NOTES ON CHAOS IN THE CELL POPULATION PARTIAL DIFFERENTIAL EQUATION

PAVOL BRUNOVSKÝ
Institute of Applied Mathematics, Comenius University, 842 15 Bratislava, Czechoslovakia

(Received in revised form 15 June 1982)

Key words and phrases: First order partial differential equation, semiflow, chaos.

1. INTRODUCTION

In [1], the author investigates the differential equation
\[\frac{\partial u}{\partial t} + c(x) \frac{\partial u}{\partial x} = f(x, u), \quad (t, x) \in D = [0, \infty) \times \Delta, \Delta = [0, 1]. \tag{1} \]

This equation describes the dynamics of growth of certain types of cell populations most prominent of which is the red blood cell population. It is shown in [1] that under certain natural conditions on \(c \) and \(f \) the equation (1) generates a semiflow \(S_t \) \(t \geq 0 \) on \(C_+ (\Delta) \) (the space of nonnegative continuous functions on \(\Delta \)) with an invariant set \(V_w \) on which the behaviour of the trajectories of \(S_t \) is chaotic in the sense of [2]. This means that \(S_t \) has a dense trajectory in \(V_w \) and each point of \(V_w \) is unstable (i.e. for each \(v \in V_w \) there exists a neighbourhood \(U \) of \(S(0, v) \) in \(C(D) \) and a sequence \(v_n \to v \) such that the trajectory of \(v_n \) leaves \(U \) for some \(t > 0 \)).

The main purpose of this paper is to show that \(S_t \) exhibits also other features of chaos in \(V_w \). Namely, there are periodic points of \(S_t \) of any basic period in \(V_w \) and the set of all periodic points of \(S_t \) is dense in \(V_w \) (Section 2).

For the proof a representation of \(S_t \) is employed which allows to prove the results on chaos of [1] in a more simple and transparent way. These proofs are presented in Section 3. Also, this technique helped to discover a small error in [1]. For the results on chaos of [1] to be true an additional (albeit also natural) assumption has to be added. We make this assumption in Sections 2 and 3. In Section 4 we discuss the modifications to be made if this additional assumption is dropped.

We keep all the notation of [1] in order to make it easier for the reader to relate the two papers. However, in order not to force the reader to look into [1] for every single concept or result we conclude this section by a list of assumptions and results of [1] used in the present paper.

Assumptions

A1. The functions \(c, f \) are continuously differentiable.
A2. \(c(0) = 0, c(x) > 0 \) for \(x > 0 \).
A3. There exists a \(u_0 \in (0, 1] \) such that \(f_u(0, u_0) < 0, f(0, u)(u - u_0) < 0 \) for \(u > 0, u \neq u_0 \).
A4. \(f(x, u) \leq k_1 u + k_2 \) for some \(k_1, k_2 \geq 0 \) and all \(x \in \Delta, u \geq 0 \).
A5. \(f(x, 0) = 0 \) for all \(x \in \Delta \).
Note that the assumptions A1–A5 coincide with assumptions (16)–(18) in [1] with one difference:
A5 is somewhat sharper than the assumption
A5'. \(f(x, 0) \geq 0\) for \(x \in \Delta\) and \(f(0, 0) = 0\)
made in [1]. Also note that A5 is satisfied if \(f(x, u) = (p(x, u) - c(x)) u\) as is the case if (1) models a reproductive, constantly differentiating cell population with proliferation rate \(p\).

Results

Under the assumptions A1–A4, A5' the following results are proven in [1]:

R1. For \(G \subseteq \mathbb{R}^n, n > 0\), denote by \(C_\ast(G), C_+^1(G)\) the set of all nonnegative continuous and nonnegative continuously differentiable functions on \(G\), respectively. For every \(v \in C_+(\Delta)\), (1) has a unique solution \(u\) in \(C_+^1(D)\) satisfying
\[
u(x, 0) = v(x) \quad \text{for} \quad x \in \Delta.
\]
A function \(u \in C_+(D)\) is called generalized solution of (1) if it is a limit (uniform on compact subset of \(D\)) of solutions of (1). For each \(v \in C_+(\Delta)\) there exists a unique generalized solution of (1) satisfying (2); henceforth we shall drop the adjective 'generalized'. The map \(S: [0, \infty) \times C_+(\Delta) \rightarrow C_+(\Delta)\) defined by \(S_t v(x) = u(t, x)\), where \(u\) satisfies (1), (2) is a continuous semiflow, i.e. \(S_t: C_+(\Delta) \rightarrow C_+(\Delta)\) is continuous for each \(t \geq 0\) and one has \(S_0 = \text{id.}, S_t \cdot S_s = S_{t+s}\) for each \(t, s \geq 0\).

R2. Along the characteristics of (1) which are the curves \(x = \varphi(t; t_0, x_0)\) satisfying the ordinary differential equation
\[
\frac{dx}{dt} = c(x)
\]
and the initial condition \(x(t_0) = x_0\), the solution \(u(t, x)\) of (1) satisfies the ordinary differential equation
\[
\frac{dy}{dt} = f(\varphi(t; t_0, x_0), y)
\]
with initial condition
\[
y(0) = v(\varphi(0; t_0, x_0));
\]
the solution of (4), (5) is denoted by \(\psi(t, \varphi(0; t_0, x_0), v(\varphi(0; t_0, x_0))\). This means that the solution \(u\) of (1) and (2) can be expressed by the formula
\[
u(t, x) = \psi(t; \varphi(0; t_0, x_0), v(\varphi(0; t_0, x_0))).
\]
For \(\varphi(t; 0, x)\), write also \(\varphi_x(t)\). It follows from A2 that \(\varphi_0(t) = 0\), \(\varphi_x(t)\) is strictly increasing both in \(t\) and in \(x\) for \(x > 0\), \(\varphi_x^{-1}(1)\) is well defined continuous and decreasing for \(0 < x \leq 1\).

R3. There exists a unique solution \(w_0(x)\) of the stationary equation
\[
\frac{c(x) du}{dx} = f(x, u), \quad x \in \Delta
\]
satisfying \(w_0(0) = u_0\). For each \(v \in C_+(\Delta)\) such that \(v(0) > 0\) one has \(S_t v(x) \rightarrow w_0(x)\) for \(t \rightarrow \infty\) uniformly in \(x\).
R4. Let $V_0 = \{ v \in C_+(\Delta) : v(0) = 0 \}$, $V_w = \{ v \in V_0 : v(x) < w_0(x) \text{ for } x \in \Delta \}$. The sets V_0, V_w are invariant for S_t and for each $v \in V_0$ there exists a $T_0 \geq 0$ such that $S_tv \in V_w$ for $t > T_0$.

We add two simple observations that will be used in the paper. Since $q_0(t) = 0$ for all $t \geq 0$, it follows from (6) that a solution $u(t, x)$ of (1), (2) is well defined on $D^0 = [0, \infty) \times \Delta^0$ as soon as $v \in C_+(\Delta^0)$, where $\Delta^0 = (0, 1]$. In other words, the semiflow S_t can be extended to $C_+(\Delta^0)$; we denote this extended semiflow by S_t^0.

Further, since $u(t, x)$ is the solution of a first order ordinary differential equation along each characteristic, it follows from (6) that the semiflow S_t preserves ordering, i.e.

$$S_tv_1 \leq S_tv_2 \quad \text{for } t \geq 0$$

as long as $v_1 \leq v_2$, where $v_1 \leq v_2$ means $v_1(x) \leq v_2(x)$ for all $x \in \Delta$. This is true also for S_t^0.

2. EXISTENCE AND DENSITY OF PERIODIC POINTS

Throughout this and the following section assume \textbf{A1–A5}.

Theorem 1. (a) For each $\tau \geq 0$ there is a continuum of periodic points of S_t in V_w of basic period τ. (b) The set of all periodic points of S_t is dense in V_w.

The basic tool of the proof of this theorem consists in the representation of S_t by the shift semigroup in $C_+[0, \infty)$. This representation is induced by the map $\Phi : C_+(\Delta) \to C_+[0, \infty)$ defined by

$$\Phi(v)(t) = (S_tv)(1).$$

Using (6) we can express Φ also by

$$\Phi(v)(t) = \psi(t; \varphi(0; t, 1), v(\varphi(0; t, 1))).$$

The family of shifts T_t, $t \geq 0$ defined by

$$(T_tg)(s) = g(t + s)$$

for $g \in C_+[0, \infty)$ is a semigroup and one has

$$T_t\Phi = \Phi S_t,$$

i.e. the diagram

$$\begin{array}{c}
\Phi \\
S_t \\
\Phi
\end{array}$$

commutes.

Indeed,

$$(T_t\Phi(v))(s) = \Phi(v)(s + t) = (S_{t+s}v)(1) = (S_sS_tv)(1) = \Phi(S_tv)(s).$$

We can extend Φ to the map Φ_0 on $C_+(\Delta^0)$ by defining

$$\Phi_0(v)(t) = (S_t^0v)(1).$$
Obviously, (10) holds with S_t, Φ replaced by S'_t, Φ_0 respectively.

Let $g \in C_+[0, \infty)$. From (6) one immediately obtains $\Phi_0(v) = g$ if and only if

$$v(x) = \psi(-q_x^{-1}(1), 1, g(q_x^{-1}(1))) \quad \text{for} \quad x \in \Delta^0. \quad (11)$$

Using the argument leading to (8) one obtains from A9 and (11)

$$v(x) \geq \psi(-q_x^{-1}(1), 1, 0) = 0.$$

Thus we have

Lemma 2.1. The map $\Phi_0: C_+(\Delta^0) \to C_+[0, \infty)$ has an inverse which can be expressed by the formula (11).

Note that $\Phi_0^{-1}(g)$ is not necessarily in $C_+(\Delta)$ for an arbitrary $g \in C_+[0, \infty)$ since $\Phi_0^{-1}(g)$ may not have a limit for $x \to 0$.

As a consequence of R3 one obtains immediately

Lemma 2.2. Let $v \in C_+(\Delta)$ satisfy $v(0) > 0$. Then, $\Phi(v)(t) \to w_0(1)$ for $t \to 0$.

Lemma 2.3. Let $g \in C_+[0, \infty)$ and let

$$g(t) \leq w_0(1) - \eta \quad (12)$$

for some $\eta > 0$ and each $t \geq 0$. Then $g \in \Phi(V_w)$.

Proof. Obviously, it suffices to prove

$$\lim_{x \to 0} \Phi_0^{-1}(g)(x) = 0 \quad (13)$$

since then $g = \Phi(v)$, where

$$v(x) = \begin{cases}
\Phi_0^{-1}(g)(x) & \text{for} \ x \in \Delta^0 \\
0 & \text{for} \ x = 0
\end{cases}$$

is from V_w. ■

To prove (13) we first introduce the following notation which will be used throughout the paper:

For any $c \geq 0$ we denote by c the constant function on Δ with value c and $h_c(t) = \Phi(c)(t)$.

Let now $\varepsilon > 0$. Since by lemma 2.2. $\lim_{t \to \infty} h_\varepsilon(t) = w_0(1)$, there exists a $t_0 > 0$ such that for $t > t_0$ one has

$$h_\varepsilon(t) > w_0(1) - \eta \geq g(t).$$

Let $x_0 = \varphi(0; t_0, 1)$. For $x < x_0$ one has $q_x^{-1}(1) > t_0$, and, consequently, by (11).

$$\Phi_0^{-1}(g)(x) = \psi(-q_x^{-1}(1), 1, g(q_x^{-1}(1))) < \Phi_0^{-1}(h_\varepsilon(q_x^{-1}(1))) = \varepsilon$$

Since $\varepsilon > 0$ was arbitrary this proves (13).
Since for $g \in C_{+}[0, \infty)$ periodic with values in $[0, w_0(1))$ there is always an $\varepsilon > 0$ such that (12) holds we have

COROLLARY 2.1. The function $g \in C_{+}[0, \infty)$ with values in $[0, w_0(1))$ is periodic with prime period $\tau \geq 0$ if and only if $\Phi^{-1}(g)$ is a periodic point of S_t in V_w with basic period τ. In particular, all the solutions of the stationary equation (7) in V_w are obtained as pre-images of constant functions $<w_0(l)$ under Φ.

LEMMA 2.4. For each $0 < \varepsilon < \inf_{0 \leq x < 1} w_0(x)$ there exists a $\tau_\varepsilon > 0$ such that $h_\varepsilon(s + t) \leq h_\varepsilon(s)$ for each $s \geq 0$, $t \geq \tau_\varepsilon$.

Proof. By R3, there exists a $\tau_\varepsilon > 0$ such that $S_t \varepsilon > \varepsilon$ for all $t \geq \tau_\varepsilon$. Hence, for $t \geq \tau_\varepsilon$ we have

$$h_\varepsilon(s + t) = (T_t h_\varepsilon)(s) = \Phi(S_t \varepsilon)(s) \geq \Phi(\varepsilon)(s) = h_\varepsilon(s).$$

Proof of theorem 2.1. Part (a) is an immediate consequence of corollary 2.1.

To prove (b) take any function v in V_w and choose an $\varepsilon > 0$. Denote $g = \Phi(v)$. Let $\delta > 0$ be such that $v(x) < \varepsilon$ for $x < \delta$, so

$$g(t) < h_\varepsilon(t) \quad \text{for} \quad t \geq t_1 = \varphi_0^{-1}(1).$$

Let $t_2 > \max\{t_1, \tau_\varepsilon\}$ be such that

$$h_\varepsilon(t) \geq \max_{0 \leq t \leq t_1} g(t),$$

for $t \geq t_2$, τ_ε being as in lemma 2.4.

From (14), (15) it follows that there exists a continuous function $\bar{g} \in C_{+}[0, t_2]$ such that

$$\bar{g}(t) = g(t) \quad \text{for} \quad 0 \leq t \leq t_1,$$

$$\bar{g}(t) < h_\varepsilon(t) \quad \text{for} \quad t_1 \leq t \leq t_2,$$

$$\bar{g}(t_2) = g(0).$$

Define $k \in C_{+}[0, \infty)$ by

$$k(t) = \bar{g}(t - nt_2) \quad \text{for} \quad t \in [nt_2, (n + 1)t_2].$$

Then, k is periodic with period t_2 and, by lemma 2.3., there is a $z \in V_w$ such that $k = \Phi(z)$.

From (14) and (15) we obtain

$$z(x) = v(x) \quad \text{for} \quad \delta \leq x \leq 1,$$

$$|z(x)| < \varepsilon \quad \text{for} \quad \varphi(0; t_2, 1) \leq x \leq \delta.$$

Let $n \geq 1$. For $nt_2 + t_1 \leq t \leq (n + 1)t_2$ we obtain by lemma 2.4 and (14)

$$k(t) = \bar{g}(t - nt_2) \leq h_\varepsilon(t - nt_2) \leq h_\varepsilon(t).$$
for \(nt_2 \leq t \leq (n + 1)t_2 \), (20) follows immediately from (15). Consequently, (19) extends to all \(0 \leq x \leq \delta \) and we have

\[
|z(x) - v(x)| \leq |z(x)| + |v(x)| \leq 2\varepsilon
\]

for \(0 \leq x \leq \delta \). This, together with (18), proves (b). ■

3. EXISTENCE OF A DENSE TRAJECTORY AND INSTABILITY

Using the representation of \(S_t \) by \(T_t \) developed in Section 2 we now present an alternative proof of theorem 3 of [1]. That is, we prove

(a) every point \(v \in V_w \) is unstable;
(b) there exists a \(v \in V_w \) such that the orbit of \(v \) is dense in \(V_w \).

Proof of (a). Let \(v \in V_w \), \(g = \Phi(v) \), \(0 < a < w_0(1) \). Choose an \(\epsilon < 0 \).
Let \(\delta > 0 \) be such that \(v(x) < \epsilon \) for \(x \leq \delta \). Let \(t_1 \geq q_\delta^{-1}(1) \) be such that

\[
h_\varepsilon(t) > a
\]

for \(t \geq t_1 \).

We now construct a function \(k \in C_+[0, \infty) \) as follows: We define

\[
k(t) = g(t) \quad \text{for} \quad 0 \leq t \leq t_1
\]

\[
k(t_1 + j) = \begin{cases} a & \text{if} \quad g(t_1 + j) < \frac{a}{2} \\ 0 & \text{otherwise} \end{cases}, \quad j = 1, 2, 3, \ldots
\]

and we extend \(k \) to the interior of the intervals between the points \(t_1 + j \) in such a way that \(k \) will be nonnegative continuous and its graph will lie below the graph of \(h_\varepsilon \) for \(t_1 \leq t \leq t_1 + 1 \) and below \(a \) for \(t > t_1 + 1 \). Then, we have

\[
k(t) \leq h_\varepsilon(t) \quad \text{for} \quad t \geq t_1
\]

and

\[
|k(t_1 + j) - g(t_1 + j)| \geq \frac{a}{2} \quad \text{for} \quad j = 1, 2, \ldots
\]

By lemma 2.3., there exists a \(z \in V_w \) such that \(k = \Phi(v) \). Now, (23) can be rewritten as

\[
|(S_{t_1 + j}v)(1) - (S_{t_1 + j}z)(1)| \geq \frac{a}{2}.
\]

Also, we have from (18), (19)

\[
z(x) = v(x) \quad \text{for} \quad \varphi(0; t_1, 1) \leq x < 1
\]

while

\[
|z(x) - v(x)| \leq |z(x)| + |v(x)| \leq \epsilon + \varepsilon = 2\varepsilon
\]

for \(0 \leq x < \varphi(0; t_1, 1) \). Since \(\epsilon > 0 \) was arbitrary, (24)–(26) proves (a). ■
Proof of (b). Let \(\{v_n\}_{n=1}^{\infty} \) be a dense subset in \(V_w \) and let \(\varepsilon_n \searrow 0 \) for \(n \to \infty \). Denote \(g_n = \Phi(v_n) \). By lemma 3.2., there exists a sequence \(\{t_n\} \) such that

\[
t_1 = 0, t_{n+1} \geq t_n + 1.
\]

(26)

\[
h_{\varepsilon_j}(t_{n+1} - t_n) \geq \varepsilon_j + 1 \text{ for } 0 \leq j \leq n
\]

(27)

\[
g_n(t) \leq h_{\varepsilon_j}(t + t_n - t_j) \text{ for all } t \text{ and all } 1 \leq j < n
\]

(28)

\[
g_n(t) \leq h_{\varepsilon_n}(t + t_n) \text{ for all } t \geq 0.
\]

(29)

First we note that a sequence of continuous functions \(\tilde{g}_n \in C_{+}[0, t_{n+1} - t_n] \) can be found such that \(\tilde{g}_n(t) = g_n(t) \) for \(0 \leq t \leq t_{n+1} - t_n - 1 \), \(\tilde{g}_n(t_{n+1} - t_n) = g_{n+1}(0) \) and the inequalities (27)–(29) remain valid with \(g_n \) replaced by \(\tilde{g}_n \) and \(t \) restricted to \(t_{n+1} - t_n \) (we shall refer to them as (27)–(29), respectively). We define

\[
k(t) = \tilde{g}_n(t - t_n) \text{ for } t_n \leq t \leq t_{n+1}.
\]

Obviously, \(k \in C_{+}[0, \infty) \) and \(k(t) < w_0(1) \) for \(0 \leq t < \infty \). Further, we have by (29)

\[
k(t) \leq h_{\varepsilon_n}(t) \text{ for } t_n \leq t \leq t_{n+1}
\]

and, by (11),

\[
\Phi_0^{-1}(k)(x) \leq \varepsilon_n \text{ for } \varphi(0, t_{n+1}, 1) \leq x \leq \varphi(0, t_n, 1).
\]

Consequently, \(\lim_{x \to 0} \Phi_0^{-1}(k)(x) = 0 \) and \(k \in \Phi(z) \) for some \(z \in V_w \).

Now, we have

\[
(T_{t_n}k)(t) = g_n(t) \text{ for } 0 \leq t \leq t_{n+1} - t_n - 1.
\]

(30)

The inequalities (27) and (28) can be transcribed into

\[
(T_{t_n}k)(t) \leq h_{\varepsilon_n}(t) \text{ for } t \geq t_{n+1} - t_n - 1
\]

(31)

((27) yields (31) for \(t_{n+1} - t_n - 1 \leq t \leq t_{n+1} - t_n \) while (28) yields (31) for \(t \geq t_{n+1} \)). From (30) and (31) we have

\[
(S_nz)(x) = v_n(x) \text{ for } (0; t_{n+1} - t_n - 1, 1) \leq x \leq 1
\]

(32)

\[
(S_nz)(x) \leq \varepsilon_n \text{ for } 0 \leq x \leq \varphi(0; t_{n+1} - t_n - 1, 1).
\]

(33)

Also, from (27) we have

\[
v_n(x) \leq \varepsilon_n \text{ for } 0 \leq x \leq \varphi(0; t_{n+1} - t_n - 1, 1).
\]

(34)

From (32)–(34) it follows

\[
|(S_nz)(x) - v_n(x)| \leq 2\varepsilon_n \text{ for all } x \in \Delta
\]

which completes the proof.

Remark. It is easy to see that the function \(z \) giving the initial point of the dense trajectory in \(V_w \) can be constructed to be \(C^1 \) hence yielding a continuously differentiable solution of (1). This is true also for the functions \(z_n \) in part (a) and the periodic points of part (b) of theorem 2.1.
4. THE CASE $f(x, 0) \neq 0$

Throughout this section we assume $A1$–$A4$, $A5'$. First we show that if $A5$ is not satisfied there cannot be chaos in all of V_w.

Proposition 4.1. Let $f(x_0, 0) > 0$ for some $x_0 \in \Delta$. Then V_w does not admit a dense trajectory.

Lemma 4.1. For each $0 \leq t_1 < t_2$ one has

$$0 \leq S_{t_1}0 \leq S_{t_2}0.$$ \hspace{1cm} (35)

Proof. From (6) it follows

$$(S_t0)(x) \geq 0 \quad \text{for} \quad (t, x) \in D. \hspace{1cm} (36)$$

From (8), (36) and the semigroup property of S, it follows

$$(S_{t_2}0)(x) = (S_{t_1}S_{t_2-t_1}0)(x) \geq (S_{t_1}0)(x). \hspace{1cm} \blacksquare$$

Corollary 4.1. Under the condition of Proposition 4.1 there is a neighbourhood U of x_0 in Δ such that

$$(S_t0)(x) > 0 \quad \text{for each} \quad x \in U \quad \text{and} \quad t > 0. \hspace{1cm} (37)$$

Proof of Proposition 4.1. Choose any $\tau > 0$ and denote $z = \frac{1}{\tau}S_{\tau}0$. By Corollary 4.1 we have $z \neq 0$. Assume $\nu \in V_w$ has a dense trajectory in V_w. Since $\nu \geq 0$, by (8) and Lemma 4.1 we have

$$S_{\tau}\nu \geq 2z \quad \text{for all} \quad t \geq \tau. \hspace{1cm} (38)$$

Let $Z = \{w \in C_+(\Delta) : w(x) \leq z(x) \text{ for } x \in \Delta\}$. Since $z \neq 0$, $Z \neq \emptyset$. By (38), we have for all $\zeta \in Z$ and $t \geq \tau$

$$\sup_{x \in \Delta} |(S_{\tau}\nu)(x) - \zeta(x)| \geq \sup_{x \in \Delta} |2z(x) - z(x)| > 0.$$ \hspace{1cm} (39)

Thus, in order that $S_{[0, \tau]}\nu$ be dense in V_w, $S_{[0, \tau]}\nu$ must be dense in Z. This, however, is easily seen to be impossible since $S_{[0, \tau]}\nu$ is compact in $C(\Delta)$ and does not contain all of Z. The compactness of $S_{[0, \tau]}\nu$ follows e.g. from the expression (6) from which one immediately concludes that the family of functions $\{S_{\tau}\nu : 0 \leq t \leq \tau\}$ is closed, uniformly bounded and equicontinuous.

Proposition 4.1 decides the question whether $A5$ is necessary for the results on chaos to hold in their original form. Still, the results of [1] and Section 2 on chaos remain valid under $A5'$ with V_w replaced by its invariant subset which we denote by W. To define W we need.

Proposition 4.2. There exists a pointwise limit

$$w_1(x) = \lim_{t \to \infty} (S_t0)(x).$$

The function w_1 is a solution of the stationary equation (7) on Δ^0 satisfying

$$0 \leq w_1(x) \leq w_0(x) \quad \text{for} \quad x \in \Delta^0. \hspace{1cm} (39)$$

Proof. The existence of a pointwise limit w_1 of S_t0 for $t \to \infty$ satisfying (39) is an immediate
Chaos in a cell population

consequence of lemma 5. It remains to prove that \(w_1 \) is a solution of (7) on \(\Delta^0 \). For the idea of this proof the author is indebted to J. Kačur.

Denote \(u(t, x) = (S_t \theta)(x) \). For this proof we write (1), (7) in the form

\[
\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} (c(x)u) = q(x, u),
\]

(40)

\[
\frac{d}{dx} (c(x)u) = q(x, u),
\]

(41)

respectively, with \(q(x, u) = f(x, u) + c'(x)u \).

Let \(t \in [0, \infty), x \in (0, 1] \). By integrating (40) we obtain

\[
\int_1^x [u(t + 1, \xi) - u(t, \xi)] d\xi + \int_t^{t+1} [c(x)u(\sigma, x) - c(1)u(\sigma, 1)] d\sigma
\]

\[
= \int_t^{t+1} \int_1^x q(\xi, u(\sigma, \xi)) d\xi d\sigma.
\]

(42)

Since \(0 \leq u(t, x) \leq w_0(x) \) for all \((t, x) \in D \), by Lebesgue's convergence theorem we can pass to the limit for \(t \to \infty \) in (42) to obtain

\[
\int_t^{t+1} [c(x)w_1(x) - c(1)w_1(1)] d\sigma = \int_t^{t+1} \int_1^x q(\xi, w_1(\xi)) d\xi d\sigma
\]

and, consequently,

\[
c(x)w_1(x) - c(1)w_1(1) = \int_1^x q(\xi, w_1(\xi)) d\xi.
\]

(43)

From (43) it follows that \(w_1 \) is absolutely continuous on \(\Delta^0 \). Thus, we can differentiate (43) to obtain

\[
\frac{d}{dx} (c(x)w_1(x)) = q(x, w_1(x))
\]

(44)

which completes the proof. \(\blacksquare \)

Now, denote

\[
W = \{ \nu \in V_w : \nu(x) \geq w_1(x) \text{ for } x \in \Delta \}.
\]

(45)

One sees immediately that \(W \) is invariant. It is also attractive in \(V_0 \) but, unlike \(V_w \), only in a 'pointwise' sense: the graphs of the upper and lower pointwise limits of \(S_t \nu \) for \(t \to \infty \) lie between the graphs of \(w_1 \) and \(w_0 \), for each \(\nu \in V_0 \). This follows immediately from \(\textbf{R4} \) and

\[
\liminf_{t \to \infty} (S_t \nu)(x) \geq \liminf_{t \to \infty} (S_t \theta)(x) = w_1(x) \text{ for } x \in \Delta.
\]

The map \(\Phi \) maps \(w_1 \) into the constant \(w_1(1) \). If one replaces \(C_+ [0, \infty) \) by its subset of functions with values \(\geq w_1(1) \), lemma 2.1 obviously holds true and one can repeat the arguments of Sections 2 and 3 almost literally to obtain.

Theorem 4.1. The set \(W \) defined by (45) is invariant and pointwise attractive in \(V_0 \). Also, \(S_t \) is chaotic in \(W \) in the sense of theorem 3 of [1] and theorem 2.1.
It should be noted that the chaotic set \(W \) may very well be empty. Obviously, \(W \) is non-empty if and only if (7) has a non-negative solution \(w_2 \) on \(\Delta \) satisfying \(w_2(0) = 0 \). Indeed, every non-negative solution of (7) on \(\Delta^0 \) majorized by \(w_0 \) and different from \(w_0 \) vanishes at 0 (lemma 2.3.); if \(w_2 \) exists one has \(w_1(x) \leq w_2(x) < w_0(x) \) for \(x \in \Delta \). It follows that the question, whether \(W \) is empty or not, is decided by the local behaviour of \(f \) and \(c \) at \((0, 0)\).

For example, \(W \) is non-empty if \(f(x, 0) \) vanishes in some right neighbourhood of 0. On the other hand, take \(f(x, u) = x^2 + u^2, c(x) = x^2 \) for \(x \geq 0, u \geq 0 \) small. All integral curves of the equation

\[
x^2 \frac{du}{dx} = u^2 + x^2
\]

(46)

passing through points \((x, u)\) with \(x > 0, u \geq 0 \) are given in parametric form by

\[
x(s) = d \exp\left[2.3^{-1/2} \arctan\left(3^{-1/2}(2s - 1)\right)\right] \\
u(s) = sx(s) \quad (-\infty < s < \infty)
\]

with \(d > 0 \). It can be readily seen that none of these curves approaches the point \((0, 0)\), so (46) has no solution with \(u(0) = 0 \). Consequently, \(W \) is empty for any extensions of \(f, c \) satisfying \(A1-A4, A5' \).

REFERENCES