
= @i?o ... o gii(x) implies

1 (X)) = —p(=x) = —@iro...ogii(—x) = ;7o ... 0 g5, 1(x) € 2+ (x).
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In the sequel we shall always denote pairs of symmetric streams by the same
letter with superscripts +, —, sometimes dropping +. When dealing with them
simultaneously we shall use the letter d to indicate the signs; if multiplied, +, — will
be understood to behave like +1, —1.

In order to prove Lemma 3 we prove the following induction statement:

Let i, i = 1, ..., k, yy be streams such that
(4) %,:00) = @it +o(t?+), 4y, (0) = bt +o(t?HY),
where a;, i = 1, ..., k, are linearly independent and by, does not belong to any subspace
_spanned by k—1 of the vectors a;, i =1, ..., k.

Then either there exists a stream Yer1 > Wi Such that vy, +(0) = 0 or there
exist streams Ypi1, Wrey SUCh that we 1 >y and i, i =1, ..., k+1, and yp
satisfy (4e41)-

The assertion of the lemma results from this induction statement as follows:
If %.(0) = 0, we write ¢ = y. Otherwise, (4,) is satisfied for y, = y; = y. Using
the induction statement we construct a sequence of streams ¢; < v, < ... (and the
auxiliary streams y,, ¥, ...) until we reach k, such that v .(0) = 0 and we write
B = yy,. Since (444,) is impossible, ko < n+1. '

To prove the induction statement we write

Ei,t = fiseyy Where  s;(t) = tPi--Pi-tPirioPilic,
Mkt = Yhomys Where  ry(t) = tP1--P,
&, i=1,...,k, and # are streams, & > y;, 7% > y; and
£,:(0) = @12+ 0(12+1),
e, (0) = b2+ 012+ 1),
where Q = p, ... piqy. Further we have

Q
E() = x4 ay()H+0(12+),
s) =

Q
M(X) = x4 Bi(x) I+ 02,
j=1

where «;(x) = O(|x]), B;(x) = O(|x|) for j =0, ...,0—1 and w(x) = a;+ O(|x]),
Bo(x) = by +0(x)).

Assume that there exists no stream ., > v such that v, ,.(0) = 0. Write
Ty =span{a|i=1,..,k} and choose such a complement Sy to Tj that if 7
denotes the projection onto T along S, then m,(h,) does not lie in any subspace
spanned by k—1 of the vectors a;, i = 1, ..., k. This is possible owing to the assump-
tion that by itself does not belong to any such subspace. We show that there exist
functions 7, ..., 7, and signs 9,, ..., & such that 7;(0) = 0, 7;(0) > 0 for ¢ > 0,
‘i=1,..,k, and

(6) Ty, © E?frl(t) ©...0 Ei,,‘rk(t) o 77k,t(0) =0.
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Denote F°v~%: R"™1 _ T by
F"l""’(’k(tla cees Tk t) = Ty © 52}1’1 °..o0 k’:fkonk’t(o)'

By (5) we have
. .
Fal"."ak("'-’l’ [EEEY Tk’t) = Z aiaiTiQ-"'yzk(bk)tQ""'60(‘[17 coes Tgy t)9
i=1

where w is analytic and satisfies
™ Ty, oy Ty t) = 0(|71 |2+ o + |70+ [2]9).
Write

G (gy, ..., O0p, t) = FOU % (oyt, ..., oxt, 1).

Then we have
k
GOor (g, ..., 0, 1) = 12 [Z c?,-zzia?—i—:z,,(bk)]+co(01 ., Ok, 1),
=1

By (7) we have @/tt-tiig(oyt, ..., oyt t)/00% ... Ooi*0t'+1(0) = 0 as soon
as Jjr+1 < Q. Thus, by the Weierstrass preparation theorem, w(o,¢t, ..., oxt, t) =
t2+1%(oy, ..., 0y, t), where & is analytic in oy, ..., oy, . Therefore,

k
Gor(oy, ..., op, 1) = 12 [Z dia; 02 +m (b)) +tid(oy, ..., o, t)]
i=1

)
j=)
o

G %oy, ., o0, ) =0 if  Hv%(g .., 00,t) =0,
where

k
H"i"""”‘(o‘l, veey Ok, t) = Z 6iai0'?+7lk(bk)+l&)(0'1, vevy Ok, t).
i=1

‘ Since a;,i =1, ..., k, form a basis of T, and m;(b;) does not belong to any
subspace spanned by k—1 of the vectors a;, there exists a unique k-tuple of reals

k
vi, all of them # 0, such that —m(by) = > a;y;. We write d; = signy; and
i=1

k
choose of = (d;y)/2. Since H’v (o}, ..., o5, 0) = > a;yi+m(b) =0 and
i=1

0H’v %30 (0%, ..., of, 0) = Q(6, 672 'a,, ..., 6,0f% 'q,) is nonsingular
(here ¢ = (o4, ..., 0x)), there exists a unique k-tuple of analytic functions o;(¢)
such that 6;(0) = o} and H°¢""%(0.(2), ..., ox(t), ) = 0. Moreover, o;(t) > 0.
If we write 7;(¢) = to;(t), i =1, ..., k, then 7; will be analytic and will satisfy
7(0) = 0, 7;(t) > O for ¢ > 0 and F°v % (v (¢), ..., w(t), t) = 0.
Write

Krr1,:(X) = fifn(t) °...0 ‘fl‘z'frk(t) ° Nk, t- .
Obviously xx41 > yx; thus yi..(0) # 0 by assumption. By (6) and the definition
of ¥ki1s 7 o xx4+1.:(0) = 0, which implies that the first non-zero coefficient in the
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expansion of yx.1,.(0) must be linearly independent of the vectors a,, i=1,..,k.
Therefore, x1, .- Xx+1 Satisfy (4xy1).

To obtam Yre1 We choose another complement Sy to T, the intersection of
which with the span {a;| i =1, ..., k+1} does not lie in any subspace spanned by
k of the vectors a;, i =1, ..., k+1. We construct ¢, by the same construction
as yr.q With S replaced by Sx and 7 replaced by 7, the projection onto 7 along
S%. Since x4 1,:(0) # 0, owing to the choice of Sk, xi, i =1, ..., k+1, and y,
will satisfy (44 ).
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