NOTES ON CHAOS IN THE CELL POPULATION PARTIAL DIFFERENTIAL EQUATION

Pavol Brunovský
Institute of Applied Mathematics, Comenius University, 84215 Bratislava, Czechoslovakia
(Received in revised form 15 June 1982)

Key words and phrases: First order partial differential equation, semiflow, chaos.

1. INTRODUCTION

In [1], THE author investigates the differential equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}+c(x) \frac{\partial u}{\partial x}=f(x, u),(t, x) \in D=[0, \infty) \times \Delta, \Delta=[0,1] \tag{1}
\end{equation*}
$$

This equation describes the dynamics of growth of certain types of cell populations most prominent of which is the red blood cell population. It is shown in [1] that under certain natural conditions on c and f the equation (1) generates a semiflow $S_{t}, t \geqslant 0$ on $C_{+}(\Delta)$ (the space of nonnegative continuous functions on Δ) with an invariant set V_{w} on which the behaviour of the trajectories of S_{t} is chaotic in the sense of [2]. This means that S_{t} has a dense trajectory in V_{w} and each point of V_{w} is unstable (i.e. for each $v \in V_{w}$ there exists a neighbourhood U of $S_{(0, \infty)} v$ in $C(D)$ and a sequence $v_{n} \rightarrow v$ such that the trajectory of v_{n} leaves U for some $t \geqslant 0$).

The main purpose of this paper is to show that S_{t} exhibits also other features of chaos in V_{w}. Namely, there are periodic points of S_{t} of any basic period in V_{w} and the set of all periodic points of S_{t} is dense in V_{w} (Section 2).

For the proof a representation of S_{t} is employed which allows to prove the results on chaos of [1] in a more simple and transparent way. These proofs are presented in Section 3. Also, this technique helped to discover a small error in [1]. For the results on chaos of [1] to be true an additional (albeit also natural) assumption has to be added. We make this assumption in Sections 2 and 3. In Section 4 we discuss the modifications to be made if this additional assumption is dropped.

We keep all the notation of [1] in order to make it easier for the reader to relate the two papers. However, in order not to force the reader to look into [1] for every single concept or result we conclude this section by a list of assumptions and results of [1] used in the present paper.

Assumptions

A1. The functions c, f are continuously differentiable.
A2. $c(0)=0, c(x)>0$ for $x>0$.
A3. There exists a $u_{0} \in(0,1]$ such that $f_{u}\left(0, u_{0}\right)<0, f(0, u)\left(u-u_{0}\right)<0$ for $u>0, u \neq u_{0}$.
A4. $f(x, u) \leqslant k_{1} u+k_{2}$ for some $k_{1}, k_{2} \geqslant 0$ and all $x \in \Delta, u \geqslant 0$.
A5. $f(x, 0)=0$ for all $x \in \Delta$.

Note that the assumptions A1-A5 coincide with assumptions (16)-(18) in [1] with one difference:
A5 is somewhat sharper than the assumption
A5' $^{\prime} \cdot f(x, 0) \geqslant 0$ for $x \in \Delta$ and $f(0,0)=0$
made in [1]. Also note that A5 is satisfied if $f(x, u)=(p(x, u)-c(x)) u$ as is the case if (1) models a reproductive, constantly differentiating cell population with proliferation rate p.

Results

Under the assumptions A1-A4, $\mathbf{A 5}^{\prime}$ the following results are proven in [1]:
R1. For $G \subset R^{n}, n>0$, denote by $C_{+}(G), C_{+}^{1}(G)$ the set of all nonnegative continuous and nonnegative continuously differentiable functions on G, respectively. For every $v \in$ $C_{+}^{1}(\Delta)$, (1) has a unique solution u in $C_{+}^{1}(D)$ satisfying

$$
\begin{equation*}
u(x, 0)=v(x) \quad \text { for } \quad x \in \Delta \tag{2}
\end{equation*}
$$

A function $u \in C_{+}(D)$ is called generalized solution of (1) if it is a limit (uniform on compact subset of D) of solutions of (1). For each $v \in C_{+}(\Delta)$ there exists a unique generalized solution of (1) satisfying (2); henceforth we shall drop the adjective 'generalized'. The map $S:[0, \infty) \times C_{+}(\Delta) \rightarrow C_{+}(\Delta)$ defined by $S_{t} v(x)=u(t, x)$, where u satisfies (1), (2) is a continuous semiflow, i.e. $S_{t}: C_{+}(\Delta) \rightarrow C_{+}(\Delta)$ is continuous for each $t \geqslant 0$ and one has $S_{0}=$ id., $S_{t} \cdot S_{s}=S_{t+s}$ for each $t, s \geqslant 0$.
R2. Along the characteristics of (1) which are the curves $x=\varphi\left(t ; t_{0}, x_{0}\right)$ satisfying the ordinary differential equation

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}=c(x) \tag{3}
\end{equation*}
$$

and the initial condition $x\left(t_{0}\right)=x_{0}$, the solution $u(t, x)$ of (1) satisfies the ordinary differential equation

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} t}=f\left(\varphi\left(t ; t_{0}, x_{0}\right), y\right) \tag{4}
\end{equation*}
$$

with initial condition

$$
\begin{equation*}
y(0)=v\left(\varphi\left(0 ; t_{0}, x_{0}\right)\right) \tag{5}
\end{equation*}
$$

the solution of (4), (5) is denoted by $\psi\left(t, \varphi\left(0 ; t_{0}, x_{0}\right), v\left(\varphi\left(0 ; t_{0}, x_{0}\right)\right)\right.$. This means that the solution u of (1) and (2) can be expressed by the formula

$$
\begin{equation*}
u(t, x)=\psi(t ; \varphi(0 ; t, x), v(\varphi(0 ; t, x))) \tag{6}
\end{equation*}
$$

For $\varphi(t ; 0, x)$, write also $\varphi_{x}(t)$. It follows from $\mathbf{A 2}$ that $\varphi_{0}(t)=0, \varphi_{x}(t)$ is strictly increasing both in t and in x for $x>0, \varphi_{x}^{-1}(1)$ is well defined continuous and decreasing for $0<$ $x \leqslant 1$.
R3. There exists a unique solution $w_{0}(x)$ of the stationary equation

$$
\begin{equation*}
c(x) \frac{\mathrm{d} u}{\mathrm{~d} x}=f(x, u), \quad x \in \Delta \tag{7}
\end{equation*}
$$

satisfying $w_{0}(0)=u_{0}$. For each $v \in C_{+}(\Delta)$ such that $v(0)>0$ one has $S_{t} v(x) \rightarrow w_{0}(x)$ for $t \rightarrow \infty$ uniformly in x.

R4. Let $V_{0}=\left\{v \in C_{+}(\Delta): v(0)=0\right\}, V_{w}=\left\{v \in V_{0}: v(x)<w_{0}(x)\right.$ for $\left.x \in \Delta\right\}$. The sets V_{0}, V_{w} are invariant for S_{t} and for each $v \in V_{0}$ there exists a $T_{0} \geqslant 0$ such that $S_{t} v \in V_{w}$ for $t>T_{0}$.
We add two simple observations that will be used in the paper. Since $\varphi_{0}(t)=0$ for all $t \geqslant 0$, it follows from (6) that a solution $u(t, x)$ of (1), (2) is well defined on $D^{0}=[0, \infty) \times \Delta^{0}$ as soon as $v \in C_{+}\left(\Delta^{0}\right)$, where $\Delta^{0}=(0,1]$. In other words, the semiflow S_{t} can be extended to $C_{+}\left(\Delta^{0}\right)$; we denote this extended semiflow by S_{t}^{0}.

Further, since $u(t, x)$ is the solution of a first order ordinary differential equation along each characteristic, it follows from (6) that the semiflow S_{t} preserves ordering, i.e.

$$
\begin{equation*}
S_{t} v_{1} \leqslant S_{t} v_{2} \text { for } t \geqslant 0 \tag{8}
\end{equation*}
$$

as long as $v_{1} \leqslant v_{2}$, where $v_{1} \leqslant v_{2}$ means $v_{1}(x) \leqslant v_{2}(x)$ for all $x \in \Delta$. This is true also for S_{t}^{0}.

2. EXISTENCE AND DENSITY OF PERIODIC POINTS

Throughout this and the following section assume A1-A5.
THEOREM 1. (a) For each $\tau \geqslant 0$ there is a continuum of periodic points of S_{t} in V_{w} of basic period τ. (b) The set of all periodic points of S_{t} is dense in V_{w}.

The basic tool of the proof of this theorem consists in the representation of S_{t} by the shift semigroup in $C_{+}[0, \infty)$. This representation is induced by the map $\Phi: C_{+}(\Delta) \rightarrow C_{+}[0, \infty)$ defined by

$$
\Phi(v)(t)=\left(S_{t} v\right)(1)
$$

Using (6) we can express Φ also by

$$
\begin{equation*}
\Phi(v)(t)=\psi(t ; \varphi(0 ; t, 1), v(\varphi(0 ; t, 1))) \tag{9}
\end{equation*}
$$

The family of shifts $T_{t}, t \geqslant 0$ defined by

$$
\left(T_{t} g\right)(s)=g(t+s)
$$

for $g \in C_{+}[0, \infty)$ is a semigroup and one has

$$
\begin{equation*}
T_{t} \Phi=\Phi S_{t} \tag{10}
\end{equation*}
$$

i.e. the diagram

commutes.
Indeed,

$$
\begin{aligned}
\left(T_{t} \Phi(v)\right)(s) & =\Phi(v)(s+t)=\left(S_{t+s} v\right)(1)=\left(S_{s} S_{t} v\right)(1) \\
& =\Phi\left(S_{t} v\right)(s)
\end{aligned}
$$

We can extend Φ to the map Φ_{0} on $C_{+}\left(\Delta^{0}\right)$ by defining

$$
\Phi_{0}(v)(t)=\left(S_{t}^{0} v\right)(1)
$$

Obviously, (10) holds with S_{t}, Φ replaced by S_{t}^{0}, Φ_{0} respectively.
Let $g \in C_{+}[0, \infty)$. From (6) one immediately obtains $\Phi_{0}(v)=g$ if and only if

$$
\begin{equation*}
v(x)=\psi\left(-\varphi_{x}^{-1}(1) ; 1, g\left(\varphi_{x}^{-1}(1)\right)\right) \quad \text { for } \quad x \in \Delta^{0} \tag{11}
\end{equation*}
$$

Using the argument leading to (8) one obtains from A9 and (11)

$$
v(x) \geqslant \psi\left(-\varphi_{x}^{-1}(1) ; 1,0\right)=0 .
$$

Thus we have

LEMMA 2.1. The map $\Phi_{0}: C_{+}\left(\Delta^{0}\right) \rightarrow C_{+}[0, \infty)$ has an inverse which can be expressed by the formula (11).

Note that $\Phi_{0}^{-1}(g)$ is not necessarily in $C_{+}(\Delta)$ for an arbitrary $g \in C_{+}[0, \infty)$ since $\Phi_{0}^{-1}(g)$ may not have a limit for $x \rightarrow 0$.

As a consequence of $\mathbf{R 3}$ one obtains immediately

Lemma 2.2. Let $v \in C_{+}(\Delta)$ satisfy $v(0)>0$. Then, $\Phi(v)(t) \rightarrow w_{0}(1)$ for $t \rightarrow 0$.

Lemma 2.3. Let $g \in C_{+}[0, \infty)$ and let

$$
\begin{equation*}
g(t) \leqslant w_{0}(1)-\eta \tag{12}
\end{equation*}
$$

for some $\eta>0$ and each $t \geqslant 0$. Then $g \in \Phi\left(V_{w}\right)$.

Proof. Obviously, it suffices to prove

$$
\begin{equation*}
\lim _{x \rightarrow 0} \Phi_{0}^{-1}(g)(x)=0 \tag{13}
\end{equation*}
$$

since then $g=\Phi(v)$, where

$$
v(x)= \begin{cases}\Phi_{0}^{-1}(g)(x) & \text { for } x \in \Delta^{0} \\ 0 & \text { for } x=0\end{cases}
$$

is from V_{w}.
To prove (13) we first introduce the following notation which will be used throughout the paper:

For any $c \geqslant 0$ we denote by \mathbf{c} the constant function on Δ with value c and $h_{c}(t)=$ $\Phi(\mathbf{c})(t)$.

Let now $\varepsilon>0$. Since by lemma 2.2. $\lim _{t \rightarrow \infty} h_{\varepsilon}(t)=w_{0}(1)$, there exists a $t_{0}>0$ such that for $t>t_{0}$ one has

$$
h_{\varepsilon}(t)>w_{0}(1)-\eta \geqslant g(t) .
$$

Let $x_{0}=\varphi\left(0 ; t_{0}, 1\right)$. For $x<x_{0}$ one has $\varphi_{x}^{-1}(1)>t_{0}$, and, consequently, by (11).

$$
\Phi_{0}^{-1}(g)(x)=\psi\left(-\varphi_{x}^{-1}(1) ; 1, g\left(\varphi_{x}^{-1}(1)\right)\right)<\Phi_{0}^{-1}\left(h_{\varepsilon}\left(\varphi_{x}^{-1}(1)\right)\right)=\varepsilon
$$

Since $\varepsilon>0$ was arbitrary this proves (13).

Since for $g \in C_{+}[0, \infty)$ periodic with values in $\left[0, w_{0}(1)\right)$ there is always an $\varepsilon>0$ such that (12) holds we have

Corollary 2.1. The function $g \in C_{+}[0, \infty)$ with values in $\left[0, w_{0}(1)\right)$ is periodic with prime period $\tau \geqslant 0$ if and only if $\Phi^{-1}(g)$ is a periodic point of S_{t} in V_{w} with basic period τ. In particular, all the solutions of the stationary equation (7) in V_{w} are obtained as pre-images of constant functions $<w_{0}(1)$ under Φ.

Lemma 2.4. For each $0<\varepsilon<\inf _{0 \leqslant x \leqslant 1} w_{0}(x)$ there exists a $\tau_{\varepsilon}>0$ such that $h_{\varepsilon}(s+t) \leqslant h_{\varepsilon}(s)$ for each $s \geqslant 0, t \geqslant \tau_{\varepsilon}$.

Proof. By R3, there exists a $\tau_{\varepsilon}>0$ such that $S_{t} \varepsilon>\varepsilon$ for all $t \geqslant \tau_{\varepsilon}$. Hence, for $t \geqslant \tau_{\varepsilon}$ we have

$$
h_{\varepsilon}(s+t)=\left(T_{t} h_{\varepsilon}\right)(s)=\Phi\left(S_{t} \varepsilon\right)(s) \geqslant \Phi(\varepsilon)(s)=h_{\varepsilon}(s)
$$

Proof of theorem 2.1. Part (a) is an immediate consequence of corollary 2.1.
To prove (b) take any function v in V_{w} and choose an $\varepsilon>0$. Denote $g=\Phi(v)$. Let $\delta>0$ be such that $v(x)<\varepsilon$ for $x<\delta$, so

$$
\begin{equation*}
g(t)<h_{\varepsilon}(t) \text { for } t \geqslant t_{1}=\varphi_{\delta}^{-1}(1) \tag{14}
\end{equation*}
$$

Let $t_{2}>\max \left\{t_{1}, \tau_{\varepsilon}\right\}$ be such that

$$
\begin{equation*}
h_{\varepsilon}(t) \geqslant \max _{0 \leqslant t \leqslant t_{1}} g(t), \tag{15}
\end{equation*}
$$

for $t \geqslant t_{2}, \tau_{\varepsilon}$ being as in lemma 2.4.
From (14), (15) it follows that there exists a continuous function $\tilde{g} \in C_{+}\left[0, t_{2}\right]$ such that

$$
\begin{align*}
& \tilde{g}(t)=g(t) \text { for } 0 \leqslant t \leqslant t_{1}, \tag{16}\\
& \tilde{g}(t)<h_{\varepsilon}(t) \text { for } t_{1} \leqslant t \leqslant t_{2} \tag{17}\\
& \tilde{g}\left(t_{2}\right)=g(0) .
\end{align*}
$$

Define $k \in C_{+}[0, \infty)$ by

$$
k(t)=\tilde{g}\left(t-n t_{2}\right) \quad \text { for } \quad t \in\left[n t_{2},(n+1) t_{2}\right] .
$$

Then, k is periodic with period t_{2} and, by lemma 2.3., there is a $z \in V_{w}$ such that $k=\Phi(z)$. From (14) and (15) we obtain

$$
\begin{align*}
& z(x)=v(x) \text { for } \delta \leqslant x \leqslant 1, \tag{18}\\
& |z(x)|<\varepsilon \text { for } \varphi\left(0 ; t_{2}, 1\right) \leqslant x \leqslant \delta . \tag{19}
\end{align*}
$$

Let $n \geqslant 1$. For $n t_{2}+t_{1} \leqslant t \leqslant(n+1) t_{2}$ we obtain by lemma 2.4 and (14)

$$
\begin{equation*}
k(t)=\tilde{g}\left(t-n t_{2}\right) \leqslant h_{\varepsilon}\left(t-n t_{2}\right) \leqslant h_{\varepsilon}(t) \tag{20}
\end{equation*}
$$

for $n t_{2} \leqslant t \leqslant(n+1) t_{2}$, (20) follows immediately from (15). Consequently, (19) extends to all $0 \leqslant x \leqslant \delta$ and we have

$$
|z(x)-v(x)| \leqslant|z(x)|+|v(x)| \leqslant 2 \varepsilon
$$

for $0 \leqslant x \leqslant \delta$. This, together with (18), proves (b).

3. EXISTENCE OF A DENSE TRAJECTORY AND INSTABILITY

Using the representation of S_{t} by T_{t} developed in Section 2 we now present an alternative proof of theorem 3 of [1]. That is, we prove
(a) every point $v \in V_{w}$ is unstable;
(b) there exists a $v \in V_{w}$ such that the orbit of v is dense in V_{w}.

Proof of (a). Let $v \in V_{w}, g=\Phi(v), 0<a<w_{0}(1)$. Choose an $\varepsilon<0$.
Let $\delta>0$ be such that $v(x)<\varepsilon$ for $x \leqslant \delta$. Let $t_{1} \geqslant \varphi_{\delta}^{-1}(1)$ be such that

$$
\begin{equation*}
h_{\varepsilon}(t)>a \tag{21}
\end{equation*}
$$

for $t \geqslant t_{1}$.
We now construct a function $k \in C_{+}[0, \infty)$ as follows: We define

$$
\begin{gathered}
k(t)=g(t) \text { for } 0 \leqslant t \leqslant t_{1} \\
k\left(t_{1}+j\right)=\left\{\begin{array}{ll}
a & \text { if } g\left(t_{1}+j\right)<\frac{a}{2} \\
0 \text { otherwise }
\end{array}, j=1,2,3, \ldots\right.
\end{gathered}
$$

and we extend k to the interior of the intervals between the points $t_{1}+j$ in such a way that k will be nonnegative continuous and its graph will lie below the graph of h_{ε} for $t_{1} \leqslant t \leqslant t_{1}+1$ and below a for $t>t_{1}+1$. Then, we have

$$
\begin{equation*}
k(t) \leqslant h_{\varepsilon}(t) \text { for } t \geqslant t_{1} \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|k\left(t_{1}+j\right)-g\left(t_{1}+j\right)\right| \geqslant \frac{a}{2} \text { for } j=1,2, \ldots \tag{23}
\end{equation*}
$$

By lemma 2.3., there exists a $z \in V_{w}$ such that $k=\Phi(v)$. Now, (23) can be rewritten as

$$
\begin{equation*}
\left|\left(S_{t_{1}+j} v\right)(1)-\left(S_{t_{1}+j} z\right)(1)\right| \geqslant \frac{a}{2} . \tag{24}
\end{equation*}
$$

Also, we have from (18), (19)

$$
\begin{equation*}
z(x)=v(x) \text { for } \varphi\left(0 ; t_{1}, 1\right) \leqslant x<1 \tag{25}
\end{equation*}
$$

while

$$
|z(x)-v(x)| \leqslant|z(x)|+|v(x)| \leqslant \varepsilon+\varepsilon=2 \varepsilon
$$

for $0 \leqslant x<\varphi\left(0 ; t_{1}, 1\right)$. Since $\varepsilon>0$ was arbitrary, (24)-(26) proves (a).

Proof of (b). Let $\left\{v_{n}\right\}_{n=1}^{\infty}$ be a dense subset in V_{w} and let $\varepsilon_{n} \searrow 0$ for $n \rightarrow \infty$. Denote $g_{n}=$ $\Phi\left(v_{n}\right)$. By lemma 3.2., there exists a sequence $\left\{t_{n}\right\}$ such that

$$
\begin{gather*}
t_{1}=0, t_{n+1} \geqslant t_{n}+1 \tag{26}\\
h_{\varepsilon_{j}}\left(t_{n+1}-t_{n}\right) \geqslant \varepsilon_{j+1}\left(=h_{\varepsilon_{j+1}}(0)\right) \text { for } 0 \leqslant j \leqslant n \tag{27}\\
g_{n}(t) \leqslant h_{\varepsilon_{j}}\left(t+t_{n}-t_{j}\right) \text { for all } t \text { and all } 1 \leqslant j<n \tag{28}\\
g_{n}(t) \leqslant h_{\varepsilon_{n}}\left(t+t_{n}\right) \text { for all } t \geqslant 0 \tag{29}
\end{gather*}
$$

First we note that a sequence of continuous functions $\tilde{g}_{n} \in C_{+}\left[0, t_{n+1}-t_{n}\right]$ can be found such that $\tilde{g}_{n}(t)=g_{n}(t)$ for $0 \leqslant t \leqslant t_{n+1}-t_{n}-1, \tilde{g}_{n}\left(t_{n+1}-t_{n}\right)=g_{n+1}(0)$ and the inequalities (27)-(29) remain valid with g_{n} replaced by \tilde{g}_{n} and t restricted to $t_{n+1}-t_{n}$ (we shall refer to them as $(\widetilde{27})-(\widetilde{29})$, respectively). We define

$$
k(t)=\tilde{g}_{n}\left(t-t_{n}\right) \quad \text { for } \quad t_{n} \leqslant t \leqslant t_{n+1} .
$$

Obviously, $k \in C_{+}[0, \infty)$ and $k(t)<w_{0}(1)$ for $0 \leqslant t<\infty$. Further, we have by ($\widetilde{29}$)

$$
k(t) \leqslant h_{\varepsilon_{n}}(t) \text { for } t_{n} \leqslant t \leqslant t_{n+1}
$$

and, by (11),

$$
\Phi_{0}^{-1}(k)(x) \leqslant \varepsilon_{n} \quad \text { for } \quad \varphi\left(0, t_{n+1}, 1\right) \leqslant x \leqslant \varphi\left(0, t_{n}, 1\right)
$$

Consequently, $\lim _{x \rightarrow 0} \Phi_{0}^{-1}(k)(x)=0$ and $k \in \Phi(z)$ for some $z \in V_{w}$.
Now, we have

$$
\begin{equation*}
\left(T_{t_{n}} k\right)(t)=g_{n}(t) \quad \text { for } \quad 0 \leqslant t \leqslant t_{n+1}-t_{n}-1 \tag{30}
\end{equation*}
$$

The inequalities $(\widetilde{27})$ and $(\widetilde{28})$ can be transcribed into

$$
\begin{equation*}
\left(T_{t_{n}} k\right)(t) \leqslant h_{\varepsilon_{n}}(t) \text { for } t \geqslant t_{n+1}-t_{n}-1 \tag{31}
\end{equation*}
$$

(($\widetilde{27}$) yields (31) for $t_{n+1}-t_{n}-1 \leqslant t \leqslant t_{n+1}-t_{n}$ while ($\widetilde{28}$) yields (31) for $t \geqslant t_{n+1}$). From (30) and (31) we have

$$
\begin{align*}
& \left.\left(S_{t_{n}} z\right)(x)=v_{n}(x) \text { for }\left(0 ; t_{n+1}-t_{n}-1,1\right) \leqslant x \leqslant 1\right) \tag{32}\\
& \left(S_{t_{n}} z\right)(x) \leqslant \varepsilon_{n} \text { for } 0 \leqslant x \leqslant \varphi\left(0 ; t_{n+1}-t_{n}-1,1\right) \tag{33}
\end{align*}
$$

Also, from (27) we have

$$
\begin{equation*}
v_{n}(x) \leqslant \varepsilon_{n} \quad \text { for } \quad 0 \leqslant x \leqslant \varphi\left(0 ; t_{n+1}-t_{n}-1,1\right) \tag{34}
\end{equation*}
$$

From (32)-(34) it follows

$$
\left|\left(S_{t_{n}} z\right)(x)-v_{n}(x)\right| \leqslant 2 \varepsilon_{n} \text { for all } x \in \Delta
$$

which completes the proof.
Remark. It is easy to see that the function z giving the initial point of the dense trajectory in V_{w} can be constructed to be C^{1} hence yielding a continuously differentiable solution of (1). This is true also for the functions z_{n} in part (a) and the periodic points of part (b) of theorem 2.1.

4. THE CASE $f(x, 0) \not \equiv 0$

Throughout this section we assume A1-A4, A5'. First we show that if A5 is not satisfied there cannot be chaos in all of V_{w}.

Proposition 4.1. Let $f\left(x_{0}, 0\right)>0$ for some $x_{0} \in \Delta$. Then V_{w} does not admit a dense trajectory.
Lemma 4.1. For each $0 \leqslant t_{1} \leqslant t_{2}$ one has

$$
\begin{equation*}
0 \leqslant S_{t_{1}} \mathbf{0} \leqslant S_{t_{2}} \mathbf{0} \tag{35}
\end{equation*}
$$

Proof. From (6) it follows

$$
\begin{equation*}
\left(S_{t} \mathbf{0}\right)(x) \geqslant 0 \quad \text { for } \quad(t, x) \in D \tag{36}
\end{equation*}
$$

From (8), (36) and the semigroup property of S_{t} it follows

$$
\left(S_{t_{2}} \mathbf{0}\right)(x)=\left(S_{t_{1}} S_{t_{2}-t_{1}} \mathbf{0}\right)(x) \geqslant\left(S_{t_{1}} \mathbf{0}\right)(x)
$$

Corollary 4.1. Under the condition of proposition 4.1 there is a neighbourhood U of x_{0} in Δ such that

$$
\begin{equation*}
\left(S_{t} \mathbf{0}\right)(x)>0 \text { for each } x \in U \text { and } t>0 \tag{37}
\end{equation*}
$$

Proof of proposition 4.1. Choose any $\tau>0$ and denote $z=\frac{1}{2} S_{\tau} \mathbf{0}$. By corollary 4.1 we have $z \neq 0$. Assume $v \in V_{w}$ has a dense trajectory in V_{w}. Since $v \geqslant 0$, by (8) and lemma 4.1 we have

$$
\begin{equation*}
S_{t} v \geqslant 2 z \quad \text { for all } t \geqslant \tau \tag{38}
\end{equation*}
$$

Let $Z=\left\{w \in C_{+}(\Delta): w(x) \leqslant z(x)\right.$ for $\left.x \in \Delta\right\}$. Since $z \neq 0, Z \neq \varnothing$. By (38), we have for all $\zeta \in Z$ and $t \geqslant \tau$

$$
\sup _{x \in \Delta}\left|\left(S_{t} v\right)(x)-\zeta(x)\right| \geqslant \sup _{x \in \Delta}|2 z(x)-z(x)|>0
$$

Thus, in order that $S_{[0, \infty)} v$ be dense in $V_{w}, S_{[0, \tau]} v$ must be dense in Z. This, however, is easily seen to be impossible since $S_{[0, \tau]} v$ is compact in $C(\Delta)$ and does not contain all of Z. The compactness of $S_{[0, \tau]} v$ follows e.g. from the expression (6) from which one immediately concludes that the family of functions $\left\{S_{t} v: 0 \leqslant t \leqslant \tau\right\}$ is closed, uniformly bounded and equicontinuous.

Proposition 4.1 decides the question whether $\mathbf{A 5}$ is necessary for the results on chaos to hold in their original form. Still, the results of [1] and Section 2 on chaos remain valid under $\mathbf{A 5}^{\prime}$ with V_{w} replaced by its invariant subset which we denote by W. To define W we need.

Proposition 4.2. There exists a pointwise limit

$$
w_{1}(x)=\lim _{t \rightarrow \infty}\left(S_{t} \mathbf{0}\right)(x)
$$

The function w_{1} is a solution of the stationary equation (7) on Δ^{0} satisfying

$$
\begin{equation*}
0 \leqslant w_{1}(x) \leqslant w_{0}(x) \text { for } x \in \Delta^{0} \tag{39}
\end{equation*}
$$

Proof. The existence of a pointwise limit w_{1} of $S_{t} \mathbf{0}$ for $t \rightarrow \infty$ satisfying (39) is an immediate
consequence of lemma 5. It remains to prove that w_{1} is a solution of (7) on Δ^{0}. For the idea of this proof the author is indebted to J. Kačur.

Denote $u(t, x)=\left(S_{t} 0\right)(x)$. For this proof we write (1), (7) in the form

$$
\begin{align*}
\frac{\partial u}{\partial t}+\frac{\partial}{\partial x}(c(x) u) & =q(x, u) \tag{40}\\
\frac{\mathrm{d}}{\mathrm{~d} x}(c(x) u) & =q(x, u) \tag{41}
\end{align*}
$$

respectively, with $q(x, u)=f(x, u)+c^{\prime}(x) u$.
Let $t \in[0, \infty), x \in(0,1]$. By integrating (40) we obtain

$$
\begin{align*}
\int_{1}^{x}[u(t+1, \xi) & -u(t, \xi)] \mathrm{d} \xi+\int_{t}^{t+1}[c(x) u(\sigma, x)-c(1) u(\sigma, 1)] \mathrm{d} \sigma \\
& =\int_{t}^{t+1} \int_{1}^{x} q(\xi, u(\sigma, \xi)) \mathrm{d} \xi \mathrm{~d} \sigma \tag{42}
\end{align*}
$$

Since $0 \leqslant u(t, x) \leqslant w_{0}(x)$ for all $(t, x) \in D$, by Lebesgue's convergence theorem we can pass to the limit for $t \rightarrow \infty$ in (42) to obtain

$$
\int_{t}^{t+1}\left[c(x) w_{1}(x)-c(1) w_{1}(1)\right] \mathrm{d} t=\int_{t}^{t+1} \int_{1}^{x} q\left(\xi, w_{1}(\xi)\right) \mathrm{d} \xi \mathrm{~d} \sigma
$$

and, consequently,

$$
\begin{equation*}
c(x) w_{1}(x)-c(1) w_{1}(1)=\int_{1}^{x} q\left(\xi, w_{1}(\xi)\right) \mathrm{d} \xi \tag{43}
\end{equation*}
$$

From (43) it follows that w_{1} is absolutely continuous on Δ^{0}. Thus, we can differentiate (43) to obtain

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(c(x) w_{1}(x)\right)=q\left(x, w_{1}(x)\right) \tag{44}
\end{equation*}
$$

which completes the proof.
Now, denote

$$
\begin{equation*}
W=\left\{v \in V_{w}: v(x) \geqslant w_{1}(x) \quad \text { for } \quad x \in \Delta\right\} . \tag{45}
\end{equation*}
$$

One sees immediately that W is invariant. It is also attractive in V_{0} but, unlike V_{w}, only in a 'pointwise' sense: the graphs of the upper and lower pointwise limits of $S_{t} v$ for $t \rightarrow \infty$ lie between the graphs of w_{1} and w_{0}, for each $v \in V_{0}$. This follows immediately from $\mathbf{R 4}$ and

$$
\liminf _{t \rightarrow \infty}\left(S_{t} v\right)(x) \geqslant \liminf _{t \rightarrow \infty}\left(S_{t} \mathbf{0}\right)(x)=w_{1}(x) \quad \text { for } \quad x \in \Delta
$$

The map Φ maps w_{1} into the constant $w_{1}(1)$. If one replaces $C_{+}[0, \infty)$ by its subset of functions with values $\geqslant w_{1}(1)$, lemma 2.1 obviously holds true and one can repeat the arguments of Sections 2 and 3 almost literally to obtain.

Theorem 4.1. The set W defined by (45) is invariant and pointwise attractive in V_{0}. Also, S_{t} is chaotic in W in the sense of theorem 3 of [1] and theorem 2.1.

It should be noted that the chaotic set W may very well be empty. Obviously, W is nonempty if and only if (7) has a non-negative solution w_{2} on Δ satisfying $w_{2}(0)=0$. Indeed, every non-negative solution of (7) on Δ^{0} majorized by w_{0} and different from w_{0} vanishes at 0 (lemma 2.3.); if w_{2} exists one has $w_{1}(x) \leqslant w_{2}(x)<w_{0}(x)$ for $x \in \Delta$. It follows that the question, whether W is empty or not, is decided by the local behaviour of f and c at $(0,0)$.

For example, W is non-empty if $f(x, 0)$ vanishes in some right neighbourhood of 0 . On the other hand, take $f(x, u)=x^{2}+u^{2}, c(x)=x^{2}$ for $x \geqslant 0, u \geqslant 0$ small. All integral curves of the equation

$$
\begin{equation*}
x^{2} \frac{\mathrm{~d} u}{\mathrm{~d} x}=u^{2}+x^{2} \tag{46}
\end{equation*}
$$

passing through points (x, u) with $x>0, u \geqslant 0$ are given in parametric form by

$$
\begin{aligned}
& x(s)=\mathrm{d} \exp \left[2.3^{-1 / 2} \arctan \left(3^{-1 / 2}(2 s-1)\right)\right] \\
& u(s)=s x(s) \quad(-\infty<s<\infty)
\end{aligned}
$$

with $d>0$. It can be readily seen that none of these curves approaches the point $(0,0)$, so (46) has no solution with $u(0)=0$. Consequently, W is empty for any extensions of f, c satisfying A1-A4, A5'.

REFERENCES

1. Lasota A., Stable and chaotic solutions of a first-order partial differential equation, Nonlinear Analysis 5, 1181-1193 (1981).
2. Auslander J. \& Yorke J., Interval maps, factor of maps and chaos, Tohoku math. J. Ser. II, 32, 177-188 (1980).
