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1. INTRODUCTION
IN [1], THE author investigates the differential equation

du (x)—=f(x W), (t,x) €D =0, %) X A, A = [0, 1]. (1)

This equation describes the dynamics of growth of certain types of cell populations most
prominent of which is the red blood cell population. It is shown in [1] that under certain
natural conditions on ¢ and f the equation (1) generates a semiflow S;,7=0 on C.(A) (the
space of nonnegative continuous functions on A) with an invariant set V,, on which the
behaviour of the trajectories of S, is chaotic in the sense of [2]. This means that S, has a dense
trajectory in V,, and each point of V,, is unstable (i.e. for each v € V,, there exists a neigh-
bourhood U of S(,«)v in C(D) and a sequence v, — v such that the trajectory of v, leaves U
for some ¢ = 0).

The main purpose of this paper is to show that S, exhibits also other features of chaos in
V.. Namely, there are periodic points of S; of any basic period in V,, and the set of all periodic
points of S, is dense in V,, (Section 2).

For the proof a representation of S, is employed which allows to prove the results on chaos
of [1] in a more simple and transparent way. These proofs are presented in Section 3. Also,
this technique helped to discover a small error in [1]. For the results on chaos of [1] to be true
an additional (albeit also natural) assumption has to be added. We make this assumption in
Sections 2 and 3. In Section 4 we discuss the modifications to be made if this additional
assumption is dropped.

We keep all the notation of [1] in order to make it easier for the reader to relate the two
papers. However, in order not to force the reader to look into [1] for every single concept
or result we conclude this section by a list of assumptions and results of [1] used in the present

paper.

Assumptions

Al. The functions c, f are continuously differentiable.

A2. ¢(0) = 0, ¢(x) >0 forx > 0.

A3. There exists a uy € (0, 1] such that £,(0, ug) <0, (0, u)(u — up) <0 for u >0, u # u.
Ad. f(x, u) < kju + k, for some ki, k,=0and allx € A, u=0.

A5. f(x,0)=0 for all x € A.
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Note that the assumptions A1-A5 coincide with assumptions (16)—(18) in [1] with one
difference:
AS is somewhat sharper than the assumption
A5, f(x,0)=0forx € A and f(0,0) =0
made in [1]. Also note that AS is satisfied if f(x, u) = (p(x, u) — c(x)) u as is the case if (1)
models a reproductive, constantly differentiating cell population with proliferation rate p.

Results
Under the assumptions A1-A4, A5’ the following results are proven in [1]:

R1.

R2.

R3.

For G C R", n>0, denote by C.(G), CL(G) the set of all nonnegative continuous and
nonnegative continuously differentiable functions on G, respectively. For every v €
CL(A), (1) has a unique solution u in C. (D) satisfying

u(x,0) =v(x) for x€A. 2)

A function u € C,(D) is called generalized solution of (1) if it is a limit (uniform on
compact subset of D) of solutions of (1). For each v € C.(A) there exists a unique
generalized solution of (1) satisfying (2); henceforth we shall drop the adjective ‘gener-
alized’. The map S:[0, ©) X C4(A)— C.(A) defined by S,v(x) = u(t, x), where u satisfies
(1), (2) is a continuous semiflow, i.e. S;: C.(A)— C.(A) is continuous for each ¢ =0 and
one has Sy =1id., S, S; = S;+; for each ¢,5s = 0.

Along the characteristics of (1) which are the curves x = @(t; 1y, xo) satisfying the ordinary
differential equation

£= c(x) 3)
de

and the initial condition x(#) = x,, the solution u(t, x) of (1) satisfies the ordinary differ-
ential equation

d
2= £t 10,70, ) )
with initial condition

¥(0) = v(@(0; to, x0)); (5)

the solution of (4), (5) is denoted by y(¢, (p(O; to, x0), v(@(0; fo, x0)). This means that the
solution u of (1) and (2) can be expressed by the formula

u(t, x) = p(t; @(0; 1, x), v(@(0; 1, x))). 6)

For @(¢; 0, x), write also @,(f). It follows from A2 that @o(f) = 0, ¢,(¢) is strictly increasing
both in ¢ and in x for x >0, ¢;!(1) is well defined continuous and decreasing for 0 <
x<1.

There exists a unique solution wy(x) of the stationary equation

c(x) a“ =f(x,u), x€EA %)

satisfying wo(0) = uy. For each v € C.(A) such that v(0) > 0 one has S,v(x) — wy(x) for
t— oo uniformly in x.
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R4. Let Vo ={v € C.(A):v(0) =0}, V, = {v € Vy:v(x) < wy(x) for x € A}. The sets Vo, V,,
are invariant for S, and for each v € V, there exists a Ty = 0 such that S,v € V,, for t > T,
We add two simple observations that will be used in the paper. Since gy(f) = 0 for all £ =0,
it follows from (6) that a solution u(t, x) of (1), (2) is well defined on D° = [0, =) x A® as
soon as v € C.(AY), where A® = (0, 1]. In other words, the semiflow S; can be extended to
C+(A%); we denote this extended semiflow by S?.
Further, since u(t, x) is the solution of a first order ordinary differential equation along each
characteristic, it follows from (6) that the semiflow S, preserves ordering, i.e.

Sv;<Sv, for t=0 (8)

as long as v; < v, where v; < v, means v;(x) < vy(x) for all x € A. This is true also for .

2. EXISTENCE AND DENSITY OF PERIODIC POINTS
Throughout this and the following section assume A1-AS.

THEOREM 1. (a) For each 7= 0 there is a continuum of periodic points of S, in V,, of basic
period 7. (b) The set of all periodic points of S; is dense in V,.

The basic tool of the proof of this theorem consists in the representation of S; by the shift
semigroup in C.[0, ). This representation is induced by the map ®:C,(A)— C.[0, =)
defined by

() (1) = (Sw)(1).
Using (6) we can express @ also by
®(v) (1) = y(t; (052, 1), v(@(0;1, 1))). ©)
The family of shifts T;, ¢ = 0 defined by
(T:g)(s) = g(t + )

for g € C,[0, ) is a semigroup and one has

o = oS, (10)
i.e. the diagram
S
e
@ l l @
T;
B
commutes.
Indeed,

(T@(v))(s) = P(v)(s + 1) = (S,450)(1) = (S, Sw)(1)
= ®(S,v)(s).
We can extend ® to the map @, on C.(A°) by defining
Do(0)(1) = (Sv)(1).
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Obviously, (10) holds with S;, ® replaced by S?, ®, respectively.
Let g € C,[0, «). From (6) one immediately obtains ®y(v) = g if and only if

v(x) = 9(— ¢r'(1); 1, 8(@r'(1))) for x € A° (11)
Using the argument leading to (8) one obtains from A9 and (11)
v(x) = y( - @;'(1);1,0) = 0.

Thus we have

LEMMA 2.1. The map ®,: C,(A% — C,[0, ) has an inverse which can be expressed by the
formula (11).

Note that @;!(g) is not necessarily in C(A) for an arbitrary g € C[0, ) since ®;(g) may
not have a limit for x— 0.

As a consequence of R3 one obtains immediately

LEMMA 2.2. Let v € C.(A) satisfy v(0) > 0. Then, ®(v)(¢) = wy(1) for t— 0.

LEmmaA 2.3. Let g € C,[0, ») and let
8(1) < we(1) — (12)
for some >0 and each ¢t = 0. Then g € ®(V,,).

Proof. Obviously, it suffices to prove
lim ®;7(g)(x) =0 (13)

since then g = ®(v), where
{d)()'l(g)(x) forx € A°
v(x) =

0 forx =0
isfromV,. 1R
To prove (13) we first introduce the following notation which will be used throughout the
paper:

For any ¢ =0 we denote by c the constant function on A with value ¢ and h./f) =

D(c)(D).

Let now & > 0. Since by lemma 2.2. lim A.(¢) =wy(1), there exists a #, > 0 such that for
t >ty one has o
he() > wo(1) — 1= g(0).
Let xo = @(0; o, 1). For x < xq one has ¢; (1) >f;, and, consequently, by (11).
51 (g)(x) = y( — ¢ (1); 1, 8(¢: (1)) < D(he(9:'(1))) = ¢

Since &> 0 was arbitrary this proves (13).
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Since for g € C.,[0, ) periodic with values in [0, wo(1)) there is.always an £ > 0 such that
(12) holds we have

COROLLARY 2.1. The function g € C.[0, ©) with values in [0, wy(1)) is periodic with prime
period 7= 0 if and only if ® (g) is a periodic point of S, in V,, with basic period 7. In
particular, all the solutions of the stationary equation (7) in V,, are obtained as pre-images
of constant functions < wy(1) under ®.

LEMMA 2.4. For each 0 <e< inf wo(x) there exists a 7, >0 such that h(s + ) < h(s) for

Osx=<1

eachs =0, t=r,.

Proof. By R3, there exists a 7, > 0 such that S,e > ¢ for all ¢t = 7.. Hence, for t = 1, we have
he(s +8) = (T:h)(s) = ©(S:€)(s) = P(e)(s) = h(s). W

Proof of theorem 2.1. Part (a) is an immediate consequence of corollary 2.1.
To prove (b) take any function v in V,, and choose an £> 0. Denote g = ®(v). Let 6 >0
be such that v(x) < € for x < 4, so

g(t) <h.(t) for t=t=@;(1). (14)
Let t, > max{#, 7.} be such that

he() = max g(¢), 15)

<st<p

for t = t,, 1. being as in lemma 2.4.
From (14), (15) it follows that there exists a continuous function g € C; [0, £,] such that

g =g for O0stsuy, (16)
§() < he(t) for 1 <t=<un, 17)
§(%) = g(0).

Define k € C.[0, «) by
k(t) = gt — nty) for t € [nty, (n + D)ty

Then, k is periodic with period #, and, by lemma 2.3., there is a z € V,, such that k = ®(z).
From (14) and (15) we obtain

z(x) = v(x) for dsx=1, (18)
|z(x)] <& for @(0;8,1)<x<3d. (19)
Let n=1. For nt, + t; <t < (n + 1)1, we obtain by lemma 2.4 and (14)

k() = g(t — nty) < h.(t — nty) < h(t); (20)
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for nt; <t < (n + 1)t,, (20) follows immediately from (15). Consequently, (19) extends to all
0=<x =< 6 and we have

|2(x) = v@)| < |z()] + |v(x)| < 2¢
for 0 < x < é. This, together with (18), proves (b). W

3. EXISTENCE OF A DENSE TRAJECTORY AND INSTABILITY

Using the representation of S; by T; developed in Section 2 we now present an alternative
proof of theorem 3 of [1]. That is, we prove

(a) every point v € V,, is unstable;

(b) there exists a v € V,, such that the orbit of v is dense in V.

Proof of (a). Let v € V,,, g = ®(v), 0 <a < wy(1). Choose an £<0.
Let 8> 0 be such that v(x) < & for x < 8. Let t; =@5'(1) be such that

he(t) > a (21)

fort=4. .
We now construct a function k € C,[0, ») as follows: We define

k() = g(t) for 0<t=<n
if gt +)) < g

a
k(t1+j)=! ,j=1,2,3,...
L0 otherwise

and we extend k to the interior of the intervals between the points # + j in such a way that
k will be nonnegative continuous and its graph will lie below the graph of h. for
tist<t + 1 and below a for ¢t >t + 1. Then, we have

k(t) < h(t) for t=1t (22)

and

k(e +j) —gtn + D=5 for j=1,2,... (23)

2
By lemma 2.3., there exists a z € V,, such that k = ®(v). Now, (23) can be rewritten as

(Su9)D) = Sae2)D] = 5. (24)
Also, we have from (18), (19)
z(x) = v(x) for @0;4,1)<sx<1 (25)

while
lz(x) — v(x)| < |z(x)|] + [v(x)| < e + £ = 2¢

for 0<x < @ (0; #;, 1). Since € > 0 was arbitrary, (24)-(26) proves (a). H
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Proof of (b). Let {v,},-1 be a dense subset in V,, and let &, \ 0 for n— «. Denote g, =
®(v,). By lemma 3.2., there exists a sequence {z,} such that

t=0t,.1=t, + 1 (26)

he(tner = 1) = g1( = hgy(0) for 0<j<n 27)
gn(t) S hg(t+t,— 1) forall ¢+ andall 1<j<n (28)
8.(t) S hg(t+1t,) forall t=0. (29)

First we note that a sequence of continuous functions g, € C.[0, ,+1 — #,] can be found
such that g,(¢f) = g,(¢) for 0<t<t,41—t, — 1, gu(th+1 — t,) = 8,+1(0) and the inequalities
27)- (29) remam valid with g, replaced by g, and t restricted to t,+1 — t, (we shall refer to
them as (27)—(29), respectively). We define

k(t) = .t —t,) for t,<t<t,1.
Obviously, k € C4[0, ») and k(f) < wy(1) for 0 < < . Further, we have by (2~9)
k() < h,(t) fort,<t<t,4
and, by (11),
Ool(k)(x) < & for @0, t,11, 1) <x < @0, t,, 1).

Consequently, lim ®;'(k)(x) = 0 and k € ®(z) for some z € V,,.
Now, we ha\;e_) ’
(T, k)(t) = gu(t) for O<t<t,.1—1t,— 1. (30)
The inequalities (27) and (28) can be transcribed into
(T, k)(®) < hg (1) for t=t,11—1t,—1 (31)

((27) yields (31) for t,+1 — t, — 1 <t < t,+, — t, while (28) yields (31) for £ = t,1). From (30)
and (31) we have

(S,2)(x) = va(x) for (052,41 —t,—1,1) sx<1) (32)
(S,2)(x) <& for 0<ux=<@0;t,41 —t,— 1,1). (33)
Also, from (27) we have
vp(x) <¢g for 0sx=< @0;t,4;—t,—1,1). (34)
From (32)-(34) it follows
[(S,2) (x) — va(x)| <2, forall x €A

which completes the proof. W

Remark. It is easy to see that the function z giving the initial point of the dense trajectory
in V,, can be constructed to be C' hence yielding a continuously differentiable solution of (1).
This is true also for the functions z, in part (a) and the periodic points of part (b) of theorem
2.1.



174 P. BRUNOVSKY

4. THE CASE f(x, 0) # 0

Throughout this section we assume A1-A4, AS'. First we show that if AS is not satisfied
there cannot be chaos in all of V.

PROPOSITION 4.1. Let f(xo, 0) > 0 for some xo € A. Then V,, does not admit a dense trajectory.

LEMMA 4.1. For each 0 < t; <, one has
0=<§5,0=<S5,0. ‘ (35)
Proof. From (6) it follows
$:0)(x) =0 for (¢, x) €D. (36)
From (8), (36) and the semigroup property of S, it follows
(5,0)(x) = (S,5,-,0)(x) = (S,0)(x). W

COROLLARY 4.1. Under the condition of proposition 4.1 there is a neighbourhood U of x,
in A such that

(5:0)(x) >0 foreach x €U and t>0. 37

Proof of proposition 4.1. Choose any 7> 0 and denote z = $5,0. By corollary 4.1 we have
z # 0. Assume v € V,, has a dense trajectory in V,,. Since v = 0, by (8) and lemma 4.1 we
have

Sv=2z foral t=rt (38)

Let Z={w € C+(A): w(x) < z(x) for x € A}. Since z # 0, Z # J. By (38), we have for all
teZandt=1

sup |(Sw) (x) — &x)| = sup 12z(x) — z(x)| > 0.

Thus, in order that Sy «yv be dense in V,,, S, qv must be dense in Z. This, however, is easily
seen to be impossible since Sy v is compact in C(A) and does not contain all of Z. The
compactness of Sy v follows e.g. from the expression (6) from which one immediately
concludes that the family of functions {S,v: 0 <t=< 1} is closed, uniformly bounded and
equicontinuous.

Proposition 4.1 decides the question whether AS is necessary for the results on chaos to
hold in their original form. Still, the results of [1] and Section 2 on chaos remain valid under
A5’ with V,, replaced by its invariant subset which we denote by W. To define W we need.

PROPOSITION 4.2. There exists a pointwise limit
wi(x) = lim (S,0) (x).
t—>

The function w; is a solution of the stationary equation (7) on A° satisfying
0 < wi(x) < wo(x) for x € A" (39)

Proof. The existence of a pointwise limit w; of S0 for t— o satisfying (39) is an immediate
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consequence of lemma 5. It remains to prove that wy is a solution of (7) on A". For the idea
of this proof the author is indebted to J. Kacur.
Denote u(t, x) = (5:0) (x). For this proof we write (1), (7) in the form
ou

2t 2 () = g, w), (40)

= (elu) = qx, ), (41)

respectively, with q(x, u) = f(x, u) + ¢'(x)u.
Let t € [0, ), x € (0, 1]. By integrating (40) we obtain

t+1
t

f [u(t + 1,8 — u(, §] ds + f [e(x)u(o, x) — c(Du(o, 1)] do

- [T [ ot uto, 9)ag ao )

Since 0 =< u(t, x) < wo(x) for all (¢, x) € D, by Lebesgue’s convergence theorem we can pass
to the limit for — o in (42) to obtain

[ e = camanar = [ [ (& wi@)ag do
and, consequently,

e
i) — WD) = | ql& wi()dE @3

J

From (43) it follows that w; is absolutely continuous on A°. Thus, we can differentiate (43)
to obtain

d

15 Cmix) = q(x, wix)) (44)
which completes the proof. W

Now, denote
W={v €€V, vl =w(x) for x €A} (45)

One sees immediately that W is invariant. It is also attractive in V|, but, unlike V,,, only in a
‘pointwise’ sense; the graphs of the upper and lower pointwise limits of S,v for r— o lie
between the graphs of w; and wy, for each v € V,. This follows immediately from R4 and

lim inf (S;v)(x) = lim inf (5,0)(x) = wi(x) for x € A.
t— © t— ®©
The map ® maps wy into the constant wy(1). If one replaces C.[0, ) by its subset of functions

with values =w;(1), lemma 2.1 obviously holds true and one can repeat the arguments of
Sections 2 and 3 almost literally to obtain.

THEOREM 4.1. The set W defined by (45) is invariant and pointwise attractive in V. Also, S,
is chaotic in W in the sense of theorem 3 of [1] and theorem 2.1.
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It should be noted that the chaotic set W may very well be empty. Obviously, W is non-
empty if and only if (7) has a non-negative solution w, on A satisfying w,(0) = 0. Indeed,
every non-negative solution of (7) on A’ majorized by wy and different from wy vanishes at
0 (lemma 2.3.); if w, exists one has wi(x) < wy(x) < wy(x) for x € A. It follows that the
question, whether W is empty or not, is decided by the local behaviour of f and c at (0, 0).

For example, W is non-empty if f(x, 0) vanishes in some right neighbourhood of 0. On the
other hand, take f(x, u) = x> + u?, c¢(x) = x* for x =0, u = 0 small. All integral curves of the
equation

, du

x a=u2+x2 (46)

| passing through points (x, ) with x >0, u = 0 are given in parametric form by
x(s) = d exp[2.37"? arctan(37V%(2s — 1))]
u(s) = sx(s) (—oo <s < )
with d > 0. It can be readily seen that none of these curves approaches the point (0, 0), so

(46) has no solution with u(0) = 0. Consequently, W is empty for any extensions of f, c
satisfying A1-A4, AS'.
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