
Nonlinear Analysis, Theory, Methods & Applications, Vol. 7, No.2, pp. 167-176,1983.
Printed in Great Britain.

0362-546X/83/020167-10 $03.00/0
© 1983 Pergamon Press Ltd.

(1)

NOTES ON CHAOS IN THE CELL POPULATION PARTIAL
DIFFERENTIAL EQUATION

PAVOL BRUNOVSKY

Institute of Applied Mathematics, Comenius University, 842 15 Bratislava, Czechoslovakia

(Received in revised form 15 June 1982)

Key words and phrases: First order partial differential equation, semiflow, chaos.

1. INTRODUCTION

IN [1], THE author investigates the differential equation

au au
- + c(x) - = f(x, u), (t, x) ED = [0, (0) x ~, ~ = [0,1].at ax

This equation describes the dynamics of growth of certain types of cell populations most
prominent of which is the red blood cell population. It is shown in [1] that under certain
natural conditions on c and f the equation (1) generates a semiflow St, t;:=: 0 on C+(~) (the
space of nonnegative continuous functions on ~) with an invariant set Vw on which the
behaviour of the trajectories of S, is chaotic in the sense of [2]. This means that S, has a dense
trajectory in Vw and each point of Vw is unstable (i.e. for each v E Vw there exists a neigh
bourhood U of S(O, oo)v in C(D) and a sequence o;~ v such that the trajectory of o; leaves U
for some t > 0).

The main purpose of this paper is to show that S, exhibits also other features of chaos in
Vw' Namely, there are periodic points of S, of any basic period in Vw and the set of all periodic
points of S, is dense in Vw (Section 2).

For the proof a representation ofS, is employed which allows to prove the results on chaos
of [1] in a more simple and transparent way. These proofs are presented in Section 3. Also,
this technique helped to discover a small error in [1]. For the results on chaos of [1] to be true
an additional (albeit also natural) assumption has to be added. We make this assumption in
Sections 2 and 3. In Section 4 we discuss the modifications to be made .if this additional
assumption is dropped.

We keep all the notation of [1] in order to make it easier for the reader to relate the two
papers. However, in order not to force the reader tolook into [1] for every single concept
or result we conclude this section by a list of assumptions and results of [1] used in the present
paper.

Assumptions
AI. The functions c, f are continuously differentiable.
A2. c(O) = 0, c(x) > 0 for x > O.
A3. There exists a Uo E (0, 1] such that fu(O, Uo) < 0, f(O, u)(u - uo) < 0 for u > 0, u =1= Uo.
A4. f(x, u) ~ k-u + .k2 for some kl, k2 ~ 0 and all x E -d, u ;:=: O.
AS. f(x, 0) = 0 for all x E ~.
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Note that the assumptions AI-AS coincide with assumptions (16)-(18) in [1] with one
difference:
AS is somewhat sharper than the assumption
AS'. f(x, 0) ~ 0 for x E ~ and f(O, 0) = 0
made in [1]. Also note that AS is satisfied if f(x, u) = (p(x, u) - c(x») u as is the case if (1)
models a reproductive, constantly differentiating cell population with proliferation rate p.

Results
Under the assumptions AI-A4, AS' the following results are proven in [1]:

RI. For G eRn, n > 0, denote by C+(G), C~(G) the set of all nonnegative continuous and
nonnegative continuously differentiable functions on G, respectively. For every v E
C~(~), (1) has a unique solution u in C~ (D) satisfyirtg

u(x, 0) = vex) for x E ~. (2)

A function u E C+(D) is called generalized solution of (1) if it is a limit (uniform on
compact subset of D) of solutions of (1). For each v E C+(~) there exists a unique
generalized solution of (1) satisfying (2); henceforth we shall drop the adjective 'gener
alized'. The map S: [0, 00) x C+(~) ~ C+(~) defined by Stv(x) = u(t, x), where u satisfies
(1), (2) is a continuous semiftow, i.e. St:C+(~) ~ C+(~) is continuous for each t~O and
one has So = id., S, · S, = St+s for each t, s ~ O.

R2. Along the characteristics of (1) which are the curves x = cp(t; to, xo) satisfying the ordinary
differential equation

dx
--:- = c(x)
dt ,,/ (3)

and the initial condition x(to) = xo, the solution u(t, x) of (1) satisfies the ordinary differ
ential equation

with initial condition

dy
dt = f( cp(t; to, xo),y) (4)

yeO) = v( cp(O; to, xo»); (5)

the solution of (4), (5) is denoted by 'ljJ(t, cp(O; to, xo), v(cp(O; to, xo»). This means that the
solution u of (1) and (2) can be expressed by the formula

u(t, x) = 'ljJ(t; cp(O; t, x), v( q;(O; t, x»)). (6)

For cp(t; 0, x), write also CPx(t). It follows from A2 that CPo(t) = 0, CfJx(t) is strictly increasing
both in t and in x for x > 0, cp;l(l) is well defined continuous and decreasing for 0 <
x~ 1.

R3. There exists a unique solution wo(x) of the stationary equation
du

c(x) dx = f(x, u), x E ~ (7)

satisfying wo(O) = Uo. For each v E C+(~) such that v(O) > 0 one has Stv(x) ~wo(x) for
t~ 00 uniformly in x.
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R4. Let Vo= {v E C+(~): v(O) = O}, Vw = {v E Vo:vex) < wo(x) for x E ~}. The sets Vo, V w

are invariant for S,and for each v EVa there exists a To ~ 0 such that StV E V w for t > To.
We add two simple observations that will be used in the paper. Since CPo(t) = 0 for all t ~ 0,

it follows from (6) that a solution u(t, x) of (1), (2) is well defined on DO = [0, (0) x ~0 as
soon as v E C+(~O), where ~o = (0,1]. In other words, the semiflow S, can be extended to
C+(~O); we denote this extended semiflow by S~.

Further, since u(t, x) is the solution of a first order ordinary differential equation along each
characteristic, it follows from (6) that the semiflow St preserves ordering, i.e.

(8)

as long as VI ~ V2, where VI ~ V2 means Vl(X) ~ V2(X) for all x E ~. This is true also for S~.

2. EXISTENCE AND DENSITY OF PERIODIC POINTS

Throughout this and the following section assume At-AS.

THEOREM 1. (a) For each T~ 0 there is a continuum of periodic points of S, in Vw of basic
period T. (b) The set of all periodic points of St is dense in V w-

The basic tool of the proof of this theorem consists in the representation of S, by the shift
semigroup in C+[O, (0). This representation is induced by the map <I>:C+(~)~C+[O,oo)

defined by

<I>(v)(t) = (Stv)(I).

Using (6) we can express <I> also by

<I> (v) (t) = ljJ(t; cp(0; t, 1), V ( tp(0 ; t, 1))).

The family of shifts Tt , t ~ 0 defined by

(Ttg)(s) = get + s)

for g E C+[O, (0) is a semigroup and one has

Tt<I> = <I>St,

i.e. the diagram

commutes.
Indeed,

(Tt<I>( v) )(s) = <I>(v)(s + t) = (St+sV)(1) = (SsS tV)(1)

= <I>(Stv)(s).

We can extend <I> to the map <I>o on C+(~O) by defining

<I>o(v)(t) = (S~v)(I).

(9)

(10)
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Obviously, (10) holds with St, <P replaced by S?, <Po respectively.
Let g E C+[O, (0). From (6) one immediately obtains <po(v) = g if and only if

vex) = 1jJ( - cp;l(l); 1, g(cp;l(l))) for x E~o. (11)

Using the argument leading to (8) one obtains from A9 and (11)

vex) ~ 1jJ( - cp;l(l); 1,0) = O.

Thus we have

LEMMA 2.1. The map <Po: C+(~O) ~ C+[O, (0) has an inverse which can be expressed by the
formula (11).

Note that <po-l(g) is not necessarily in CI+(~) for an arbitrary g E C+[O, (0) since <po-l(g) may
not have a limit for x~ O.

As a consequence of R3 one obtains immediately

LEMMA 2.2. Let v E C+(~) satisfy v(O) > O. Then, <p(v)(t)~ wo(l) for t~ O.

LEMMA 2.3. Let g E C+[O, (0) and let

get) ~ wo(l) -- 1]

for some 1'] > 0 and each t ~ O. Then g E <p(Vw) .

Proof. Obviously, it suffices to prove

lim <p0- 1(g)(x) = 0
x~o

since then g = <p(v), where

(12)

(13)

{
<po-1(g)(x)

vex) = o
for x E ~o

for x = 0

is from Vw' •

To prove (13) we first introduce the following notation which will be used throughout the
paper:

For any c ~ 0 we denote by c the constant function on ~ with value c and he(t) =

<p(c)(t).
Let now e > O. Since by lemma 2.2. lim hE(t) =wo(l), there exists a to > 0 such that for

t~oo

t> to one has

hE(t) > wo(l) - 1'] ~ get).

Let Xo = cp(O; to, 1). For x < Xo one has cp;l(l) >to, and, consequently, by (11).

<po-l(g)(x) = 1jJ( - cp;l(l); 1,g(cp;1(1))) < <po-l(hE(cp;l(l))) = e

Since e > 0 was arbitrary this proves (13).
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Since for g E C+[O, 00) periodic with values in [0, wo(I») there is.always an e > 0 such that
(12) holds we have

COROLLARY 2.1. The function g E C+[O, 00) with values in [0, wo(I») is periodic with prime
period T~ 0 if and only if <I>-1(g) is a periodic point of S, in Vw with basic period T. In
particular, all the solutions of the stationary equation (7) in Vware obtained as pre-images
of constant functions < wo(l) under <1>.

LEMMA 2.4. For each 0 <e < inf wo(x) there exists a x.> 0 such that he(s + t) ~ hc(s) for
O~x~l

each s ~ 0, t ~ Te.

Proof. By R3, there exists a x.> 0 such that St£> e for all t ~ t.. Hence, for t ~ t; we have

he(s + t) = (Tthe)(s) = <I>(St£)(s) ~ <1>(£)(s) = he(s). •

Proof of theorem 2.1. Part (a) is an immediate consequence of corollary 2.1.
To prove (b) take any function v in Vw and choose an e > O. Denote g = <1>(v). Let D> 0

be such that vex) < e for x < D, so

get) < he(t) for t ~ t1 = cp6"l(I).

Let tz> maxjr., Te} be such that

he(t) ~ max get),
O~t~tl

(14)

(15)

for t ~ t2, t; being as in lemma 2.4.
From (14), (15) it follows that there exists a continuous function g E C+ [0, t2] such that

get) = get) for 0 ~ t ~ ts,

get) < he(t) for t1 ~ t ~ tz.

g(t2) = g(O).

Define k E C+[O, 00) by

k(t) = .g(t - nt2) for t E [nt2' (n + l)t2]'

(16)

(17)

Then, k is periodic with period t: and, by lemma 2.3., there is a z E Vw such that k = <I>(z).
From (14) and (15) we obtain

z(x) = vex) for D~ x ~ 1,

Iz(x)j < e for cp(O; tz. 1) ~ x ~ D.

Let n ~ 1. For nt2+ ts ~ t ~ (n + l)t2 we obtain by lemma 2.4 and (14)

k(t) = get - nt2) ~ he(t - nt2) ~ he(t);

(18)

(19)

(20)
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for nti ~ t ~ (n + l)t2' (20) follows immediately from (15). Consequently, (19) extends to all
o~ x ~ Dand we have

Iz(x) - v(x) I ~ Iz(x) I + Iv(x)1 ~ 2£

for 0 ~ x ~ D. This, together with (18), proves (b). •

3. EXISTENCE OF A DENSE TRAJECTORY AND INSTABILITY

Using the representation of S, by T, developed in Section 2 we now present an alternative
proof of theorem 3 of [1]. That is, we prove'

(a) every point v E Vw is unstable;
(b) there exists a v E Vw such that the orbit of v is dense in Vw•

Proof of (a). Let v E Vw, g = <I>(v), 0 < a < wo(I). Choose an e < o.
Let D> 0 be such that vex) < e for x ~ D. Let t1 ~CP61(1) be such that

he(t) > a

for t ~ ts.
We now construct a function k E C+[O, 00) as follows: We define

k(t) = get) for 0 ~ t ~ t1

. ra if g(tl + j) < ~ .
k(t1 + J) = ~ ,J = 1, 2, 3, . . .

Lo otherwise

(21)

and we extend k to the interior of the intervals between the points t1 + j in such a way that
k will be nonnegative continuous and its graph will lie below the graph of he for
ti ~ t ~ t1 + 1 and below a for t > t1 + 1. Then, we have

and

Ik(t1 + j) - g(tl + j) I ;;,: ~ for j = 1, 2, ...

By lemma 2.3., there exists a z E v, such that k = <I>(v). Now, (23) can be rewritten as

Also, we have from (18), (19)

z(x) = vex) for cp(O; ti. 1) ~ x < 1

while

Iz(x) - v(x) I ~ Iz(x)I + Iv(x)1 ~ e + e = 2£

for 0 ~ x < cp (0; ts, 1). Since e > 0 was arbitrary, (24)-(26) proves (a). •

(22)

(23)

(24)

(25)
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Proof of (b). Let {Vn}:=l be a dense subset in Vw and let En ~ 0 for n~ 00. Denote gn =

<1>(Un). By lemma 3.2., there exists a sequence {tn} such that

hej(tn+1 - tn) ;:;: Ej+1( = hej+1(0)) for 0 ~ j ~ n

gn(t) ~ hej(t + tn - tj) for all t and all 1 ~ j < n

gn(t) ~ hen(t + tn) for all t;:;: O.

(26)

(27)

(28)

(29)

First we note that a sequence of continuous functions gn E C+[O, tn+1 - tnJ can be found
such that gn(t) = gn(t) for 0 ~ t ~ tn+1 - tn - 1, gn(tn+1 - tn) = gn+1(0) and the inequalities
(27)- (29) remain valid with S« replaced by gn and t restricted to tn + 1 - t, (we shall refer to
them as (27)-(29), respectively). We define

k(t) = gn(t - tn) for t; ~ t ~ tn+1.

Obviously, k E C+[O, 00) and k(t) < wo(l) for 0 ~ t < 00. Further, we have by (29)

k(t) ~ hen(t) for tn ~ t ~ tn+ 1

and, by (11),
<l>ol(k) (x) ~ e; for cp(O, tn+l, 1) ~ x ~ cp(O, tn, 1).

Consequently, lim <l>ol(k) (x) = 0 and k E <I>(z) for some Z E Vw•
x~o

Now, we have

(30)

The inequalities (27) and (28) can be transcribed into

(Ttnk) (t) ~ hen(t) for t > tn+ 1 - tn - 1 (31)

((27) yields (31) for tn+ 1 - tn - 1 ~ t ~ tn+ 1 - tn while (28) yields (31) for t ;:;: t;+ 1). From (30)
and (31) we have

(StnZ) (x) = vn(x) for (0; tn+1 - tn - 1, 1) ~ x ~ 1)

(Stnz)(x) ~ e; for 0 ~ x ~ cp(O; tn+1 - tn - 1,1).

Also, from (27) we have

vn(x) ~ En for 0 ~ x ~ cp(O; tn+1 - tn - 1, 1).

From (32)-(34) it follows

I(Stnz)(x) - Vn(x) I ~ Ze; for all x E ~

(32)

(33)

(34)

which completes the proof. •
Remark. It is easy to see that the function Z giving the initial point of the dense trajectory

in Vw can be constructed to be C1 hence yielding a continuously differentiable solution of (1).
This is true also for the functions z; in part (a) and the periodic points of part (b) of theorem
2.1.
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,-
4. THE CASE [t x , 0) =1= 0

Throughout this section we assume AI-A4, A5'. First we show that if AS is not satisfied
there cannot be chaos in all of Vw-

PROPOSITION 4.1. Letf(xo, 0) > 0 for some Xo E Ll. Then Vw does not admit a dense trajectory.

LEMMA 4.1. For each 0 ~ tl ~ tz one has

o~ St10 ~ St20.

Proof. From (6) it follows

(StO) (x) ~ 0 for (t, x) E D.

(35)

(36)

From (8), (36) and the semigroup property of S, it follows

(St20) (x) = (St1St2 -t10) (x) ~ (St10) (x). •
COROLLARY 4.1. Under the condition of proposition 4.1 there is a neighbourhood U of Xo

in Ll such that

(StO) (x) > 0 for each x E U and t > O. (37)

Proof ofproposition 4.1. Choose any T> 0 and denote z = iSrO. By corollary 4.1 we have
z =F O. Assume v E Vw has a dense trajectory in Vw• Since v ~ 0, by (8) and lemma 4.1 we
have

StV ~ 2z for all t ~ T. (38)

Let Z = {w E C+(Ll): w(x) ~ z(x) for x Ell}. Since z =F 0, Z =F 0. By (38), we have for all
CE Z and t » T

sup I(Stv) (x) - C(x) I ~ sup 12z(x) - z(x) I > O.
xELl xELl

Thus, in order that S[O,oo)V be dense in Vw , S[O,r]V must be dense in Z. This, however, is easily
seen to be impossible since S[O,r]v is compact in C(Ll) and does not contain all of Z. The
compactness of S[O,r]V follows e.g. from the expression (6) from which one immediately
concludes that the family of functions {S.o: 0 ~ t ~ r} is closed, uniformly bounded and
equicontinuous.

Proposition 4.1 decides the question whether AS is necessary for the results on chaos to
hold in their original form. Still, the results of [1] and Section 2 on chaos remain valid under
AS' with Vw replaced by its invariant subset which we denote by W. To define W we need.

PROPOSITION 4.2. There exists a pointwise limit

Wl(X) = lim (StO) (x).
t~oo

The function WI is a solution of the stationary equation (7) on Ll°satisfying

o~ Wl(X) ~ wo(x) for x E Ll0. (39)

Proof. The existence of a pointwise limit WI of StO for t~ 00 satisfying (39) is an immediate
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(42)

consequence of lemma 5. It remains to prove that WI is a solution of (7) on ~". For the idea
of this proof the author is indebted to J. Kacur.

Denote u(t, x) = (StO) (x). For this proof we write (1), (7) in the form

au aat + ax (c(x)u) == q(x, u), (40)

d
dx(c(x)u) == q(x, u), (41)

respectively, with q(x, u) = [(x, u) + c'(x)u.
Let tE [0, (0), x E (0, 1]. By integrating (40) we obtain

f [u(t + 1, ;) - u(t, ;)] d; + f+1 [c(x)u(a, x) - c(1)u(a, 1)] da

= f+1 f q(;, u(a, ;»d; do;

Since °~ u(t, x) ~ wo(x) for all (I, x) E D, by Lebesgue's convergence theorem we can pass
to the limit for I~ 00 in (42) to obtain

1
t+1 1t+l (X

t [C(X)W1(X) - C(1)W1(1)]dt == t J
1

q(;, w1(S))d;da

and, consequently,

( A "'.2\
\. ""t.J)

From (43) it follows that WI is absolutely continuous on ~ '', Thus, we can differentiate (43)
to obtain

d
dx (C(X)W1(X» == q(x, W1(X»)

which completes the proof. •
Now, denote

W = {v E Vw: vex) ~ Wl(X) for x E ~}.

(44)

(45)

One sees immediately that W is invariant. It is also attractive in Vo but, unlike Vw , only in a
'pointwise' sense; the graphs of- the upper- and lower pointwise limits of StV for I~ 00 lie
between the graphs of WI and Wo, for each v E Vo. This follows immediately from R4 and

lim inf (StV) (x) ~ lim inf (StO) (x) = Wl(X) for x E ~.
t~oo t~oo

The map <I> maps WI into the constant wl(I). If one replaces C+[O, (0) by its subset of functions
with values ~wl(I), lemma 2.1 obviously holds true and one can repeat the arguments of
Sections 2 and 3 almost literally to obtain.

THEOREM 4.1. The setW defined by (45) is invariant and pointwise attractive in Vo. Also, St
is chaotic in W in the sense of theorem 3 of [1] and theorem 2.1.
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It should be noted that the chaotic set W may very well be empty. Obviously, W is non
empty if and only if (7) has a non-negative solution Wz on ~ satisfying wz(O) = O. Indeed,
every non-negative solution of (7) on ~0 majorized by Wo and different from Wo vanishes at
o (lemma 2.3.); if Wz exists one has Wl(X)::::; wz(x) < wo(x) for x E~. It follows that the
question, whether W is empty or not, is decided by the local behaviour of f and c at (0, 0).

For example, W is non-empty if f(x, 0) vanishes in some right neighbourhood of O. On the
other hand, take f(x, u) = XZ + uZ

, c(x) = X
Z for x ~ 0, u ~ 0 small. All integral curves of the

equation

(46)

passing through points (x, u) with x > 0, u ~ 0 are given in parametric form by

xes) = d exp[2.3-1/Z arctan(3-1/Z(2s - 1))]

u(s) = sx(s) (- 00 < s < (0)

with d> o. It can be readily seen that none of these curves approaches the point (0, 0), so
(46) has no solution with u(O) = O. Consequently, W is empty for any extensions of f, C

satisfying Al~A4, A5'.
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