Nonlinear Analysis, Theory, Methods & Applications, Vol. 7, No. 2, pp. 167–176, 1983. Printed in Great Britain.

NOTES ON CHAOS IN THE CELL POPULATION PARTIAL DIFFERENTIAL EQUATION

PAVOL BRUNOVSKÝ

Institute of Applied Mathematics, Comenius University, 842 15 Bratislava, Czechoslovakia

(Received in revised form 15 June 1982)

Key words and phrases: First order partial differential equation, semiflow, chaos.

1. INTRODUCTION

IN [1], THE author investigates the differential equation

$$\frac{\partial u}{\partial t} + c(x)\frac{\partial u}{\partial x} = f(x, u), (t, x) \in D = [0, \infty) \times \Delta, \Delta = [0, 1].$$
(1)

This equation describes the dynamics of growth of certain types of cell populations most prominent of which is the red blood cell population. It is shown in [1] that under certain natural conditions on c and f the equation (1) generates a semiflow S_t , $t \ge 0$ on $C_+(\Delta)$ (the space of nonnegative continuous functions on Δ) with an invariant set V_w on which the behaviour of the trajectories of S_t is chaotic in the sense of [2]. This means that S_t has a dense trajectory in V_w and each point of V_w is unstable (i.e. for each $v \in V_w$ there exists a neighbourhood U of $S_{(0,\infty)}v$ in C(D) and a sequence $v_n \rightarrow v$ such that the trajectory of v_n leaves U for some $t \ge 0$).

The main purpose of this paper is to show that S_t exhibits also other features of chaos in V_w . Namely, there are periodic points of S_t of any basic period in V_w and the set of all periodic points of S_t is dense in V_w (Section 2).

For the proof a representation of S_t is employed which allows to prove the results on chaos of [1] in a more simple and transparent way. These proofs are presented in Section 3. Also, this technique helped to discover a small error in [1]. For the results on chaos of [1] to be true an additional (albeit also natural) assumption has to be added. We make this assumption in Sections 2 and 3. In Section 4 we discuss the modifications to be made if this additional assumption is dropped.

We keep all the notation of [1] in order to make it easier for the reader to relate the two papers. However, in order not to force the reader to look into [1] for every single concept or result we conclude this section by a list of assumptions and results of [1] used in the present paper.

Assumptions

A1. The functions c, f are continuously differentiable. A2. c(0) = 0, c(x) > 0 for x > 0. A3. There exists a $u_0 \in (0, 1]$ such that $f_u(0, u_0) < 0$, $f(0, u)(u - u_0) < 0$ for u > 0, $u \neq u_0$. A4. $f(x, u) \le k_1 u + k_2$ for some $k_1, k_2 \ge 0$ and all $x \in \Delta$, $u \ge 0$. A5. f(x, 0) = 0 for all $x \in \Delta$. Note that the assumptions A1-A5 coincide with assumptions (16)-(18) in [1] with one difference:

A5 is somewhat sharper than the assumption

A5'. $f(x, 0) \ge 0$ for $x \in \Delta$ and f(0, 0) = 0

made in [1]. Also note that A5 is satisfied if f(x, u) = (p(x, u) - c(x)) u as is the case if (1) models a reproductive, constantly differentiating cell population with proliferation rate p.

Results

Under the assumptions A1-A4, A5' the following results are proven in [1]:

R1. For $G \subset \mathbb{R}^n$, n > 0, denote by $C_+(G)$, $C_+^1(G)$ the set of all nonnegative continuous and nonnegative continuously differentiable functions on G, respectively. For every $v \in C_+^1(\Delta)$, (1) has a unique solution u in $C_+^1(D)$ satisfying

$$u(x,0) = v(x)$$
 for $x \in \Delta$. (2)

A function $u \in C_+(D)$ is called generalized solution of (1) if it is a limit (uniform on compact subset of D) of solutions of (1). For each $v \in C_+(\Delta)$ there exists a unique generalized solution of (1) satisfying (2); henceforth we shall drop the adjective 'generalized'. The map $S:[0, \infty) \times C_+(\Delta) \to C_+(\Delta)$ defined by $S_tv(x) = u(t, x)$, where u satisfies (1), (2) is a continuous semiflow, i.e. $S_t: C_+(\Delta) \to C_+(\Delta)$ is continuous for each $t \ge 0$ and one has $S_0 = \text{id.}$, $S_t \cdot S_s = S_{t+s}$ for each $t, s \ge 0$.

R2. Along the characteristics of (1) which are the curves $x = \varphi(t; t_0, x_0)$ satisfying the ordinary differential equation

$$\frac{\mathrm{d}x}{\mathrm{d}t} = c(x) \tag{3}$$

and the initial condition $x(t_0) = x_0$, the solution u(t, x) of (1) satisfies the ordinary differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}t} = f(\varphi(t; t_0, x_0), y) \tag{4}$$

with initial condition

$$y(0) = v(\varphi(0; t_0, x_0));$$
(5)

the solution of (4), (5) is denoted by $\psi(t, \varphi(0; t_0, x_0), v(\varphi(0; t_0, x_0)))$. This means that the solution u of (1) and (2) can be expressed by the formula

$$u(t, x) = \psi(t; \varphi(0; t, x), v(\varphi(0; t, x))).$$
(6)

For $\varphi(t; 0, x)$, write also $\varphi_x(t)$. It follows from A2 that $\varphi_0(t) = 0$, $\varphi_x(t)$ is strictly increasing both in t and in x for x > 0, $\varphi_x^{-1}(1)$ is well defined continuous and decreasing for $0 < x \le 1$.

R3. There exists a unique solution $w_0(x)$ of the stationary equation

$$c(x)\frac{\mathrm{d}u}{\mathrm{d}x} = f(x, u), \qquad x \in \Delta \tag{7}$$

satisfying $w_0(0) = u_0$. For each $v \in C_+(\Delta)$ such that v(0) > 0 one has $S_t v(x) \to w_0(x)$ for $t \to \infty$ uniformly in x.

R4. Let $V_0 = \{v \in C_+(\Delta) : v(0) = 0\}$, $V_w = \{v \in V_0 : v(x) < w_0(x) \text{ for } x \in \Delta\}$. The sets V_0 , V_w are invariant for S_t and for each $v \in V_0$ there exists a $T_0 \ge 0$ such that $S_t v \in V_w$ for $t > T_0$.

We add two simple observations that will be used in the paper. Since $\varphi_0(t) = 0$ for all $t \ge 0$, it follows from (6) that a solution u(t, x) of (1), (2) is well defined on $D^0 = [0, \infty) \times \Delta^0$ as soon as $v \in C_+(\Delta^0)$, where $\Delta^0 = (0, 1]$. In other words, the semiflow S_t can be extended to $C_+(\Delta^0)$; we denote this extended semiflow by S_t^0 .

Further, since u(t, x) is the solution of a first order ordinary differential equation along each characteristic, it follows from (6) that the semiflow S_t preserves ordering, i.e.

$$S_t v_1 \le S_t v_2 \quad \text{for} \quad t \ge 0 \tag{8}$$

as long as $v_1 \le v_2$, where $v_1 \le v_2$ means $v_1(x) \le v_2(x)$ for all $x \in \Delta$. This is true also for S_t^0 .

2. EXISTENCE AND DENSITY OF PERIODIC POINTS

Throughout this and the following section assume A1-A5.

THEOREM 1. (a) For each $\tau \ge 0$ there is a continuum of periodic points of S_t in V_w of basic period τ . (b) The set of all periodic points of S_t is dense in V_w .

The basic tool of the proof of this theorem consists in the representation of S_t by the shift semigroup in $C_+[0,\infty)$. This representation is induced by the map $\Phi: C_+(\Delta) \to C_+[0,\infty)$ defined by

$$\Phi(v)(t) = (S_t v)(1).$$

Using (6) we can express Φ also by

$$\Phi(v)(t) = \psi(t; \varphi(0; t, 1), v(\varphi(0; t, 1))).$$
(9)

The family of shifts T_t , $t \ge 0$ defined by

$$(T_t g)(s) = g(t+s)$$

for $g \in C_+[0, \infty)$ is a semigroup and one has

$$T_t \Phi = \Phi S_t, \tag{10}$$

i.e. the diagram

ø

commutes.

Indeed,

$$(T_t \Phi(v))(s) = \Phi(v)(s+t) = (S_{t+s}v)(1) = (S_s S_t v)(1)$$

= $\Phi(S_t v)(s).$

We can extend Φ to the map Φ_0 on $C_+(\Delta^0)$ by defining

$$\Phi_0(v)(t) = (S_t^0 v)(1).$$

Obviously, (10) holds with S_t , Φ replaced by S_t^0 , Φ_0 respectively.

Let $g \in C_+[0, \infty)$. From (6) one immediately obtains $\Phi_0(v) = g$ if and only if

$$v(x) = \psi \left(-\varphi_x^{-1}(1); 1, g(\varphi_x^{-1}(1)) \right) \text{ for } x \in \Delta^0.$$
(11)

Using the argument leading to (8) one obtains from A9 and (11)

$$v(x) \ge \psi(-\varphi_x^{-1}(1); 1, 0) = 0.$$

Thus we have

LEMMA 2.1. The map $\Phi_0: C_+(\Delta^0) \to C_+[0, \infty)$ has an inverse which can be expressed by the formula (11).

Note that $\Phi_0^{-1}(g)$ is not necessarily in $C_+(\Delta)$ for an arbitrary $g \in C_+[0, \infty)$ since $\Phi_0^{-1}(g)$ may not have a limit for $x \to 0$.

As a consequence of R3 one obtains immediately

LEMMA 2.2. Let $v \in C_+(\Delta)$ satisfy v(0) > 0. Then, $\Phi(v)(t) \rightarrow w_0(1)$ for $t \rightarrow 0$.

LEMMA 2.3. Let $g \in C_+[0, \infty)$ and let

$$g(t) \le w_0(1) - \eta \tag{12}$$

for some $\eta > 0$ and each $t \ge 0$. Then $g \in \Phi(V_w)$.

Proof. Obviously, it suffices to prove

$$\lim_{x \to 0} \Phi_0^{-1}(g)(x) = 0 \tag{13}$$

since then $g = \Phi(v)$, where

$$v(x) = \begin{cases} \Phi_0^{-1}(g)(x) & \text{for } x \in \Delta^0\\ 0 & \text{for } x = 0 \end{cases}$$

is from V_w .

To prove (13) we first introduce the following notation which will be used throughout the paper:

For any $c \ge 0$ we denote by **c** the constant function on Δ with value c and $h_c(t) = \Phi(\mathbf{c})(t)$.

Let now $\varepsilon > 0$. Since by lemma 2.2. $\lim_{t \to \infty} h_{\varepsilon}(t) = w_0(1)$, there exists a $t_0 > 0$ such that for $t > t_0$ one has

$$h_{\varepsilon}(t) > w_0(1) - \eta \ge g(t).$$

Let $x_0 = \varphi(0; t_0, 1)$. For $x < x_0$ one has $\varphi_x^{-1}(1) > t_0$, and, consequently, by (11).

$$\Phi_0^{-1}(g)(x) = \psi \left(-\varphi_x^{-1}(1); 1, g(\varphi_x^{-1}(1)) \right) < \Phi_0^{-1} \left(h_{\varepsilon}(\varphi_x^{-1}(1)) \right) = \varepsilon$$

Since $\varepsilon > 0$ was arbitrary this proves (13).

Since for $g \in C_+[0, \infty)$ periodic with values in $[0, w_0(1))$ there is always an $\varepsilon > 0$ such that (12) holds we have

COROLLARY 2.1. The function $g \in C_+[0, \infty)$ with values in $[0, w_0(1))$ is periodic with prime period $\tau \ge 0$ if and only if $\Phi^{-1}(g)$ is a periodic point of S_t in V_w with basic period τ . In particular, all the solutions of the stationary equation (7) in V_w are obtained as pre-images of constant functions $< w_0(1)$ under Φ .

LEMMA 2.4. For each $0 < \varepsilon < \inf_{0 \le x \le 1} w_0(x)$ there exists a $\tau_{\varepsilon} > 0$ such that $h_{\varepsilon}(s + t) \le h_{\varepsilon}(s)$ for each $s \ge 0$, $t \ge \tau_{\varepsilon}$.

Proof. By **R3**, there exists a $\tau_{\varepsilon} > 0$ such that $S_t \varepsilon > \varepsilon$ for all $t \ge \tau_{\varepsilon}$. Hence, for $t \ge \tau_{\varepsilon}$ we have

$$h_{\varepsilon}(s+t) = (T_t h_{\varepsilon})(s) = \Phi(S_t \varepsilon)(s) \ge \Phi(\varepsilon)(s) = h_{\varepsilon}(s).$$

Proof of theorem 2.1. Part (a) is an immediate consequence of corollary 2.1.

To prove (b) take any function v in V_w and choose an $\varepsilon > 0$. Denote $g = \Phi(v)$. Let $\delta > 0$ be such that $v(x) < \varepsilon$ for $x < \delta$, so

$$g(t) < h_{\varepsilon}(t) \quad \text{for} \quad t \ge t_1 = \varphi_{\delta}^{-1}(1).$$
 (14)

Let $t_2 > \max\{t_1, \tau_{\varepsilon}\}$ be such that

$$h_{\varepsilon}(t) \ge \max_{0 \le t \le t_1} g(t), \tag{15}$$

for $t \ge t_2$, τ_{ε} being as in lemma 2.4.

From (14), (15) it follows that there exists a continuous function $\tilde{g} \in C_+[0, t_2]$ such that

$$\tilde{g}(t) = g(t) \quad \text{for} \quad 0 \le t \le t_1, \tag{16}$$

$$\tilde{g}(t) < h_{\varepsilon}(t) \quad \text{for} \quad t_1 \le t \le t_2,$$
(17)

$$\tilde{g}(t_2) = g(0).$$

Define $k \in C_+[0, \infty)$ by

$$k(t) = \tilde{g}(t - nt_2)$$
 for $t \in [nt_2, (n + 1)t_2]$.

Then, k is periodic with period t_2 and, by lemma 2.3., there is a $z \in V_w$ such that $k = \Phi(z)$. From (14) and (15) we obtain

$$z(x) = v(x) \quad \text{for} \quad \delta \le x \le 1, \tag{18}$$

$$|z(x)| < \varepsilon \quad \text{for} \quad \varphi(0; t_2, 1) \le x \le \delta.$$
(19)

Let $n \ge 1$. For $nt_2 + t_1 \le t \le (n+1)t_2$ we obtain by lemma 2.4 and (14)

$$k(t) = \tilde{g}(t - nt_2) \le h_{\varepsilon}(t - nt_2) \le h_{\varepsilon}(t); \qquad (20)$$

for $nt_2 \le t \le (n+1)t_2$, (20) follows immediately from (15). Consequently, (19) extends to all $0 \le x \le \delta$ and we have

$$|z(x) - v(x)| \le |z(x)| + |v(x)| \le 2\varepsilon$$

for $0 \le x \le \delta$. This, together with (18), proves (b).

3. EXISTENCE OF A DENSE TRAJECTORY AND INSTABILITY

Using the representation of S_t by T_t developed in Section 2 we now present an alternative proof of theorem 3 of [1]. That is, we prove

(a) every point $v \in V_w$ is unstable;

(b) there exists a $v \in V_w$ such that the orbit of v is dense in V_w .

Proof of (a). Let $v \in V_w$, $g = \Phi(v)$, $0 < a < w_0(1)$. Choose an $\varepsilon < 0$. Let $\delta > 0$ be such that $v(x) < \varepsilon$ for $x \le \delta$. Let $t_1 \ge \varphi_{\delta}^{-1}(1)$ be such that

$$h_{\varepsilon}(t) > a \tag{21}$$

for $t \ge t_1$.

We now construct a function $k \in C_+[0, \infty)$ as follows: We define

$$k(t) = g(t) \text{ for } 0 \le t \le t_1$$

$$k(t_1 + j) = \begin{cases} a & \text{if } g(t_1 + j) < \frac{a}{2} \\ 0 & \text{otherwise} \end{cases}, j = 1, 2, 3, \dots$$

and we extend k to the interior of the intervals between the points $t_1 + j$ in such a way that k will be nonnegative continuous and its graph will lie below the graph of h_{ε} for $t_1 \le t \le t_1 + 1$ and below a for $t > t_1 + 1$. Then, we have

$$k(t) \le h_{\varepsilon}(t) \quad \text{for} \quad t \ge t_1$$
(22)

and

$$|k(t_1+j) - g(t_1+j)| \ge \frac{a}{2}$$
 for $j = 1, 2, ...$ (23)

By lemma 2.3., there exists a $z \in V_w$ such that $k = \Phi(v)$. Now, (23) can be rewritten as

$$|(S_{t_1+j}v)(1) - (S_{t_1+j}z)(1)| \ge \frac{a}{2}.$$
(24)

Also, we have from (18), (19)

$$z(x) = v(x) \text{ for } \varphi(0; t_1, 1) \le x < 1$$
 (25)

while

$$|z(x) - v(x)| \le |z(x)| + |v(x)| \le \varepsilon + \varepsilon = 2\varepsilon$$

for $0 \le x < \varphi(0; t_1, 1)$. Since $\varepsilon > 0$ was arbitrary, (24)–(26) proves (a).

Proof of (b). Let $\{v_n\}_{n=1}^{\infty}$ be a dense subset in V_w and let $\varepsilon_n \searrow 0$ for $n \to \infty$. Denote $g_n = \Phi(v_n)$. By lemma 3.2., there exists a sequence $\{t_n\}$ such that

$$t_1 = 0, \ t_{n+1} \ge t_n + 1. \tag{26}$$

$$h_{\varepsilon_j}(t_{n+1} - t_n) \ge \varepsilon_{j+1} (= h_{\varepsilon_{j+1}}(0)) \quad \text{for} \quad 0 \le j \le n$$

$$\tag{27}$$

$$g_n(t) \le h_{\varepsilon_j}(t + t_n - t_j)$$
 for all t and all $1 \le j < n$ (28)

$$g_n(t) \le h_{\varepsilon_n}(t+t_n) \quad \text{for all} \quad t \ge 0.$$
 (29)

First we note that a sequence of continuous functions $\tilde{g}_n \in C_+[0, t_{n+1} - t_n]$ can be found such that $\tilde{g}_n(t) = g_n(t)$ for $0 \le t \le t_{n+1} - t_n - 1$, $\tilde{g}_n(t_{n+1} - t_n) = g_{n+1}(0)$ and the inequalities (27)-(29) remain valid with g_n replaced by \tilde{g}_n and t restricted to $t_{n+1} - t_n$ (we shall refer to them as (27)-(29), respectively). We define

$$k(t) = \tilde{g}_n(t - t_n) \quad \text{for} \quad t_n \le t \le t_{n+1}$$

Obviously, $k \in C_+[0, \infty)$ and $k(t) < w_0(1)$ for $0 \le t < \infty$. Further, we have by (29)

$$k(t) \leq h_{\varepsilon_n}(t) \quad \text{for } t_n \leq t \leq t_{n+1}$$

and, by (11),

$$\Phi_0^{-1}(k)(x) \leq \varepsilon_n \quad \text{for} \quad \varphi(0, t_{n+1}, 1) \leq x \leq \varphi(0, t_n, 1).$$

Consequently, $\lim \Phi_0^{-1}(k)(x) = 0$ and $k \in \Phi(z)$ for some $z \in V_w$.

Now, we have

$$(T_{t_n}k)(t) = g_n(t) \text{ for } 0 \le t \le t_{n+1} - t_n - 1.$$
 (30)

The inequalities $(\widetilde{27})$ and $(\widetilde{28})$ can be transcribed into

$$(T_{t_n}k)(t) \le h_{\varepsilon_n}(t) \quad \text{for} \quad t \ge t_{n+1} - t_n - 1 \tag{31}$$

(($\widetilde{27}$) yields (31) for $t_{n+1} - t_n - 1 \le t \le t_{n+1} - t_n$ while ($\widetilde{28}$) yields (31) for $t \ge t_{n+1}$). From (30) and (31) we have

$$(S_{t_n}z)(x) = v_n(x) \quad \text{for} \quad (0; t_{n+1} - t_n - 1, 1) \le x \le 1)$$
(32)

$$(S_{t_n}z)(x) \leq \varepsilon_n \quad \text{for} \quad 0 \leq x \leq \varphi(0; t_{n+1} - t_n - 1, 1).$$
(33)

Also, from (27) we have

$$v_n(x) \leq \varepsilon_n \quad \text{for} \quad 0 \leq x \leq \varphi(0; t_{n+1} - t_n - 1, 1). \tag{34}$$

From (32)–(34) it follows

$$|(S_{i_n}z)(x) - v_n(x)| \le 2\varepsilon_n$$
 for all $x \in \Delta$

which completes the proof.

Remark. It is easy to see that the function z giving the initial point of the dense trajectory in V_w can be constructed to be C^1 hence yielding a continuously differentiable solution of (1). This is true also for the functions z_n in part (a) and the periodic points of part (b) of theorem 2.1.

4. THE CASE
$$f(x, 0) \neq 0$$

Throughout this section we assume A1-A4, A5'. First we show that if A5 is not satisfied there cannot be chaos in all of V_w .

PROPOSITION 4.1. Let $f(x_0, 0) > 0$ for some $x_0 \in \Delta$. Then V_w does not admit a dense trajectory.

LEMMA 4.1. For each $0 \le t_1 \le t_2$ one has

$$0 \leq S_{t_1} \mathbf{0} \leq S_{t_2} \mathbf{0}. \tag{35}$$

Ø.

Proof. From (6) it follows

 $(S_t \mathbf{0})(x) \ge 0 \quad \text{for} \quad (t, x) \in D.$ (36)

From (8), (36) and the semigroup property of S_t it follows

$$(S_{t_2}\mathbf{0})(x) = (S_{t_1}S_{t_2-t_1}\mathbf{0})(x) \ge (S_{t_1}\mathbf{0})(x).$$

COROLLARY 4.1. Under the condition of proposition 4.1 there is a neighbourhood U of x_0 in Δ such that

$$(S_t \mathbf{0})(x) > 0$$
 for each $x \in U$ and $t > 0$. (37)

Proof of proposition 4.1. Choose any $\tau > 0$ and denote $z = \frac{1}{2}S_{\tau}\mathbf{0}$. By corollary 4.1 we have $z \neq 0$. Assume $v \in V_w$ has a dense trajectory in V_w . Since $v \ge 0$, by (8) and lemma 4.1 we have

$$S_t v \ge 2z$$
 for all $t \ge \tau$. (38)

Let $Z = \{w \in C_+(\Delta): w(x) \le z(x) \text{ for } x \in \Delta\}$. Since $z \ne 0$, $Z \ne \emptyset$. By (38), we have for all $\zeta \in Z$ and $t \ge \tau$

$$\sup_{x\in\Delta}|(S_tv)(x)-\zeta(x)|\geq \sup_{x\in\Delta}|2z(x)-z(x)|>0.$$

Thus, in order that $S_{[0,\infty)}v$ be dense in V_w , $S_{[0,\tau]}v$ must be dense in Z. This, however, is easily seen to be impossible since $S_{[0,\tau]}v$ is compact in $C(\Delta)$ and does not contain all of Z. The compactness of $S_{[0,\tau]}v$ follows e.g. from the expression (6) from which one immediately concludes that the family of functions $\{S_tv: 0 \le t \le \tau\}$ is closed, uniformly bounded and equicontinuous.

Proposition 4.1 decides the question whether A5 is necessary for the results on chaos to hold in their original form. Still, the results of [1] and Section 2 on chaos remain valid under A5' with V_w replaced by its invariant subset which we denote by W. To define W we need.

PROPOSITION 4.2. There exists a pointwise limit

$$w_1(x) = \lim_{t\to\infty} (S_t \mathbf{0})(x).$$

The function w_1 is a solution of the stationary equation (7) on Δ^0 satisfying

$$0 \le w_1(x) \le w_0(x) \quad \text{for} \quad x \in \Delta^0.$$
(39)

Proof. The existence of a pointwise limit w_1 of $S_t 0$ for $t \to \infty$ satisfying (39) is an immediate

consequence of lemma 5. It remains to prove that w_1 is a solution of (7) on Δ^0 . For the idea of this proof the author is indebted to J. Kačur.

Denote $u(t, x) = (S_t \mathbf{0})(x)$. For this proof we write (1), (7) in the form

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} \left(c(x)u \right) = q(x, u), \tag{40}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(c(x)u\right) = q(x, u),\tag{41}$$

respectively, with q(x, u) = f(x, u) + c'(x)u.

Let $t \in [0, \infty)$, $x \in (0, 1]$. By integrating (40) we obtain

$$\int_{1}^{x} \left[u(t+1,\,\xi) - u(t,\,\xi) \right] \,\mathrm{d}\xi + \int_{t}^{t+1} \left[c(x)u(\sigma,\,x) - c(1)u(\sigma,\,1) \right] \,\mathrm{d}\sigma$$
$$= \int_{t}^{t+1} \int_{1}^{x} q(\xi,\,u(\sigma,\,\xi)) \,\mathrm{d}\xi \,\mathrm{d}\sigma. \tag{42}$$

Since $0 \le u(t, x) \le w_0(x)$ for all $(t, x) \in D$, by Lebesgue's convergence theorem we can pass to the limit for $t \to \infty$ in (42) to obtain

$$\int_{t}^{t+1} [c(x)w_{1}(x) - c(1)w_{1}(1)]dt = \int_{t}^{t+1} \int_{1}^{x} q(\xi, w_{1}(\xi))d\xi \, d\sigma$$

and, consequently,

$$c(x)w_{1}(x) - c(1)w_{1}(1) = \int_{1}^{x} q(\xi, w_{1}(\xi))d\xi.$$
(43)

From (43) it follows that w_1 is absolutely continuous on Δ^0 . Thus, we can differentiate (43) to obtain

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(c(x)w_1(x)\right) = q(x, w_1(x)) \tag{44}$$

which completes the proof.

Now, denote

 $W = \{ v \in V_w : v(x) \ge w_1(x) \quad \text{for} \quad x \in \Delta \}.$ (45)

One sees immediately that W is invariant. It is also attractive in V_0 but, unlike V_w , only in a 'pointwise' sense: the graphs of the upper and lower pointwise limits of $S_t v$ for $t \to \infty$ lie between the graphs of w_1 and w_0 , for each $v \in V_0$. This follows immediately from **R4** and

$$\liminf_{t\to\infty} (S_t v)(x) \ge \liminf_{t\to\infty} (S_t \mathbf{0})(x) = w_1(x) \quad \text{for} \quad x \in \Delta.$$

The map Φ maps w_1 into the constant $w_1(1)$. If one replaces $C_+[0, \infty)$ by its subset of functions with values $\ge w_1(1)$, lemma 2.1 obviously holds true and one can repeat the arguments of Sections 2 and 3 almost literally to obtain.

THEOREM 4.1. The set W defined by (45) is invariant and pointwise attractive in V_0 . Also, S_t is chaotic in W in the sense of theorem 3 of [1] and theorem 2.1.

P. BRUNOVSKÝ

It should be noted that the chaotic set W may very well be empty. Obviously, W is nonempty if and only if (7) has a non-negative solution w_2 on Δ satisfying $w_2(0) = 0$. Indeed, every non-negative solution of (7) on Δ^0 majorized by w_0 and different from w_0 vanishes at 0 (lemma 2.3.); if w_2 exists one has $w_1(x) \le w_2(x) < w_0(x)$ for $x \in \Delta$. It follows that the question, whether W is empty or not, is decided by the local behaviour of f and c at (0, 0).

For example, W is non-empty if f(x, 0) vanishes in some right neighbourhood of 0. On the other hand, take $f(x, u) = x^2 + u^2$, $c(x) = x^2$ for $x \ge 0$, $u \ge 0$ small. All integral curves of the equation

$$x^2 \frac{\mathrm{d}u}{\mathrm{d}x} = u^2 + x^2 \tag{46}$$

passing through points (x, u) with x > 0, $u \ge 0$ are given in parametric form by

$$x(s) = d \exp[2.3^{-1/2} \arctan(3^{-1/2}(2s - 1))]$$

$$u(s) = sx(s) \quad (-\infty < s < \infty)$$

with d > 0. It can be readily seen that none of these curves approaches the point (0, 0), so (46) has no solution with u(0) = 0. Consequently, W is empty for any extensions of f, c satisfying A1-A4, A5'.

REFERENCES

1. LASOTA A., Stable and chaotic solutions of a first-order partial differential equation, Nonlinear Analysis 5, 1181–1193 (1981).

2. AUSLANDER J. & YORKE J., Interval maps, factor of maps and chaos, Tohoku math. J. Ser. II, 32, 177-188 (1980).