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THE MATRIX RICCATI EQUATION AND THE NONCONTROLLABLE
LINEAR-QUADRATIC PROBLEM WITH TERMINAL CONSTRAINTS*

PAVOL BRUNOVSKYt AND JOZEF KOMORNIK:j:

Abstract. It is proved that each positive semidefinite symmetric solution of the matrix Riccati equation
corresponds to an optimal control problem with suitable terminal cost and constraints. The approximation
scheme for the computation and characterization of the optimal cost and optimal controls of the problem
with terminal constraints is extended to the noncontrollable case.
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Introduction. Consider the linear-quadratic optimal control problem on the inter
val [s, TJ, to~ S ~ T, given by the equation

(1)

(x ERn, U ERr), the initial state

(2)

x = A(t)x +B (t)u

x(s)=y,

(3)

the cost function

C;(y, u) =rctt, x, u) dt +x '(T)Rx(T)

with c(t, x, u) =x'O(t)x +u'M(t)u and the terminal constraint

(4) Dx(T) = 0,

D being q x n, q ~ n, with full rank, A, B, 0, M being continuous, 0, M symmetric,
o ~ 0, M > 0 on [to, TJ, R ~ 0 symmetric.

Under the condition that the system with output g= Dx is output controllable
on [s, TJ for each to~ s < T, we have shown in [1J that the minimal cost for this
problem can be expressed by a solution of the corresponding matrix Riccati equation

(5) W+A'W+WA+Q-W'BM-1B'W=0

(d. also [2J) on [to, T) that blows up for t /' T. We have characterized this solution as
a limit for m ~ 00 of solutions of (5) expressing the optimal cost of the corresponding
unconstrained problem with cost

(6) C;'m (y, u) = C;(y, u) + m IIDx (T)112

containing a term penalizing the deviation of the response of u from the terminal
subspace. Also, we have shown that the optimal control and optimal trajectory for
the problem (1)-(4) are limits for m ~ 00 of those for the problems (1)-(3), (6).

This result can be put into an interesting context with the ideas of [3J. By
associating with (5) a flow on the Grassmann manifold OR (n) of n-dimensional
subspaces of R 2 n

, we can prove an inverse theorem on the solutions of (5) (§ 3) and
extend our results from [1] to noncontrollable problems and problems with constraints
at several points (§ 4). In § 5 we show that the techniques of § 4 can be used to deal
with the infinite interval problem in case the finiteness of cost is not assumed for all
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points. Section 2 contains a summary of the items of [3] that are important for this
paper.

All the necessary material about the Riccati matrix equation and the unconstrained
linear-quadratic problem is summarized in [l].

2. The associated flow on GR (n). Denote

where En is the n x n unity matrix. For z, = (Xi, Pi) ERn x R", i = 1, 2, denote

w(Zl, Z2) = Z~JZ2 = X~P2 -Xip1:

w is a skew symmetric nondegenerate form on R "', An n -dimensional linear subspace
L of R 2n is called Lagrangian, if the restriction of w to L vanishes, i.e. w (z1, Z 2) = 0
as soon as Z1, Z2 E L. We denote the set of Lagrangian subspaces of R 2n by ::e.

A linear differential equation in R 2n

(7) i =H(t)z

is called Hamiltonian if w is its integral, i.e. w is constant along its solutions. This is
equivalent to

(8) H'J+JH=O.

By 1Tx we denote the natural projection of R 2n =R" x R n onto its first factor, and
we denote

::eo = {L E ::e11Tx (L) = R "}.

We have L E::eo if and only if there exists a symmetric n x n matrix W such that

L = {(x, Wx)lx ERn}.

The (time-dependent) flow of the equation (7) carries linear subspaces into linear
subspaces of the same dimension and thus generates an associated (time-dependent)
flow ¢ on the Grassmann manifold OR (n) of the subspaces of R 2n of dimension n.
More precisely, if L E GR(n) and we denote by <pt,s(L) the linear subspace filled by
the values at t of the solutions of (7) with values in L at time s, then there is a
differential equation on GR (n) such that <l>t,s (L) is the value at time t of its solution
having L as its value at time s. Since GR (n) is compact, the solutions of this equation
are defined for all t E R. Since w is an integral of (7), it is invariant under <1>, i.e. L E!£

implies <l>t,s(L) E::e for all t, S E R.
Consider now the flow <I> on GR (n) associated with the differential equation

(9) i =Ax -BM-1B'p, P= -Qx -A'p

with A, B, M, Q coming from (1), (3). The matrix

H = (A, -BM-1B'P)
-Q -A

obviously satisfies (8), which means that (9) is Hamiltonian. IfL E::e andL(t) =<l>t,s(L) E

::eo for all t e I = (t1, t2) and some S EI, then there exists a matrix function Wet), t E

(t1, t2), such that L(t) = {(x, W(t)x )Ix ERn}. This matrix satisfies (5).
Note that although limt~to Wet) may not exist for to= t1 or to= tz, L(t) =<l>t,s(L)

can always be extended beyond I to all R.
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3. The inverse theorem. Let A, B, Q, M be as in (1) (3).
THEOREM 1. Let W(t) be a positive semidefinite solution of the matrix Riccati

equation (5) on [ta, T). Then there exist a q ~ n, a q x n matrix D and a positive
semidefinite symmetric matrix R such that y I W(s)y is the optimal cost for the problem
(1)-(4) for ta~s < T.

Proof. Denote L(t) = {(x, W(t)x )lx ERn}. If limt~T- Wet) exists then we take
D =0, R =limt~T- W(t); the statement of the theorem in this case is standard [4].

If limt~T- Wet) does not exist, then L(T) = limt~T- L(t) ~ ::ta. Let q =
codim 1Tx (L(T)) > O.

There exist n x n matrices 51,52 such that rank

(51,52) = nand L(T) ={(x, p)!5 1x +52P = O}.

If x E 1Tx (L (T )) then there exists a p such that 5 2P = -51x, i.e. 5 1x E Range 52. The
condition rank (51,52) = n means

(10) Range 51+ Range 52= R n,

from which it follows codim Range 52= q. Consequently, there exists a q x n matrix
with full rank N such that y E Range 52 if and only if Ny = 0. From (10) it also follows
that if we denote D =N51 , then rank D = rank N = q. Also, x E TrAL(T)) if and only
if Dx = 0, i.e., x E Ker D.

Let K be any n x n matrix, the restriction of which to Range 52 is a right inverse
of 52, i.e. we have 52K52=52. Then, (x,p)EL(T) if and only if x e Ker D and

(11) p +K51x E Ker 52.

Denote R a= -K51 .

Since L(T) E:£, for any P1, P2 E Ker 52, Xl, X2 E Ker D we have

(12)

Choosing Xl = 0 and using (12) we obtain p'x = 0 for any p E Ker 52, x E Ker D.
However, piX = 0 for all x E Ker D is equivalent to p E Range D', so Ker 52c Range D'.
Since rank D = q = codim Range 52= dim Ker 52, we have

(13) Ker 52= Range D'.

Choosing P1 =P2 = 0 in (12) we have x ~R bX2 = x ~R aX2 for all Xl, X2 E Ker D. Also,
if we take any x E Ker D, then (x, Rax) E L(T). Since L(T) = limt~T- L(t) (in GR (n )),
there exists a sequence of points ti.7'T, (Xi,pd = (Xi, W(ti)xi)EL(ti), (xi,pd~(x,Rax).

Since W(t) is positive semidefinite, for each t < T, we have x'Rux = limi~oo x; W(tdXi ~
O.

Denote R6 = PRa, R6 = (E - P)R o, where P is the orthogonal projection of R n
onto Ker D. For any Xl, X2 E Ker D we have

x ~ROX2 = x ~R 6X2

and, consequently,

Thus, the restriction of R 6 to Ker D is symmetric and positive semidefinite.
Obviously, we can find an R symmetric and positive semidefinite on all R n such that

(14) R IKerD = R6!KerD'
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By (13), for x E Ker D, (11) is equivalent to

p -Rox =p -R6x -R6X E RangeD'.

Since R6x is orthogonal to Ker D, we have R6X s Range D', which means that (11)
is equivalent to

(15) p -Rx e Range D'

for all x E Ker D. By [5], [2], (14) is the transversality condition for the solution of
the adjoint equation of the problem (1)-(4). Since R ~ 0, M(t) > 0 and Q(t) ~ 0 for
tECto, T], if (x(t),p(t)) is a solution of (9) with Dx(T)=O and p(T) satisfying (15),
then x (r), t E [s, T] is an optimal trajectory for the problem (1), (3), (4) with initial
state xes), the corresponding optimal control being generated by the feedback law

(16) U (t) = -M-1(t )B (t)p(t) = -M-1(t )B (t )W(t)x (t)

for s ~ t < T. Since 7Tx (L(S» = R n, the points x (s) obtained in this way for all possible
choices of x(T) and p(T) fill up all R",

We have

I
T d

x'(s) W(s)x (s) = p (s)x (s) = - s dt (p (t)x (t» dt +p'(T)x (T)

= x'(T)Rx (T) - f.T [p'(I)X (I)+p'(I)i (I)] dt

= x'(T)Rx(T) + J.T [X'(I)Q(I)X (I) +U'(I)M(I)U(I)] dt.

Since x (z), U (t) are the optimal trajectory and control, respectively, this completes the
proof.

4. The noncontrollable problem. In this section we consider the problem (1)-(4),
but unlike in [1], [2], we shall not assume that the system (1) with output g=Dx is
output controllable. It is obvious that the set of points that can be controlled to the
terminal set Dx(T) = 0 on [s, T] is a linear subspace of R n, but for a nonautonomous
problem it is moving with s in general, and it is not entirely obvious how to characterize
it.

The following theorem gives two characterizations of this subspace-one in terms
of the flow on GR (n), the other in terms of the approximation scheme of [1]. Also,
it shows that for this approximation scheme to work, the output controllability
assumption is not essential.

As in [1], we denote by OIl '[ (y) the set of controls steering the system from the
point y to the terminal set (4) on [s, T] and by Wm the solution of (5) satisfying the
terminal condition Wm(T) =R +mD'D. Note that y'Wm(s)y is the minimal value of
the cost for the unconstrained problem (1)-(3), (6). The optimal control um(t) for this
problem is given by the optimal feedback law

(17) U = -M-1(t )B ' (t ) Wm(t)x,

i.e., we have um(t) = -M-1(t )B ' (t )Wm(t )Xm(t ), where xm(t) is the solution of the
equation

with xm(s) = y.
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(18)
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Denote

U(s) = {yIOZL;(y):j= 0},

yeS) ={yllim sup y'Wm(s)y <OO},
m~OO

L(s) = <Ps,T({(X, p )IDx = 0, p - Rx E Range D'}).

THEOREM 2. For all s E [to, T),

U(s) = Yes) = 1Tx (L (s» .

For y E U(s), the optimal control uo(t) for the problem (1)-(4) is given by

uo(t) = lim um(t) = - lim M- 1(t )B '(t)Wm(t )xm(t ),
m~OO m~OO

and the optimal value of the cost is given by

(19)

Proof. First, we prove Yes) c U(s). From (9) we obtain by simple calculation for
any k, m, s fixed, y =Xi(S) and Pi(t) = Wi(t)xJt), i = k, m,

(20)

TJ [(xm(r) - Xk (t»)'Q(t)(xm(t) - Xk (t» + (um(t) - Uk (t»'M (t)(Um(z)- ui: (t»J dt
s

J
T d

= - s dt [(Pm (t) - pi: (t»'(X m(t) - Xk (t»J dt

= -(Pm (T) - Pk(T»)'(x m(T) - xdT»

= -(Xm(T)-Xk(T»'(Wm(T)xm(T)- Wk(T)Xk(T»

= -(xm(T) - xk(T))'(R + kD'D)(xm(T) - xk(T»

- (Xm (T) - xi; (T»'(m - k )D'Dxm (T)

= -(xm(T) -xdT»'(R + kD'D)(xm(T) -xk(T»

- (m -k)x:n(T)D'Dxm(T) +x~(T)(Wm(T) - Wk(T»)xm(T).

Using the invariance of w, we have

x ~(T)(Wm (T) - Wk(T»xm(T) = P:n(T)Xk(T) - p~(T)xm(T)

= p:n(s )Xk (s) - P~ (S)xm(s )

= y'(Wm(s)- Wds»y.

Denote Dk,m(S) = y'(Wm(s)- Wk(s»y.

8k(s ) = lim Dk,m(S);
m~OO

(21) 02Dk,m(S)28k(s)<oo, lim 8ds)=0 fork<m,yE Yes).
k~oo
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(22)

From (20) it follows that

Sk.m(S) =r[(xm(t)-Xk(t»)'Q(t)(xm(t)-Xk(t»)

+ (Urn (t) - Uk(t))'M(t)(um(t) - Uk(t))J dt

+ (Xm(T) - xk(T))'(R +kD'D)(xm(T) - xk(T))

+(m -k)x~(T)D'DXm(T).

Since all the right-hand side terms are nonnegative, we have

(23)
(m -k)llDxm(T)11

2
= (m -k)x~(T)D'Dxm(T) = 8k,m(s) ~8k(S),

o~ IIDx m (T)112 ~ --.!-k 8ds),
m-

and, by (21),

lim IIDx m (T )1I = O.
m-..OO

Also, from (22) it follows that

sup IT (um(t)-uk(t))'M(t)(um(t)-Uk(t)) dt~§k(S).
m s

Since M(t) is continuous and positive definite on [s, TJ, it is uniformly positive definite
on [s, TJ. From this and (21) it follows that {urn} is a Cauchy sequence in L 2(s, T) and
therefore has a limit uo(t) in L 2(s, T). From the representation of Xm(t) by the variation
of constant formula it follows immediately that {xm } converges uniformly to the
response xo(t) of uo(t) satisfyingxefs) = y.

By (23), we have
Dxo(T) =0.

This proves V(s) c U(s) and also the second equality of (19). To prove the first
equality (having as its consequence the optimality of uo) we note that for each U E oil '[ (y )
we have

On the other hand, we have

C;(y, uo) = lim y'Wm(s)y = lim C;'m (y, urn)
m-..oo m-..OO

c; (y, u) = C;'m (y, u) ~min C;'m (y, u) = y'Wm(s)y.

This also proves U (s) c V (s). To complete the proof of the theorem it remains to prove
the second equality of (18).

If y E7rx (L (s)) then there exists a solution (x(t),p(t)) of (9) with Dx(T)=O such
that xes) = y. The function x(t) is a response of the control u(t) = -M-1(t)B'(t)p(t)

which means U E OU;(y). Consequently, OU;(y) ~ 0 and y E U(s).
On the other hand, if y E U(s), then by [5J, there exists an optimal control u« in

OU;(y), the responsexair) of which, together with a suitable function p (t), satisfies
(9). In addition, peT) satisfies the transversality condition (15). This proves y E 7r x (L (s )).

Remark 1. Since Urn ~ Uo in L 2(s, T) we have

= lim C;(y, um)+mIIDxm(T)11
2

•
m-..oo

(25)

(24)
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From (24), (25) we obtain

lim mIlDxm(T)1I
2 = 0,

1n~CX)

or

IIDxm (T)112 = 0 (m -1/2).

This gives an estimate for the deviation of the endpoint of the optimal trajectory of
the approximate unconstrained problem from the terminal set.

Remark 2. From 'Trx(L(s» = U(s) it follows that the dimension of 1Tx(L (s» cannot
decrease with s decreasing. From [6J it follows that for A, B analytic it is constant
for s < T and equal to the dimension of the space Ker D + C, where C = span {bi(T),
(sdbi)(T), ... , (d n

-
1bi)(T)li = 1, ... , n}, where b, are the column vectors of Band

.sIif(t)= f(t) - Af(t) for a differentiable function f on [to, TJ.
Theorem 2 allows us to deal with the problem (1)-(3) with additional constraints

and costs at intermediate points of the interval. We shall restrict ourselves to the case
of one intermediate point, the extension to the case of a higher number of points
being straightforward.

Let T 1E (to, T), ql ~ n and let R 1 ~ 0, D 1 be n x n symmetric and qs x n with full
rank, respectively. Consider the problem given by the system (1), the initial point (2),
the cost function

(26)

the constraints (4) and

(27)

Of course, for s E tT«, TJ the problem coincides with the problem (1)-(4).
Let Vet), Wm(t) be defined as in Theorem 2. It is obvious that the optimal control

for the problem (1), (2), (26), (4), (27) for s = T 1 will be a concatenation of the optimal
control on [s, T 1Jfor the problem (1), (2), the cost function

and the linear constraint

and the optimal control for the problem (1), (3), (4), with initial point x (tl) on [tl, TJ.

5. The infinite interval. Consider the unconstrained problem (1), (3) withR = 0
and denote W T the corresponding solution of (5), which is the solution satisfying
W

T
(T) = 0. For fixed s, y, denote u T, x T the optimal control and trajectory respectively.

In [lJ, we have shown that limT400 W T (s) exists and represents the optimal cost for
the infinite interval problem, provided for each s, y there exists a u such that C~ (y, u) =
limT400 c; (y, u) < 00. Like Theorem 2, the following theorem deals with problems
not satisfying this condition.

By Uoo(s) we denote the set of those y ERn for which there is a control u on
[s, 00) such that C;(y, u)<oo. Further, we denote

Voo(s) = {y I+~ y'WT(s)y <oo}.
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By L~(s, (0) we denote the space of functions u: [s, (0) ~ R r which are square integrable
with weight M(t), i.e., J:' u'(t)M(t)u (t) dt < 00. L~(s, (0) is a Banach space.

THEOREM 3. We have UOO(s) = VOO(s) for every s ~ to.For y E UOO(s) we have

min cC; (y, u) = lim y'WT(s)y.
U T-+oo

The optimal control UOO(t) and trajectory xoo(t) are given by

(28)

(29)

uOO(t) = lim uT(t)
T-+oo

x OO(t) = lim x T(z)
T-+oo

(in L~(s, (0)),

(uniformly on each finite interval).
Let us note that in (28), (29) we understand u T, x T to be extended to [s, (0) by

having value 0 for t > T.
Proof. Let y E VOO(s), T2= T1~ s. Denote WTi = Wi, XTi =Xi, UTi = u; i = 1, 2. By

computations similar to those leading to (20) we obtain

y'(W,(S) - W 2(S»y =f [(Xl(t) - X2(t»'Q(t)(Xl(t) - X2(t»

+ (Ul(t) - u2(t))'M(t)(Ul(t) - U2(t))] dt

+ (xl(T1)- x2(T1))W1(T1)(Xl(T1) - x2(T1))

(30) +x2(T1)(W2(T1)- W1(T1))X2(T1)

=f' [(x 1(t) - X2(t»'Q(t)(X 1(t) - X2(t» + (Ul(t)

- u2(t))'M(t)(Ul(t) - U2(t))] dt

+JT
2

[X2(t)'Q(t)X2(t) + U~ (t)M(t)U2(2)] dt
Tl

~f' (U,(t) - u2(t»'M(t)(U,(t) - U2(t» dt.

From the estimate (30) it follows that the family of functions {UTIT ~ s} is a Cauchy
family in L~(s, (0). Since L~(s, (0) is complete, it has a limit u EL~(s, (0). From the
variation of constants formula it follows immediately that the response x 00 of u 00 is a
pointwise limit of the functions x T, the convergence being uniform on each finite
subinterval of [s, (0).

For every fixed To~ s we have

C:o (y, UOO) = lim ct- (y, u T) = lim C: (y, uT) = lim y'WT(s)y,
T-+oo T-+oo T-+oo

from which it follows that c; (y, UOO) is finite and, thus, that VOO(s) c UOO(s). On the
other hand, we have for any control u,

(31) C:O(y, U)~y'WTO(S)Y.

From (30), (31) it follows that

CC;(y, u)~CC;(y, UOO) = lim y'WT(s)y,
T-+oo

which implies that u 00 is optimal.
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The inclusion Uoo(S) C Voo(s) follows immediately from (31).
Note added in proof. There is an overlap of our § 4 and the paper of G. Chen

and W. Mills, Finite elements and terminal penalization for quadratic cost optimal
control problems governed by ordinary differential equations, this Journal, 19 (1981),
pp. 744-764. In particular, the essential part of Theorem 3 or our paper is contained
in Theorem 2.2 of the quoted paper.
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