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On the Structure of Optinial Feedback Systems

Pavol Brunovsky

The basic optimal control problem is given by a system

x ==j(x, U), xER", uCR",
a control domain

a performance index
T

J(u) == JfO(x, u)dt (/0: R"XRm -+ R),

°

(1)

(2)

(3)

initial and target states Xo, Xl respectively. By an admissible control we understand
a piecewise continuous function, defined on some interval of the real line with values
in U. Under suitable regularity conditions on /0, / every admissible control
u: [0, T]-+U when substituted into (1) defines a unique solution x(t, u) starting
at Xo for t=O (called the response ofu). Substituting the control and its response
into (3) for u, X respectively, gives a real value to J. One is interested in finding
and studying the properties of the optimal control which steers the system from
Xo to Xl (i.e. its response x(t) called the optimal trajectory satisfies x(T) ==XI)

for some T>O and minimizes the performance index J.
From the very beginning of the optimal control theory one of the approaches

to study this problem has been to imbed it in a family of problems with a varying
initial state Xo. This approach is based on the simple observation (frequently called
Bellman's optimality principle) that if u is an optimal control on [0, T], then its
restriction to any interval [to, T], to~O, is an optimal control for the initial state
X (to , u). If for each initial state X in some region G the optimal control u; (and,
consequently, its response 'x starting at x) is unique, from the optimality principle
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we obtain immediately that the optimal control can be expressed, independently
of the initial state, as a function of the present state of the system, i.e. there exists
a function v: G-+U such that ux(t)~v(~x(t)) for xEG. Therefore the optimal
trajectories satisfy in G the differential equation

x = f(x, v(x)). (4)

Let us note that in many applications the ultimate goal of solving the optimal
control problem is to find the function v, which is called the closed-loop optimal
control, the optimal feedback law or the synthesis of optimal control.

Formally, one can consider (4) as an equation for optimal trajectories. In order to
utilize it, it is important to know something about the properties of the function v.
For example, for the classical existence and uniqueness theory of ordinary differential
equations it would be useful if v were continuous. However, simple examples in
which v can be constructed explicitly (cf. [1, Chapter III] or [11, Chapter 2]) show
that due to unilateral constraints, which are typical for the optimal control theory,
v is frequently discontinuous.

A deeper reason for studying the structure of v is the problem of sufficiency
of the variational necessary conditions of optimality, in particular of the Pontrjagin
maximum principle (PMP). Assume that for every initial state xE G there exists
a unique control steering the system from x to Xl and satisfying PMP, thus
being the unique candidate for the optimal control. If we define v(x)=ux(O), we
111ay ask whether u is the closed-loop optimal control, i.e. whether (4) yields optimal
trajectories (and only optimal trajectories) as its solutions. As it is shown in [1], [2]
this problem is closely connected with the problem of the sufficiency on the dynamic
programming equation (which corresponds to the Hamilton-Jacobi equation of the
classical calculus of variations).

When trying to resolve this question one is again confronted with the problem
of the regularity of the behaviour of v. Bolt'anski observed that one can work also
with a discontinuous synthesis, provided its set of discontinuities is sufficiently
regular, This led him to introduce the concept of regular synthesis for the time
optimal control problem (fo=l) (cf. [1], [2]). By a regular synthesis for the time
optimal control problem in a region G we understand a pair (fJ>, v), where g is
a locally finite partition' of G into Cl connected submanifolds of G (called cells),
v is a function G -+ U satisfying the following conditions:

A. The set G' (where G' is the union of the cells of dimension <n) admits
a stratification in G. (By a stratification f!}J of a subset H of G we understand
a locally finite partition of H into C! connected submanifolds of G (called
strata) such that PnQ~0 implies PcQ and dim P<dim Q for any
P, QEf!}J, P~Q.)

B. The function v is CIon each SEf/ and can be extended to a Cl function
in some neighbourhood of S. The cells of g are of type I and type II. If S is
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of type I, then f(x, v(X))ETxS (the tangent space of S at x) for every xES and
there is a uniquely defined cell n(S) such that every solution of (4) starting at any
point xES enters n(S) transversally for some r e-O (after staying in S on (0, -r))
which is a continuous function of x. If S is of type II then f(x, v(x))~ TxS for all
xES and there is a unique cell L (S) of type I such that v is CIon S U L (S)
and every solution of (4) starting in S lies in L(S) for sufficiently small positive
times.

C. Every trajectory x(t) of (4) starting at some point xE G (which is by B
uniquely defined until it stays in G) eventually reaches Xl in finite time T(x) ~ 0
passing through a finite number of cells only and together with the control u(t)=
v(x(t)) satisfies PMP.

D. T(x) is continuous in G. Let us note that this definition differs somewhat
from Bolt'anski's one as well as from that of [3]. (For details, cf. [3] and the forth
coming Erratum to [3].)

In [2] (cf. also [1]) Bolt'anski proved that if (ff, v) is a regular synthesis, then
v is the closed-loop optimal control in the following sense:

The trajectory ex (in the Caratheodory sense) on [0, T(x)] of equation (4)
starting at xEG is the optimal trajectory and ux(t)==v(ex(t)) is the optimal control.

Virtually in all the simple examples in which it has been possible to construct
the synthesis explicitly, the latter has satisfied the conditions of regularity. However,
except for some studies of the local structure ofv near Xl (cf. e.g. [14]) no attempt
has been made to prove that a more general class of problems would globally admit
a regular synthesis. Such a result has been made possible by Hironaka's theory
of subanalytic sets [7], [9], [10]. It concerns linear control systems

with
x == Ax+Bu (5)

u == co {WI' ... , wp } (6)

being a convex polytope. Such a problem is called normal if for every i ~j, k,

det (bk(Wi-Wj), Abk(Wi-Wj), ... , An-Ibk(Wi-Wj)) ~ 0,

where B==(bl , .•. , bm) . Let us note that normality is a generic property (cf. [11,
Chapter 2, Theorem 11]).

THEOREM 1 [3]. Assume that the control system defined by (5), (6) is normal and
that U contains 0 in its interior. Then the time-optimal control problem with the
target point Xl ==0 admits a regular synthesis in the domain G ofpoints that can be
steered to o.

As mentioned above, the proof of this theorem makes use of the theory of sub
analytic sets. A subset M of an analytic manifold is called subanalytic if it can be
.ocally (in A) expressed as a finite union of sets of type f(Y)".g(Z), where Y, Z
ire analytic manifolds and J, g are analytic proper. By the central theorem of the
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theory of subanalytic sets, every subanalytic subset of A admits an analytic strati
fication, the strata of which are subanalytic (cf. also [13]).

The cells of the synthesis are obtained by an inductive construction. The sets of
continuity of v are shown to be subanalytic and the synthesis cells are obtained by
a sequence of partitions of these sets into connected analytic submanifolds. In
addition to the standard theory of subanalytic sets one needs the following

LEMMA. Let M be a subanalytic subset ofan analytic manifold A and let Xl' ... , X r

be analytic vector fields on A. Then M admits a locally finite partition f!} into con
nected analytic submanifolds of A, which are subanalytic in A, such that for every
PEf!} and i== 1, ... , r, Xi is either everywhere or nowhere tangent to P.

This lemma, an improved version of which has been proved by Sussmann, appears
to be crucial also for other application of the theory of subanalytic sets in control
theory (cf. [12]). From this theorem it immediately follows that the minimum steering
time to Xl' T(x) , is analytic in G everywhere except for a stratified set (G') of
dimension n -1 (==maximal dimension of the strata).

If one tries to extend the concept of regular synthesis to problems where PMP
yields controls with corners which are not jumps (like time optimal control problems
with control domains having piecewise analytic curvilinear boundaries, or linear
quadratic problems with linear constraints), one immediately sees that the trans
versality assumptions as well as the CI extendability of v to the neighbourhood
of S in B cannot be required. Instead, one has to assume their consequences,
namely that the time -rex) at which ~x(t) enters n(S) for S of type I and n(.E(S))
for S of type II, the trajectory ~x(t) and the control ux(t) are C! functions
of X, t for XES, tE[O, -r(x)) and can be extended to Cl functions of x, t for
t ~ -r(x) close to -r(x). With this difference, the definition of regular synthesis can be
literally extended to control problems with other performance indices (T in D
replaced by J, the performance index). Bolt'anski's proof can be extended easily
to yield an extension of his sufficiency theorem to general performance indices.

Employing essentially the same induction techniques as in the linear time-optimal
problem case, one can prove an abstract existence theorem. However, due to the
lack of transversality mentioned above, in order to obtain the CI dependence of
the required quantities one has to construct auxiliary partitions in the product
space of the state and adjoint space. By suitable partitions one can achieve that the
product flow of the system and its adjoint enters the cells in the product space
transversally, thus yielding analyticity of the required quantities.

Because of lack of space we desist from introducing this theorem, which has
a rather cumbersome formulation. This is due to technical assumptions, which are
needed for the extendabilityof the solutions of certain vector fields to sufficiently
long intervals. Rather we note that the most serious requirements (in addition to
analyticity, of course) for a system to admit a regular synthesis in some region
G are the following ones:
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1. For every initial state xEG, there has to be a unique control Ux satisfying
PMP which steers the system from x to Xl.

2. The number of switchings (which are roughly speaking the points of non
analyticity) of the controls Ux has to be locally uniformly bounded.

The first requirement makes the range of applications of such a result rather
limited. Indeed, although singular controls (not minimizing the Hamiltonian
strictly), which are quite typical for nonlinear control problems, are not excluded
in principle, when they appear the first requirement is usually not satisfied. On the
other hand the second requirement, the validity of which is difficult to prove for
more general classes of systems, is virtually always satisfied in particular problems.

The following theorem concerns a model class of problems in which these difficulties
can be overcome-linear-quadratic optimal control problems with linear constraints.

THEOREM 2. Consider the optimal control problem

x = Ax+Bu,
T

J = J [x*Qx+u*Ru] dt (R >- 0, Q~ 0),
o

U = {uERm I(i j , u) ~ mj' j = 1, ... , p},

x(T)=O, T fixed, and assume that this system is normal. Then the problem admits'
a regular synthesis.

The normality assumption here consists in the non-vanishing ofcertain polynomials
involving the entries of A, B, Q, lj' n1j' as in the case of the linear time-optimal
control problem it is a generic property.

Of course, this theorem has a similar impact on the regularity of the minimal
value of the performance index as Theorem 1 had on the regularity of the minimal
steering time.

Let us note that neither Theorem 1 nor Theorem 2 contribute anything to sufficient
conditions of optimality (the sufficiency of PMP in both cases can be proved by
other, simpler means). Their value lies rather in the insight they give into the structure
of the closed-loop optimal control.

Finally let us note that in Bolt'anski's sufficiency results one understands the solu
tions in the classical Caratheodory sense. However, it has been demonstrated
by several authors in the fifties that this concept is inadequate in the case ofequations
with discontinuities in the dependent variable. Because of the discontinuity of
v this is the case for equation (4) in many control problems. Several concepts of
solutions for such equations have been proposed, the most elaborate being that
of Filippov [6]. Therefore it is natural to ask whether the optimal trajectories (which
are the usual solutions of (4)) coincide with the Filippov trajectories or not. This
problem is related to the problem of stability of the behaviour of the solutions of
(4) with respect to perturbations (cf. [8],[4]). Using a slight improvement ofTheorem
1 this question can be answered positively for the linear time-optimal control problem
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with dim U= 1 (cf. [3], [5]). However, the results of [4], where the problem is com
pletely solved for the two-dimensional linear time-optimal control problem, show
that there is a non-exceptional class of problems for which the optimal trajectories
do not coincide with the Filippov trajectories of (4).

The author is indebted to H. Sussmann whose comments on [3] have been of great
value for the present paper.
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