NUMBERS OF ZEROS ON INVARIANT MANIFOLDS IN REACTIONDIFFUSION EQUATIONS

Pavol Brunovský
Univerzita Komenského, Institute of Applied Mathematics, Mlynská dolina, 84215 Bratislava 2, ČSSR and
Bernold Fiedler
Sonderforschungsbereich 123, Universität Heidelberg, Im Neuenheimer Feld 293, 6900 Heidelberg, FRG

(Received 10 November 1984; received for publication 9 April 1985)
Key words and phrases: Lap number, zero number, invariant manifolds, reaction-diffusion equation.

INTRODUCTION

CONSIDER the one-dimensional reaction-diffusion equation

$$
\begin{equation*}
u_{t}=u_{x x}+f(x, u), t>0,0<x<1 \tag{0.1}
\end{equation*}
$$

with the Dirichlet boundary conditions

$$
\begin{equation*}
u(t, 0)=u(t, 1)=0, \tag{0.2}
\end{equation*}
$$

where $f:[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$ is $B C^{1} \cap C^{\kappa}, \kappa>1$. The equations (0.1), (0.2) can be viewed as a particular case of the abstract equation

$$
\begin{equation*}
\mathrm{d} u / \mathrm{d} t+A u=f(u) \tag{0.3}
\end{equation*}
$$

in a Banach space X, the basic theory of which is developed in [5]. For (0.1), (0.2), $X=$ $L^{2}[0,1], A$ is the closure of the operator defined by $A v=-v^{\prime \prime}$ for $v \in C^{2}[0,1], v(0)=v(1)=$ $0, F: L^{2}[0,1] \rightarrow L^{2}[0,1]$ is given by $F(v)(x)=f(x, v(x))$. We frequently work in the Hilbert space $X^{1}=\mathscr{D}(A)=H_{0}^{1}([0,1]) \cap H^{2}([0,1])$ with $F: X^{1} \rightarrow X^{1}$ also being C_{κ}. Let $|\cdot|$ denote the norm on X^{1}.

Applying the results of [5] one obtains that (0.1), (0.2) generates a local semiflow S on X^{1}. The semiflow S is a continuous map of an open neighbourhood U of $\{0\} \times X^{1}$ in $\mathbb{R}^{+} \times X^{1}$ into X^{1} defined by

$$
S_{t}(v)(x)=u(t, x) \quad \text { for } \quad(t, v) \in U
$$

where u is the solution of $(0.1),(0.2)$, satisfying

$$
\begin{equation*}
u(0, x)=v(x) \text { for } 0<x<1 . \tag{0.4}
\end{equation*}
$$

It has the properties $S_{0}(v)=v, S_{t+s}(v)=S_{t} \circ S_{s}(v)$ as long as (s, v) and $\left(t, S_{s}(v)\right)$ are in U [5]. In order not to obscure the formulations by technicalities we shall assume that S is a global semiflow, i.e. $U=\mathbb{R}^{+} \times X^{1}$. This is by no means an essential restriction; sufficient conditions can be found in [5, Chapter 3].

The critical points of S are the stationary solutions of (0.1), (0.2), i.e. the solutions of the equation

$$
\begin{equation*}
v^{\prime \prime}+f(x, v)=0, v(0)=v(1)=0 \tag{0.5}
\end{equation*}
$$

The qualitative properties of S near a critical point v are determined by the linearization of (0.1), (0.2) at v which is the equation

$$
\begin{align*}
& y_{t}=y_{x x}+f_{u}(x, v(x)) y \tag{0.6}\\
& y(t, 0)=y(t, 1)=0 \tag{0.7}
\end{align*}
$$

The solution v is called hyperbolic if 0 is not an eigenvalue of the operator $L=A-F^{\prime}(v)$, i.e. (0.6), (0.7) do not admit a nontrivial stationary solution y.

An important information about the global structure of the semiflow of (0.1), (0.2) is given by the orbit connections of different stationary solutions [2,3,5]. By a connecting orbit of the stationary solutions v_{1}, v_{2} we understand a solution u of (0.1), (0.2) which exists for all $t \in(-\infty, \infty)$ and satisfies

$$
\lim _{t \rightarrow-\infty} u(t, x)=v_{1}(x), \lim _{t \rightarrow \infty} u(t, x)=v_{2}(x)
$$

in $H^{2}[0,1]$. In the terminology of [5], $u(t, \cdot)$ has to be in the stable manifold of v_{2} and the unstable manifold of v_{1}, provided v_{1}, v_{2} are hyperbolic.

In this paper we obtain estimates on the number of zeros (or, more precisely, the zero number defined below) of $u(t, \cdot)-v_{1}$ and $u(t, \cdot)-v_{2}$. This information can be used to conclude existence and nonexistence of connections. Our approach provides an alternative to the (slightly different) zero number of u_{i}, which was used by Hale and Nascimento [3] to solve the connection problem for f of the Chafee-Infante type (see e.g. [5, Section 5.3]).

For any continuous function $\phi:[0,1] \rightarrow \mathbb{R}$ we define the zero number $z(\phi)$ as follows. Let $n \geqq 0$ be the maximal element of $\mathbb{N}_{0} \cup\{\infty\}$ such that there is a strictly increasing sequence $0 \leqq$ $x_{0}<x_{1}<\ldots<x_{n} \leqq 1$ with $\phi\left(x_{j}\right)$ of alternating signs:

$$
\phi\left(x_{j}\right) \cdot \phi\left(x_{j+1}\right)<0 \quad \text { for } 0 \leqq j<n .
$$

If n is finite let $z(\phi):=n$, and $z(\phi):=\infty$ otherwise. Note that we put $z(0):=0$.
As a first example consider the linearized equation (0.6), (0.7). The operator $L=A-F^{\prime}(v)$ has eigenvalues $\lambda_{0}<\lambda_{1}<\ldots$ with eigenfunctions $\phi_{0}, \phi_{1}, \ldots$ By Sturm-Liouville theory $z\left(\phi_{k}\right)=k$ and indeed it is a classical result (see [0, p. 549]) that for $0 \leqq i<j<\infty$

$$
\begin{equation*}
i \leqq z(\phi) \leqq j, \tag{0.8}
\end{equation*}
$$

whenever ϕ is a (nontrivial) linear combination of $\phi_{i}, \ldots, \phi_{j}$. As a trivial illustration of our approach we prove estimate (0.8) in corollary 1.2 , using the dynamic equation (0.6), (0.7).

All our results depend on a basic observation, lemma 1.1, going back to Redheffer, Walter [8] and, more recently, Matano [6]. According to lemma 1.1,

$$
z(u(t, \cdot)) \text { is nonincreasing }
$$

as a function of time t along solutions of equation (0.1), (0.2) provided that f satisfies the condition.

$$
\begin{equation*}
f(x, 0)=0 \text { for } 0<x<1 \tag{0.9}
\end{equation*}
$$

The proof is elementary and relies on the maximum principle for parabolic equations. For the convenience of the reader we present it in detail below.

In the nonlinear case, let v be a hyperbolic stationary solution of (0.1), (0.2). Then the eigenvalues λ_{j} of the linearized equation with corresponding eigenfunctions ϕ_{j} satisfy $\lambda_{0}<\ldots<\lambda_{n-1}<0<\lambda_{n}<\ldots$ for some $n \geqq 0$. Further by [5, theorems 5.2.1, 6.1.9] there exist immersed invariant C^{K}-manifolds W^{u} and $W^{s} \subset X^{1}$ of the flow S through $v=0$ with the properties:
(i) for $w \in W^{u}$ (resp. W^{s}) the solution $u(t, \cdot)=S(t) w$ exists for all real t and satisfies $\lim u(t, \cdot)=v$ as $t \rightarrow-\infty$, (resp. $t \rightarrow+\infty)$;
(ii) the tangent space of $W^{u}\left(\right.$ resp. $\left.W^{s}\right)$ at v is spanned by the ϕ_{k} with $k<n$ (resp. $k \geqq n$).
W^{u} is called the unstable manifold and W^{s} the stable manifold of v.
Our mair result, given in Sections 2 and 3, states that

$$
\begin{equation*}
z(w-v)<\operatorname{dim} W^{u} \quad \text { for } \quad w \in W^{u} \tag{0.10}
\end{equation*}
$$

(theorem 2.1) and

$$
\begin{equation*}
z(w-v) \geqq \operatorname{dim} W^{u} \quad \text { for } \quad w \in W^{s} \backslash\{v\} \tag{0.11}
\end{equation*}
$$

(theorem 3.2). Note that these estimates are suggested by the respective tangent spaces of W^{u} and W^{s}, together with the Sturm-Liouville estimate (0.8).

The crucial observation of our proof is that for $v \equiv 0$:

$$
\begin{equation*}
\lim \frac{u(t)}{|u(t)|}=\phi_{k} \tag{0.12}
\end{equation*}
$$

-for $t \rightarrow-\infty$ on W^{u} and some $k<n$
-for $t \rightarrow+\infty$ on W^{s} and some $k \geqq n$, provided that $z(u(t, \cdot))$ is eventually finite.
Actually it is quite simple to prove (0.12) on W^{u}, as we will indicate at the end of Section 2. However, analysis on the infinite dimensional stable manifold W^{s} is quite delicate and we need detailed information on the fine structure of W^{s} before we can prove (0.12). For illustration we pursue an analogous approach to W^{u} in Section 1, as a preparation to the stable manifold case.

1. COUNTING ZEROS

In the introduction we defined the zero number $z(\phi)$ of a continuous real function ϕ as the maximal number of sign changes of ϕ. In this section we show that z decreases along solutions $u(t, \cdot)$ of the parabolic equation (0.1) with Dirichlet boundary conditions, assuming that

$$
\begin{equation*}
f(x, 0)=0 \text { for all } x \in I \tag{1.1}
\end{equation*}
$$

$I:=[0,1]$. This result is essentially in $\left[8\right.$, corollary 3] who consider $f=f\left(t, x, u_{x}, u_{x x}\right)$ independent of u. Similarly, Matano [6] investigates the lap number of ϕ, which is the zero number of ϕ_{x} and was called "maximum order of a saw in ϕ " by Redheffer and Walter [8].

Note that by definition the function

$$
z: C^{0}(I) \rightarrow \mathbb{N} \cup\{\infty\}
$$

is lower semicontinuous. Further, z is constant in a C^{1}-neighbourhood of any C^{1}-function ϕ with only simple zeros. These trivial facts will become important later on.

The parabolic equation (0.1), (0.2) generates a semiflow $S(t) u_{0}=u(t)=u(t, \cdot)$ on $X^{1} \subset$ $H_{0}^{1} \subset C^{0}(I)$, thus $z(u(t))$ is well defined along solutions.

Lemma 1.1. [6, 8]. Let $f(x, 0)=0$ for all $x \in I$. Then the zero number $z(u(t, \cdot))$ is nonincreasing as a function of t along solutions $u(t, \cdot)$ of (0.1), (0.2).

Proof. With $a(t, x):=(f(x, u(t, x))) /(u(t, x))$ we write (0.1) as

$$
\begin{equation*}
u_{t}=u_{x x}+a u, \tag{1.2}
\end{equation*}
$$

where a is C^{0}. We apply the maximum principle to (1.2) to prove: if $x_{1}^{\prime}, x_{2}^{\prime} \in I$ are such that $u\left(t, x_{1}^{\prime}\right)<0<u\left(t, x_{2}^{\prime}\right)$ then there exist continuous paths γ_{i} in $I \times[0, t]$ connecting $\left(t, x_{i}^{\prime}\right)$ to a point $\left(0, x_{i}\right)$, such that $u<0$ (resp. $u>0$) along γ_{1} (resp. γ_{2}). To see that assume $0<x_{1}^{\prime}<$ $x_{2}^{\prime}<1$, the case $x_{1}^{\prime}>x_{2}^{\prime}$ is analogous. Let D_{i} be the path connected component of $\left(t, x_{i}^{\prime}\right)$ in the relatively open set

$$
K_{i}:=\left\{(\tau, \xi) \in[0, t] \times I \mid(-1)^{i} u(\tau, \xi)>0\right\} .
$$

We claim that we can find elements $\left(0, x_{i}\right) \in D_{i}$. Otherwise, e.g. D_{2} is contained in the strip $(0, t] \times I$. Replacing u by $u \mathrm{e}^{\alpha t}$ does not change d_{2} and allows us to assume $a<0$, hence $A u:=$ $u_{x x}-u_{t} \geqq 0$ on \bar{D}_{2}. Let $M:=\max _{\bar{D}_{2}} u>0$ and choose a point $(\bar{t}, \bar{x}) \in \bar{D}_{2}$ with minimal \bar{t} such that $u(\bar{t}, \bar{x})=M$. From $M>0$ we conclude $(\bar{t}, \bar{x}) \in D_{2}$, hence $\bar{t}>0$. This implies a contradiction to the strong maximum principle: let $E:=D_{2}$ and apply [7, III.2, lemma 3] to conclude $u<M$ on $d_{2} \cap(\{\bar{t}\} \times I)$, contradicting $(\bar{t}, \bar{x}) \in D_{2} \cap(\{\bar{t}\} \times I)$. Therefore there are points $\left(0, x_{i}\right) \in D_{i}$.

Invoking the Jordan curve theorem comletes the proof.
As a trivial but illustrative application, we prove estimate (0.8) for finite linear combinations

$$
\begin{equation*}
\phi^{0}=\sum_{k=i}^{j} \alpha_{k} \cdot \phi_{k} \tag{1.3}
\end{equation*}
$$

of Sturm-Liouville eigenfunctions ϕ_{k} for the potential $a(x):=f_{u}(x, v(x))$. We use the flow (1.2), defining a solution $\phi(t, \cdot)$ with initial condition $\phi(0, \cdot)=\phi^{0}$ and Dirichlet conditions.

Corollary 1.2. If the Sturm-Liouville potential a is continuous, $0 \leqq i<j<\infty$ and $\phi^{0} \equiv 0$, then

$$
i \leqq z\left(\phi^{0}\right) \leqq j
$$

Proof. We use the explicit representation

$$
\begin{equation*}
\phi(t, \cdot)=\sum_{k=i}^{j} \alpha_{k} \mathrm{e}^{\lambda_{k} t} \phi_{k} \tag{1.4}
\end{equation*}
$$

of the solution $\phi(t, \cdot), t \in \mathbb{R}$ of (1.2) through ϕ^{0}. From (1.4), ϕ^{0} 丰 0 it is immediate that there exist integers $k^{ \pm} \in\{i, i+1, \ldots, j\}$ such that

$$
\lim _{t \rightarrow \pm \infty} \phi(t) /|\phi(t)|=\operatorname{sign}\left(\alpha_{k^{ \pm}}\right) \phi_{k^{ \pm}}
$$

in the C^{1}-topology (normalizing $\left|\phi_{k}\right|=1$), because the λ_{k} are pairwise disjoint. The ϕ_{k} have
only simple zeros, hence z is constant in a C^{1}-neighbourhood of ϕ_{k}. By monotonicity of z along solutions of (1.2) (lemma 1.1) we conclude for $T>0$ sufficiently large

$$
i \leqq k^{+}=z(\phi(T, \cdot) /|\phi(T, \cdot)|)=z(\phi(T, \cdot)) \leqq z\left(\phi^{0}\right) \leqq z(\phi(-T, \cdot))=k^{-} \leqq j
$$

and the proof is complete.
Note that the corollary holds even if $j=\infty$.

2. ZEROS ON THE UNSTABLE MANIFOLD

In this section we prove that for any element w of an n-dimensional unstable manifold of v there are less than n zeros of $w-v$. On our way we investigate the fine structure of the unstable manifold. Finally we relate $z(w-v)$ to the number of zeros of v_{x}.

Let v be a hyperbolic stationary solution of (0.1), (0.2) with eigenvalues $\lambda_{0}<\ldots<\lambda_{n-1}<0<\lambda_{n}<\ldots$ of the linearization (0.6), (0.7) and eigenfunctions ϕ_{k}. By $E^{s}, E^{u}, E^{s} \oplus E^{u}=I$ we denote the complementary projections of X onto the stable and unstable spaces of the linearization $L=A-F^{\prime}(v)$ at v, \quad and by $E_{k}, \quad k=0, \ldots, n-1$, $E_{0} \oplus E_{1}+\ldots \oplus E_{n-1}=E^{u}$ the projections onto the subspaces spanned by ϕ_{k}.

TheOrem 2.1. Let v be a hyperbolic stationary solution as above. Then there exists an increasing sequence $W_{0} \subset \ldots \subset W_{n-1}=W^{u}$ of invariant C^{k}-submanifolds of the unstable manifold W^{u} through v such that
(i) $\operatorname{dim} W_{k}=k+1$, and the tangent space to W_{k} at v is spanned by $\phi_{0}, \ldots, \phi_{k}$;
(ii) for any $w \in W_{k} \backslash W_{k-1}$

$$
\begin{equation*}
\lim _{t \rightarrow-\infty}\left(S_{t}(w)-v\right) /\left|S_{t}(w)-v\right|= \pm \phi_{k} \tag{2.1}
\end{equation*}
$$

where the flow S_{t} for $t<0$ is defined by $S_{-t}\left(S_{t}(w)\right)=w$ on W^{u};
(iii) for $w \in W_{k} \backslash W_{k-1}$ and t near $-\infty$ the zero number z satisfies

$$
z\left(S_{t}(w)-v\right)=k ;
$$

and $S_{t}(x)-v$ has precisely k simple zeros in $(0,1)$;
(iv) for $w \in W_{k} \backslash W_{k-1}$, we obtain

$$
z(w-v) \leqq k
$$

and consequently for all $w \in W^{u}$

$$
z(w-v)<\operatorname{dim} W^{u} .
$$

Note that by [5, Section 7.3], S_{t} is well defined for $t<0$ on W^{u}.
At the end of this section we outline a simple idea for the proof of theorem 2.1 which uses finite dimensionality of W^{u}. Another idea which also works for the infinite dimensional stable manifold (see Section 3) can be illustrated in the case dim $W^{u}=2$. The linearization of the flow on W^{u} near v looks like Fig. 1, where ϕ_{0}, ϕ_{1} are represented by the coordinate vectors. All integral curves $\gamma(t)=\alpha_{0}(t) \phi_{0}+\alpha_{1}(t) \phi_{1}$ which are not identically zero have the property $\alpha_{0}(t) \alpha_{1}^{-1}(t) \rightarrow 0$ for $t \rightarrow-\infty$ except of two which have $\alpha_{1}(t)=0$. Qualitatively, this picture is not destroyed by nonlinearities. The exceptional trajectories become W_{0} in the notation of the

Fig. 1. The strongly unstable manifold W^{0} and a general trajectory γ outside W^{0}.
theorem. A trajectory γ on W^{u} satisfies

$$
\gamma(t)=v+\alpha_{0}(t) \phi_{0}+\alpha_{1}(t) \phi_{1}+O\left(\left|\alpha_{0}(t)\right|+\left|\alpha_{1}(t)\right|\right) \quad \text { for } t \rightarrow-\infty .
$$

The exceptional ones satisfy in addition $\alpha_{1}(t)=o\left(\alpha_{0}(t)\right)$, all the others $\alpha_{0}(t)=o\left(\alpha_{1}(t)\right)$ for $t \rightarrow-\infty$. Consequently, $\alpha_{0}^{-1}(t)(\gamma(t)-v)$ mimicks ϕ_{0} in the first case while $\alpha_{1}^{-1}(t)(\gamma(t)-v)$ mimicks ϕ_{1} in the second case for t near $-\infty$. In particular, it will have the same zero number as ϕ_{0}, ϕ_{1} respectively. We employ lemma 1.1 to conclude that $(\gamma(t)-v)$ does not increase with t, hence

$$
z(\gamma(0)) \leqq \max \left(z\left(\phi_{0}\right), z\left(\phi_{1}\right)\right)=1 .
$$

To carry out the idea in detail we need the following.
Lemma 2.2. Consider a differential equation on a neighbourhood U of the origin in $\mathbb{R}^{n}=$ $\mathbb{R}^{p} \times \mathbb{R}^{q}$ defined by

$$
\begin{align*}
& \dot{\mathbf{x}}=A x+f(\mathbf{x}, \mathbf{y}) \tag{2.2}\\
& \dot{\mathbf{y}}=\mathbf{B y}+\mathbf{g}(\mathbf{x}, \mathbf{y}) \tag{2.3}
\end{align*}
$$

$\left(\mathbf{x} \in \mathbb{R}^{p}, \mathbf{y} \in \mathbb{R}^{q}\right)$. Assume that all eigenvalues of $\mathbf{A}(\mathbf{B})$ have negative real parts $\leqq a_{0}\left(\geqq b_{0}\right.$, respectively), where $a_{0}<b_{0}<0, \mathbf{f}, \mathbf{g}$ are $C^{k}, k>0$ and satisfy

$$
\lim _{(\mathbf{x}, \mathbf{y}) \rightarrow 0} \mathbf{f}(\mathbf{x}, \mathbf{y})|(\mathbf{x}, \mathbf{y})|^{-1}=\mathbf{0}, \lim _{(\mathbf{x}, \mathbf{y}) \rightarrow 0} \mathbf{g}(\mathbf{x}, \mathbf{y})|(\mathbf{x}, \mathbf{y})|^{-1}=\mathbf{0}
$$

Then, there exists a positively invariant neighbourhood Ω of $\mathbf{0}$ and a p-dimensional C^{k} submanifold W of Ω through $(\mathbf{0}, \mathbf{0})$ tangent to the subspace $\mathbf{y}=\mathbf{0}$ at $(\mathbf{0}, \mathbf{0})$ such that each solution $(\mathbf{x}(t), \mathbf{y}(t))$ of (2.2), (2.3) with $(\mathbf{x}(0), \mathbf{y}(0)) \in \Omega \backslash W$ satisfies

$$
\begin{equation*}
\lim _{t \rightarrow \infty}|\mathbf{y}(t)|^{-1} \mathbf{x}(t)=\mathbf{0} \tag{2.4}
\end{equation*}
$$

Proof. For the finite dimensional case considered here, it is easy to prove (2.4) directly from (2.2), (2.3), choosing suitable scalar products on $\mathbb{R}^{p}, \mathbb{R}^{q}$ and deriving a differential inequality for $\eta(t):=|\mathbf{x}(t)|^{2} /|\mathbf{y}(t)|^{2}$. However, we give a different proof which carries over without change to an infinite dimensional situation occurring in the stable manifold (see lemma 3.1 and its proof in the appendix).

The existence of Ω and an invariant manifold W tangent to the subspace $\mathbf{y}=\mathbf{0}$ at $(\mathbf{0}, \mathbf{0})$ follows from [4, lemma 4.1 and corollary 5.1 , chapter IX]. If Ω is chosen sufficiently small, W can be represented as the graph of a C^{k} function h from some neighbourhood of $\mathbf{0}$ in the x space into \mathbb{R}^{q} with $\mathbf{h}^{\prime}(\mathbf{0})=\mathbf{0}$. It follows from [4] that if one introduces in Ω new coordinates $\mathbf{u}=\mathbf{x}, \mathbf{v}=\mathbf{y}-\mathbf{h}(\mathbf{x})$ then the (\mathbf{u}, \mathbf{v})-representation $\boldsymbol{\Phi}:(\mathbf{u}, \mathbf{v}) \rightarrow\left(\mathbf{u}_{1}, \mathbf{v}_{1}\right)$ of the time one map of (2.2), (2.3) satisfies

$$
\begin{align*}
\mathbf{u}_{1} & =\overline{\mathbf{A}} \mathbf{u}+\mathbf{U}(\mathbf{u}, \mathbf{v}) \tag{2.5}\\
\mathbf{v}_{1} & =\overline{\mathbf{B}} \mathbf{v}+\mathbf{V}(\mathbf{u}, \mathbf{v}) \tag{2.6}
\end{align*}
$$

with \mathbf{U}, \mathbf{V} having similar properties as \mathbf{f}, \mathbf{g} in (2.2), (2.3) and, in addition, $\mathbf{V}(\mathbf{u}, \mathbf{0})=\mathbf{0}$. The time one map of a differential equation maps initial values of its solutions into their values at time one.

By choosing suitable norms $|\cdot|$ in the \mathbf{u}-, \mathbf{v}-spaces we can assume

$$
\begin{aligned}
& |\mathbf{A u}|<(a+\theta)|\mathbf{u}| \\
& |\mathbf{B v}|>(b-\theta)|\mathbf{v}|
\end{aligned}
$$

where $a:=\exp a_{0}, b:=\exp b_{0}$ and $0<\theta<(b-a) / 2, \theta<b$. Also, there is a positive function $\kappa(\rho)$ on some right neighbourhood of zero such that $\kappa(\rho) \rightarrow 0$ for $\rho \rightarrow 0$ and

$$
|\mathbf{U}(\mathbf{u}, \mathbf{v})|<\kappa(\rho)(|\mathbf{u}|+|\mathbf{v}|),|\mathbf{V}(\mathbf{u}, \mathbf{v})|<\kappa(\rho)|\mathbf{v}|
$$

if $|\mathbf{u}|+|\mathbf{v}|<\rho$.
Let now $(\mathbf{u}, \mathbf{v}) \in \Omega$ and let Ω be so small that $\left|\mathbf{u}_{1}\right|<|\mathbf{u}|,\left|\mathbf{v}_{1}\right|<|\mathbf{v}|$. Then, we have

$$
\begin{equation*}
\left.\frac{\left|\mathbf{u}_{1}\right|}{\left|\mathbf{v}_{1}\right|}<\frac{(a+\theta)|\mathbf{u}|+\kappa(\rho)(|\mathbf{u}|+|\mathbf{v}|)}{(b-\theta)|\mathbf{v}|-\kappa(\rho)|\mathbf{v}|}=\frac{a+\theta+\kappa(\rho)}{b-\theta-\kappa(\rho)} \right\rvert\, \frac{|\mathbf{u}|}{|\mathbf{v}|}+\frac{\kappa(\rho)}{b-\theta-\kappa(\rho)} . \tag{2.7}
\end{equation*}
$$

Let

$$
\alpha \in\left(\frac{a+\theta}{b-\theta}, 1\right), \beta(\rho):=\frac{\kappa(\rho)}{b-\theta-\kappa(\rho)} .
$$

We have $\lim _{\rho \rightarrow 0} \beta(\rho)=0$ and there exists a $\rho_{0}>0$ such that $a+\theta+\kappa(\rho)<\alpha(b-\theta-\kappa(\rho))$ for any $\rho<\rho_{0}$. From (2.7) we have for $\varepsilon \in(0,1-\alpha)$

$$
\begin{equation*}
\frac{\left|\mathbf{u}_{1}\right|}{\left|\mathbf{v}_{1}\right|}<(\alpha+\varepsilon) \frac{|\mathbf{u}|}{|\mathbf{v}|} \quad \text { as soon as } \frac{|\mathbf{u}|}{|\mathbf{v}|}>\frac{\beta(\rho)}{\varepsilon} . \tag{2.8}
\end{equation*}
$$

Choose any $\left(\mathbf{u}_{0}, \mathbf{v}_{0}\right) \in \Omega$ with $\mathbf{v}_{0} \neq 0$ and any $\gamma>0$. We prove that there exists an $N>0$ such that $\left|\mathbf{u}_{k}\right|<\gamma\left|\mathbf{v}_{k}\right|$ for all $k>N$ where $\left(\mathbf{u}_{k}, \mathbf{v}_{k}\right)=\boldsymbol{\Phi}^{k}\left(\mathbf{u}_{0}, \mathbf{v}_{0}\right)$. Indeed, assume the contrary. Since $\left(\mathbf{u}_{k}, \mathbf{v}_{k}\right) \rightarrow \mathbf{0}$, there exists an N_{0} such that $\left|\mathbf{u}_{k}\right|+\left|\mathbf{v}_{k}\right|<\boldsymbol{\rho}_{1} \leqq \boldsymbol{\rho}_{0}$ for all $k \geqq N_{0}$, where $\beta\left(\rho_{1}\right) / \varepsilon<\gamma$. From (2.8) it follows that

$$
\begin{equation*}
\left|\mathbf{u}_{k+1}\right|<\gamma\left|\mathbf{v}_{k+1}\right| \text { as soon as } \quad\left|\mathbf{u}_{k}\right|+\left|\mathbf{v}_{k}\right|<\rho_{1} \quad \text { and } \quad\left|\mathbf{u}_{k}\right|<\gamma\left|\mathbf{v}_{k}\right| \tag{2.9}
\end{equation*}
$$

If $\left|\mathbf{u}_{k}\right|>\gamma\left|\mathbf{v}_{k}\right|$ for $k \geqq N_{0}$ then by (2.8) also

$$
\gamma<\frac{\left|\mathbf{u}_{k}\right|}{\left|\mathbf{v}_{k}\right|}<(\alpha+\varepsilon)^{k-N_{0}} \frac{\left|\mathbf{u}_{N_{0}}\right|}{\left|\mathbf{v}_{N_{0}}\right|} \text { for } k \geqq N_{0}
$$

which is impossible. Thus, there exists an $N \geqq N_{0}$ for which $\left|\mathbf{u}_{N}\right|<\gamma\left|\mathbf{v}_{N}\right|$. By (2.9), we have $\left|\mathbf{u}_{k}\right|<\gamma\left|\mathbf{v}_{k}\right|$ for all $k>N$. Since γ was arbitrary, $\lim _{k \rightarrow \infty}\left|\mathbf{v}_{k}\right|^{-1} \mathbf{u}_{k}=0$.

For the differential equation (2.2), (2.3) this means that if $(\mathbf{x}(t), \mathbf{y}(t))$ is its solution with $(\mathbf{x}(0), \mathbf{y}(0)) \in \Omega \backslash W$ (or, equivalently, $\mathbf{y}(0) \neq \mathbf{h}(\mathbf{x}(0))$), then

$$
\begin{equation*}
\lim _{\substack{k \rightarrow \infty \\ k \text { integer }}} \frac{|\mathbf{x}(k)|}{\mathbf{y}(k)-\mathbf{h}(\mathbf{x}(k)) \mid}=0 . \tag{2.10}
\end{equation*}
$$

We have

$$
\begin{align*}
\frac{|\mathbf{x}(k)|}{|\mathbf{y}(k)|} & =\frac{|\mathbf{x}(k)|}{\mid \mathbf{y}(k)-\mathbf{h}(k)) \mid} \frac{|\mathbf{y}(k)-\mathbf{h}(\mathbf{x}(k))|}{|\mathbf{y}(k)|} \\
& \leqq \frac{|\mathbf{x}(k)|}{|\mathbf{y}(k)-\mathbf{h}(\mathbf{x}(k))|}\left(1+\frac{|\mathbf{h}(\mathbf{x}(k))|}{|\mathbf{y}(k)|}\right) \tag{2.11}\\
& \leqq \frac{|\mathbf{x}(k)|}{|\mathbf{y}(k)-\mathbf{h}(\mathbf{x}(k))|}\left(1+\frac{|\mathbf{h}(\mathbf{x}(k))|}{|\mathbf{x}(k)|} \frac{|\mathbf{x}(k)|}{|\mathbf{y}(k)|}\right),
\end{align*}
$$

or,

$$
\frac{|\mathbf{x}(k)|}{|\mathbf{y}(k)|}\left(1-\frac{|\mathbf{x}(k)|}{|\mathbf{y}(k)-\mathbf{h}(\mathbf{x}(k))|} \frac{|\mathbf{h}(\mathbf{x}(k))|}{|\mathbf{x}(k)|}\right) \leqq \frac{|\mathbf{x}(k)|}{|\mathbf{y}(k)-\mathbf{h}(\mathbf{x}(k))|} .
$$

Since $\mathbf{h}(\mathbf{x})=o(|\mathbf{x}|)$, from (2.10), (2.11) we obtain

$$
\begin{equation*}
\lim _{\substack{k \rightarrow \infty \\ k i n t e g e r}} \frac{|\mathbf{x}(k)|}{|\mathbf{y}(k)|}=0 . \tag{2.12}
\end{equation*}
$$

Let now $k \leqq t<k+1$. By standard Gronwall estimates and the variation of constants formula we obtain:

$$
|(\mathbf{x}(t), \mathbf{y}(t))| \leqq C|(\mathbf{x}(k), \mathbf{y}(k))|=: \rho \quad \text { for all } k \text { and } t \in[k, k+1)
$$

with some $C \geqq 1$. Again by Gronwall and variation of constants we obtain

$$
\begin{aligned}
& |\mathbf{x}(t)| \leqq C_{1}(|\mathbf{x}(k)|+\hat{\kappa}(\rho) \cdot(|\mathbf{x}(k)|+|\mathbf{y}(k)|)) \\
& |\mathbf{y}(t)| \leqq C_{2}(|\mathbf{y}(k)|-\hat{\kappa}(\rho) \cdot(|\mathbf{x}(k)|+|\mathbf{y}(k)|))
\end{aligned}
$$

for all $k \in \mathbb{N}, t \in[k, k+1)$, suitable constants $C_{1}, C_{2}>0$ and a function $\hat{\kappa}(\rho)$ satisfying

$$
\lim _{\rho \rightarrow 0} \hat{\kappa}(\rho)=0
$$

Thus we have (for all $k \in \mathbb{N}, t \in[k, k+1$))

$$
\frac{|\mathbf{x}(t)|}{|\mathbf{y}(t)|} \leqq \frac{C_{1}}{C_{2}} \cdot \frac{|\mathbf{x}(k)| \cdot|\mathbf{y}(k)|^{-1} \cdot(1+\hat{\kappa}(\rho))+\hat{\kappa}(\rho)}{1-\hat{\kappa}(\rho)\left(1+|\mathbf{x}(k)| \cdot|\mathbf{y}(k)|^{-1}\right)}
$$

and (2.12) readily implies (2.4), completing the proof of the lemma.

Proof of theorem 2.1. A neighbourhood V of v in W^{u} can be considered as an open subset Ω of \mathbb{R}^{n}, the coordinates $\mathbf{z}=\left(z_{0}, \ldots, z_{n-1}\right)$ chosen in such a way that $z_{k}(w)=E_{k}(w-\dot{v})$ for $w \in W^{u}$ near v. Then, locally at v, the restriction of (0.1), (0.2) to W^{u} has the form

$$
\begin{equation*}
\dot{\mathbf{z}}=\mathbf{C} \mathbf{z}+\mathbf{q}(\mathbf{z}) \tag{2.13}
\end{equation*}
$$

where $\mathbf{C}=\operatorname{diag}\left\{-\lambda_{0}, \ldots,-\lambda_{n-1}\right\}, q$ is C^{K} and $\mathbf{q}^{\prime}(\mathbf{0})=\mathbf{0}$.
Consider the associated system

$$
\mathrm{d} \mathbf{z} / \mathrm{d} \tau=-\mathbf{C z}-\mathbf{q}(\mathbf{z})
$$

which is obtained from (2.13) by time reversal $\tau=-t$. This system satisfies the assumptions of lemma 2.2 with $\mathbf{x}=\left(z_{0}, \ldots, z_{n-2}\right), \mathbf{y}=z_{n-1}$. We denote by \tilde{W}_{n-2} the submanifold W the existence of which is asserted in lemma 2.2. It is given by an equation

$$
z_{n-1}=h_{n-2}\left(z_{0}, \ldots, z_{n-2}\right), \quad \mathbf{z} \in \Omega
$$

where h_{n-2} is C^{K} and satisfies

$$
\begin{equation*}
h_{n-2}(\mathbf{0})=0 . \tag{2.14}
\end{equation*}
$$

By lemma 2.2, if $\mathbf{z}(t)$ is a solution of (2.13) with

$$
\begin{equation*}
\mathbf{z}(0) \in \Omega, z_{n-1}(0) \neq h_{n-2}\left(z_{0}, \ldots, z_{n-2}\right) \tag{2.15}
\end{equation*}
$$

then

$$
\begin{equation*}
\lim _{t \rightarrow-\infty}\left|z^{n-1}(t)\right|^{-1}\left|\left(z_{0}(t), \ldots, z_{n-2}(t)\right)\right|=0 . \tag{2.16}
\end{equation*}
$$

From (2.14) it follows that

$$
\begin{equation*}
\lim _{t \rightarrow-\infty}\left|z_{n-1}(t)\right| \mid\left(z_{0}(t), \ldots,\left.z_{n-2}(t)\right|^{-1}=0\right. \tag{2.17}
\end{equation*}
$$

if (2.15) does not hold. Since W^{u} is tangent to the unstable space of L, from (2.16), (2.17) it follows respectively

$$
\begin{equation*}
\lim _{t \rightarrow-\infty}\left|E_{n-1}\left(S_{t}(w)-v\right)\right|^{-1}\left|\left(I-E_{n-1}\right)\left(S_{t}(w)-v\right)\right|=0 \tag{2.18}
\end{equation*}
$$

for $w \in V \backslash \tilde{W}_{n-2}$ and

$$
\begin{equation*}
\lim _{t \rightarrow-\infty}\left|\left(E_{n-1}+E^{s}\right)\left(S_{t}(w)-v\right)\right|\left|\left(I-E_{n-1}-E^{s}\right)\left(S_{t}(w)-v\right)\right|^{-1}=0 \tag{2.19}
\end{equation*}
$$

for $w \in \tilde{W}_{n-2}$. We define $W_{n-2}=\left\{S_{t}\left(\tilde{W}_{n-2}\right) \mid t \geqq 0\right\}$. By [5, theorem 6.1.9], W_{n-2} is an invariant submanifold of W^{u}. The properties (2.18), (2.19) obviously extend to $w \in W^{u} \backslash W_{n-2}, W_{n-2}$, respectively.

On W_{n-2}, the differential equation is again of form (2.13) with $\mathbf{C}=\operatorname{diag}\left\{-\lambda_{0}, \ldots,-\lambda_{n-2}\right\}$. Applying lemma 2.2 to the equation on W_{n-2} we obtain an $(n-2)$-dimensional submanifold \tilde{W}_{n-3} of \tilde{W}_{n-2} represented by

$$
z_{n-2}=h_{n-3}\left(z_{0}, \ldots, z_{n-3}\right)
$$

with

$$
\begin{equation*}
h_{n-3}(\mathbf{0})=0 \tag{2.20}
\end{equation*}
$$

such that

$$
\begin{equation*}
\lim _{t \rightarrow-\infty}\left|z_{n-2}(t)\right|^{-1}\left|\left(z_{0}(t), \ldots, z_{n-3}(t)\right)\right|=0 \tag{2.21}
\end{equation*}
$$

for all solutions $z(t)$ with $z_{n-2}(0) \neq h_{n-2}\left(z_{0}, \ldots, z_{n-3}\right)$. Again, we extend \tilde{W}_{n-3} to an invariant submanifold of W_{n-2} by $W_{n-3}=\left\{S_{t}\left(\tilde{W}_{n-3}\right), t \geqq 0\right\}$. From (2.19) and (2.21) it follows that

$$
\lim _{t \rightarrow-\infty}\left|E_{n-2}\left(S_{t}(w)-v\right)\right|^{-1} \cdot\left|\left(I-E_{n-2}\right)\left(S_{t}(w)-v\right)\right|=0
$$

for $w \in W_{n-2} \backslash W_{n-3}$ while for $w \in W_{n-3}$ it follows from (2.19) and (2.20) that

$$
\lim _{t \rightarrow-\infty}\left|\sum_{k=0}^{n-3} E_{k}\left(S_{t}(w)-v\right)\right|^{-1} \mid\left(I-\sum_{k=0}^{n-3} E_{k}\left(S_{t}(w)-v\right) \mid=0\right.
$$

In this way we may proceed further and after $n-1$ steps obtains all the ($k+1$)-dimensional manifolds W_{k} such that for $w \in W_{k} \backslash W_{k-1}$ we have

$$
\lim _{t \rightarrow-\infty}\left|\left(I-E_{k}\right)\left(S_{t}(w)-v\right)\right| /\left|E_{k}\left(S_{t}(w)-v\right)\right|=0 .
$$

This in turn implies for $w \in W_{k} \mid W_{k-1}$ that

$$
\begin{equation*}
\lim _{t \rightarrow-\infty}\left(S_{t}(w)-v\right) /\left|S_{t}(w)-v\right|= \pm \phi_{k} . \tag{2.1}
\end{equation*}
$$

Recall that the above limit is considered in $X^{1} \subset C^{1}(I)$, and ϕ_{k} has only simple zeros with $z\left(\phi_{k}\right)=k$. By our remark preceding lemma 1.1 this implies

$$
z\left(S_{t}(w)-v\right)=k
$$

for t near $-\infty$.
Now we invoke lemma 1.1 for $z(u(t)), u(t):=S_{i}(w)-v$. Note that u satisfies an equation

$$
\begin{gathered}
u_{t}=u_{x x}+\hat{f}(x, u), \\
u(t, 0)=u(t, 1)=0,
\end{gathered}
$$

where $\hat{f}(x, u):=f(x, u+v(x))-f(x, v(x))$. Hence $\hat{f}(x, 0)=0$ and lemma 1.1 implies for t near $-\infty$

$$
z(w-v)=z(u(0)) \leqq z(u(t))=z\left(S_{t}(w)-v\right)=k .
$$

This completes the proof of theorem 2.1.
From our theorem we deduce a relation between the number of changes of monotonicity of a hyperbolic stationary solution v (some "lap-number", cf. [6]) and the zero number $z(w-v)$ on the unstable manifold of v.

Corollary 2.3. Let v be a stationary hyperbolic solution of (0.1), (0.2), $v_{x} \equiv 0$, and let $w \in W^{u}$ be in its unstable manifold. Then

$$
z(w-v)<z\left(v_{x}\right) .
$$

Proof. Due to theorem 2.1 it suffices to prove that $n:=\operatorname{dim} W^{u} \leqq z\left(v_{x}\right)$.
The function $y:=v_{x}$ solves the linearized equation

$$
y_{x x}+f_{u}(x, v(x)) y=0 .
$$

On the other hand, the eigenfunction ϕ_{n-1} has $n+1$ zeros on the closed interval [0,1]. By the comparison theorem, between any two consecutive zeros of ϕ_{n-1} there has to be a zero of v_{x}. By $v_{x} \equiv 0$, all zeros of v_{x} are simple. This implies $z\left(v_{x}\right) \geqq n$ and the proof is complete.

We outline an alternate proof of theorem 2.1 , (iv) which works only for W^{u}, as far as we know. Consider any trajectory $u(t)$ on $W^{u} \backslash\{v\}$ and let $y(t):=u(t) /|u(t)|$ be its projection onto the unit sphere. Then obviously

$$
\lim _{t \rightarrow-\infty} E^{s} y(t)=0 .
$$

Since W^{u} is finite dimensional, we may thus pick a sequence $t_{k} \rightarrow-\infty$ such that

$$
\begin{equation*}
\phi:=\lim _{t_{k} \rightarrow-\infty} y\left(t_{k}\right) \tag{2.22}
\end{equation*}
$$

exists in $X^{1} \subset C^{1}(I)$. But ϕ is in the unstable eigenspace of v, hence Section 1 implies for t_{k} near $-\infty$

$$
z(w-v)=z(u(0)) \leqslant z\left(u\left(t_{k}\right)\right)=z\left(y\left(t_{k}\right)\right)=z(\phi)<n=\operatorname{dim} W^{u},
$$

without any intermediate construction of W_{k}.

3. ZEROS ON THE STABLE MANIFOLD

We turn to investigate the zero number $z(w-v)$ on the stable manifold W^{s} of the hyperbolic stationary solution v of (0.1), (0.2), keeping the assumptions and notations of Section 2 in effect.

Similarly to the unstable case we need the following lemma on the fine structure of W^{s}.
Lemma 3.1. Assuming hyperbolicity of v above and $f \in C^{\kappa}, \kappa \geqq 2$, there exists a decreasing sequence $W^{s}=W_{n} \supset W_{n+1} \supset \ldots$ of invariant C^{K}-submanifolds of the stable manifold W^{s} through v such that
(i) the tangent space to W_{k} at v is spanned by $\phi_{k}, \phi_{k+1}, \ldots$
(ii) for any $w \in W_{k} \backslash W_{k+1}$

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left(S_{t}(w)-v\right) /\left|S_{t}(w)-v\right|= \pm \phi_{k} . \tag{3.1}
\end{equation*}
$$

We defer the proof of this lemma to the appendix.

As an immediate consequence of lemma 3.1 we can conclude for $w \in W_{k} \backslash W_{k+1}, k \geqq n$, that $u(t):=S_{t}(w)-v$ satisfies

$$
\begin{align*}
z(w-v) & \geqq \lim _{t \rightarrow \infty} z(u(t))=\lim _{t \rightarrow \infty} z(u(t) /|u(t)|) \geqq z\left(\lim _{t \rightarrow \infty} u(t) /|u(t)|\right) \tag{3.2}\\
& =z\left(\pm \phi_{k}\right)=k,
\end{align*}
$$

by lower semicontinuity of z and monotonicity of z (lemma 1.1). However, this does not imply $z \geqq n$ on all of W^{s}, if for example

$$
\bigcap_{k \geqq n} W_{k} \neq\{v\} .
$$

To remedy this point we use the following alternative which is proved in [1]:
(i) either $z(u(t))$ stays infinite for all $t \geqq 0$;
(ii) or $z\left(u\left(t_{0}\right)\right)<\infty$ for some $t_{0} \geqq 0$, and $u(t)$ has only simple zeros for an open dense set of $t \in\left[t_{0}, \infty\right)$.
Using this fact, we will conclude below that

$$
\bigcap_{k \geqq n} W_{k} \subset\{w \mid z(w-v)=\infty\} \cup\{v\} .
$$

Theorem 3.2. Let v be a hyperbolic stationary solution of (0.1), (0.2) as above. Then for $w \in W_{k} \subseteq W^{s}, w \neq v$ we obtain

$$
z(w-v) \geqq k
$$

and in particular for all $w \in W^{s}\{\{v\}$

$$
z(w-v) \geqq \operatorname{dim} W^{u} .
$$

Proof. With the preceding remarks it is sufficient to prove for $w \neq v$

$$
z(w-v) \geqq k \quad \text { for all } w \in W_{k+1}, \quad k \geqq n
$$

Obviously we may assume that $z(w-v)<\infty$. Then, by [1, theorem], there exists a $t \geqq 0$ such that $u(t, \cdot)=S_{t}(w)-v$ has only simple zeros. Because W_{k+1} has codimension 1 in W_{k} we may then choose $\tilde{u} \in W_{k} \backslash W_{k+1}$ such that

$$
z(\tilde{u})=z(u(t))
$$

(just choosing $\|u-u(t)\|_{\left.C^{1}()\right)}$ small enough). But by the remarks above

$$
z(\tilde{u}) \geqq k,
$$

thus monotonicity of z (lemma 1.1) yields

$$
z(w-v)=z(u(0)) \geqq z(u(t))=z(\tilde{u}) \geqq k
$$

and we are done.

4. APPENDIX

[^0]\[

$$
\begin{equation*}
\frac{\mathrm{d} u}{\mathrm{~d} t}+A u=f(u) \tag{4.1}
\end{equation*}
$$

\]

in a Banach space X with norm $|\cdot|$, where A is sectorial linear $X \rightarrow X ; f: U \rightarrow X$ is C^{κ}, where U is a neighborhood of 0 in $X^{\alpha}, \kappa \geqq 1,0 \leqq \alpha<1 ; f(0)=0$.

Let $L:=A-f^{\prime}(0)$ have spectrum $\sigma(L)$. By $u\left(t ; u_{0}\right)$ we denote the solution of (4.1) with initial data $u\left(0 ; u_{0}\right)=$ $u_{0} \in X^{\alpha}$.
The following lemma is well known in the finite dimensional case. It replaces [4, lemma 5.1 and corollary 5.1, chapter IX] in the proof of the infinite dimensional version of lemma 2.2. Its proof is modelled in close analogy to [5, theorem 5.2.1]. Nevertheless, for the convenience of the reader we give a detailed proof.

Lemma 4.1. Assume $\gamma>0$ is such that $\sigma(L)=\sigma_{1} \cup \sigma_{2}, \sigma_{1}=\sigma(L) \cap\{\operatorname{Re} \lambda<\gamma\}, \sigma_{2}=\sigma(L) \cap\{\operatorname{Re} \lambda>\gamma\}$ is a decomposition of $\sigma(L)$ into spectral sets. Let $X=X_{1} \oplus X_{2}$ be the decomposition of X corresponding to the decomposition of $\sigma(L)$ and let E_{1} and E_{2} be the spectral projections onto X_{1} and X_{2} respectively, $E_{1} \oplus E_{2}=I$.

Then there exist $\rho>0, M>0$ and a local invariant C^{κ} submanifold S of the ball $\left\{|u|_{\alpha}<\rho / 2 M\right\}$ such that:
(i) S is C^{k} diffeomorphic under $E_{2} \mid s$ to an open neighborhood of 0 in $X_{2}^{\alpha}:=X_{2} \cap X^{\alpha}$;
(ii) S is tangent to X_{2}^{α} at 0 ;
(iii) if $\left|E_{2} u(0)\right|_{\alpha}<\rho / 2 M$ and $|u(t)|_{\alpha} \mathrm{e}^{\gamma t}<\rho$ for all $t \geqq 0$ then $u(0) \in S$;
(iv) if $u(0) \in S$ then

$$
\sup _{t \geq 0}|u(t)|_{\alpha} \mathrm{e}^{\gamma t}<\infty .
$$

Proof. Without loss of generality assume $\sigma(A) \subset\{\operatorname{Re} \lambda>0\}$. By L_{1}, L_{2} denote the restrictions of L to X_{1}, X_{2} respectively, let $T_{i}(t):=\exp \left(-L_{i} t\right)$ be the semigroup on X_{i} generated by L_{i} and $u_{i}:=E_{i} u$ the X_{i}-component of u. Note that $\operatorname{dim} X_{1}<\infty, L_{1}$ is bounded and there exist $0<\beta<\gamma<\delta$ such that

$$
\begin{gather*}
\left|T_{1}(t)\right| \leqq M \mathrm{e}^{-\beta t},\left|A^{\alpha} T_{1}(t)\right| \leqq M \mathrm{e}^{-\beta t} \quad \text { for } t \leqq 0, \\
\left|A^{\alpha} T_{2}(t) E_{2} A^{-\alpha}\right| \leqq M \mathrm{e}^{-\delta t},\left|A^{\alpha} T_{2}(t)\right| \leqq M t^{-\alpha} \mathrm{e}^{-\delta t} \quad \text { for } t \geqq 0 . \tag{4.2}
\end{gather*}
$$

Write $g(u):=f(u)-f^{\prime}(0) u$ with components $g_{i}:=E_{i} g$. Then there exists a positive function k on $\left(0, \rho_{0}\right), \rho_{0}>0$ such that $k(\rho) \rightarrow 0$ for $\rho \rightarrow 0$ and

$$
\left|g\left(u^{1}\right)-g\left(u^{2}\right)\right| \leqq k(\rho)\left|u^{1}-u^{2}\right|_{\alpha}
$$

as soon as $\left|u^{i}\right|_{\alpha}<\rho, j=1,2$. By [5, lemma 3.3.2], $u(t)$ solves (4.1) iff $u(t)$ solves the variation of constants version of (4.1)

$$
\begin{align*}
& u_{1}(t)=T_{1}(t) u_{1}(0)+\int_{0}^{t} T_{1}(t-s) g_{1}(u(s)) \mathrm{d} s \tag{4.1}\\
& u_{2}(t)=T_{2}(t) u_{1}(0)+\int_{0}^{t} T_{2}(t-s) g_{2}(u(s)) \mathrm{d} s .
\end{align*}
$$

Assuming that the solution $u(t)$ satisfies

$$
\begin{equation*}
|u(t)|_{\alpha} \mathrm{e}^{\gamma t} \text { is bounded as } t \rightarrow \infty, \tag{4.3}
\end{equation*}
$$

we conclude that for $t \rightarrow \infty$

$$
\left|T_{1}(-t) u_{1}(t)\right|_{\alpha} \leqq M \mathrm{e}^{\beta t}\left|u_{1}(t)\right|_{\alpha} \rightarrow 0
$$

which implies

$$
u_{1}(0)=-\int_{0}^{\infty} T_{1}(-s) g_{1}(u(s)) \mathrm{d} s
$$

and, again by (4.1)', we obtain

$$
\begin{equation*}
u(t)=T_{2}(t) a+\int_{0}^{t} T_{2}(t-s) g_{2}(u(s)) \mathrm{d} s-\int_{t}^{\infty} T_{1}(t-s) g_{1}(u(s)) \mathrm{d} s \tag{4.4}
\end{equation*}
$$

where $a:=E_{2} u(0) \in X_{2}$.
We show that for $\rho>0$ sufficiently small integral equation (4.4) has a unique solution $u_{a}(t)$ satisfying $\left|u_{a}(t)\right|_{\alpha} \mathrm{e}^{\gamma t}<\rho$ provided $|a|_{\alpha}<\rho / 2 M$.

Let R_{ρ} be the set of continuous functions $u:[0, \infty) \rightarrow X^{\alpha}$ such that

$$
\|u(\cdot)\|:=\sup _{t \geqq 0}|u(t)|_{\alpha} \mathrm{e}^{\gamma t} \leqq \rho
$$

is finite. The set R_{ρ} endowed with the metric generated by $\|\cdot\|$ is a complete metric space. We claim that for ρ small enough and $\|a\|_{\alpha}<\rho / 2 M, a \in X_{2}^{\alpha}$ the map F_{a} defined by

$$
F_{a}(u(\cdot))(t):=T_{2}(t) a+\int_{0}^{t} T_{2}(t-s) g_{2}(u(s)) \mathrm{d} s-\int_{t}^{\infty} T_{1}(t-s) g_{1}(u(s)) \mathrm{d} s
$$

is a contraction $R_{\rho} \rightarrow R_{\rho}$. Indeed

$$
\begin{align*}
& \left\|F_{a}(u(\cdot))\right\| \leqq \sup _{t \geqq 0} \mathrm{e}^{\gamma t}\left|T_{2}(t) a\right|_{\alpha}+\sup _{t \geqq 0} \int_{0}^{t} \mathrm{e}^{\gamma t}\left|A^{\alpha} T_{2}(t-s)\right| \cdot\left|g_{2}(u(s))\right| \mathrm{d} s \\
& \quad+\sup _{t \geqq 0} \int_{t}^{\infty} \mathrm{e}^{\gamma t}\left|A^{\alpha} T_{1}(t-s)\right| \cdot\left|g_{1}(u(s))\right| \mathrm{d} s \\
& \quad \leqq M|a|_{\alpha}+\left|E_{2}\right| \sup _{t \geqq 0} \int_{0}^{t} \mathrm{e}^{\gamma t} M(t-s)^{-\alpha} \mathrm{e}^{-\delta(t-s)} k(\rho)|u(s)|_{\alpha} \mathrm{d} s \\
& \quad+\left|E_{1}\right| \sup _{t \geqq 0} \int_{t}^{\infty} \mathrm{e}^{\gamma t} M \mathrm{e}^{-\beta(t-s)} k(\rho)|u(s)|_{\alpha} \mathrm{d} s \tag{4.5}\\
& \quad \leqq M|a|_{\alpha}+\left|E_{2}\right| M \cdot k(\rho) \int_{0}^{\infty} t^{-\alpha} \mathrm{e}^{(\gamma-\delta) t} \mathrm{~d} t \cdot\|u(\cdot)\| \\
& \quad+\left|E_{1}\right| M k(\rho) \int_{0}^{\infty} \mathrm{e}^{(\beta-\gamma) t} \mathrm{~d} t \cdot\|u(\cdot)\| \\
& \quad \leqq M \cdot|a|_{\alpha}+M k(\rho) \cdot C\|u(\cdot)\|,
\end{align*}
$$

with some constant C independent of ρ. Thus, if $|a|_{\alpha}<\rho / 2 M$ and $\rho>0$ is small enough that $k(\rho) \cdot C<\rho / 2 M$, then F_{a} maps R_{ρ} into R_{ρ}. Also, repeating the same steps as in (4.5) we find

$$
\left\|F_{a}\left(u^{1}(\cdot)\right)-F_{a}\left(u^{2}(\cdot)\right)\right\| \leqq \frac{1}{2}\left\|u^{1}(\cdot)-u^{2}(\cdot)\right\|
$$

as soon as $\left\|u^{j}(\cdot)\right\| \leqq \rho, j=1,2$, so F_{a} is a contraction in R_{ρ}. Consequently, F_{a} has a unique fixed point $u(\cdot) \in R_{\rho}$ which solves (4.4).

The map $(u(\cdot), a) \rightarrow F_{a}(u(\cdot))$ is C^{κ} on $R_{\rho} \times\left(\left\{|a|_{\alpha}<\rho / 2 M\right\} \cap X_{2}^{\alpha}\right)$. Indeed, the map is linear in a and estimating as in (4.5) one obtains

$$
\begin{aligned}
& \sup _{t \geq 0} \mathrm{e}^{\gamma t} \mid \varepsilon^{-1}\left(F_{a}(u(\cdot)+\varepsilon v(\cdot))(t)-F_{a}(u(\cdot))(t)\right) \\
& \quad-\int_{0}^{t} T_{2}(t-s) g_{2}^{\prime}(u(s)) v(s) \mathrm{d} s+\left.\int_{t}^{\infty} T_{1}(t-s) g_{1}^{\prime}(u(s)) v(s) \mathrm{d} s\right|_{\alpha} \rightarrow 0 \quad \text { for } \varepsilon \rightarrow 0 .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
(v(\cdot), b) \rightarrow T_{2}(t) b+\int_{0}^{t} T_{2}(t-s) g_{2}^{\prime}(u(s)) v(s) \mathrm{d} s-\int_{t}^{x} T_{1}(t-s) g_{1}^{\prime}(u(s)) v(s) \mathrm{d} s \tag{4.6}
\end{equation*}
$$

is the Gâteaux differential of the map $(u(\cdot), a) \rightarrow F_{a}(u(\cdot))$. Since the map (4.6) is continuous in $(v(\cdot), b)$, the differential is Fréchet and $(u(\cdot), a) \rightarrow F_{a}(u(\cdot))$ is C^{1}. To obtain C^{K} we iterate the arguments above.
By [5, 1.2.6] the fixed point $u_{a}(\cdot)$ of F_{a} is a C^{κ}-function of a in $\left\{|a|_{\alpha}<\rho / 2 M\right\} \cap X_{2}^{\alpha}$. Consequently the map $h:\left\{|a|_{\alpha}<\rho / 2 M\right\} \cap X_{2}^{\alpha} \rightarrow X_{\alpha}$ defined by

$$
h(a):=u_{a}(0)=a-\int_{0}^{\infty} T_{1}(-s) g_{1}\left(u_{a}(s)\right) \mathrm{d} s
$$

is C^{κ} and, since $E_{2} h(a)=E_{2} a=a$, has a C^{κ} inverse on its image S. Thus,

$$
h:\left\{|a|_{\alpha}<\rho / 2 M\right\} \cap X_{2}^{\alpha} \rightarrow X_{\alpha}
$$

is a C^{κ}-diffeomorphism. This proves (i) and, using $g_{1}^{\prime}(0)=0$, as a direct consequence (ii). By definition of R_{ρ}, (iv) holds.

By construction and (4.4), S is invariant with respect to the semitlow (4.1). If $\left|E_{2} u(0)\right|_{\alpha}<\rho / 2 M$ and $|u(t)|_{\alpha} \mathrm{e}^{\gamma t}<\rho$
for all $t \geqq 0$, then we have shown that $u(\cdot)$ satisfies (4.4). Since $u(\cdot) \in R_{\rho}$ and $u(t)=u_{a}(t)$ with $a:=E_{2}(0$ $u(0) \in S$. Thus (iii) holds and the proof is complete.

Proof of lemma 3.1. Existence of the manifolds W_{k} as claimed in lemma 3.1 follows from lemma 4.1, c, with $\lambda_{k-1}<\gamma<\lambda_{k}$.

Using existence of the manifolds W_{k}, we apply the proof of lemma 2.2 successively for each k on a neighborhood U of $v:=0$ (w.l.o.g.) in W_{k}, with coordinates $y=E_{k} u$ and $x=\sum_{j>k} E_{j} u$ as in the notation of Section 2. Note that the proof of lemma 2.2 carries over to analytic semigroups without the assumption that x is finite dimensional. Now lemma 2.2, together with $u(t)=S_{t}(w) \rightarrow 0$ and lemma 4.1, (ii) imply

$$
\pm \phi_{k}=\lim _{t \rightarrow \infty} \frac{\sum_{j \geq k} E_{j} u(t)}{\left|E_{k} u\right|}=\lim _{t \rightarrow \infty} \frac{\sum_{j \geq k} E_{j} u(t)}{\left|\sum_{j \leq k} E_{j} u(t)\right|}=\lim _{t \rightarrow \infty} \frac{u(t)}{|u(t)|}
$$

and the proof is complete.
Acknowledgements-The authors are indebted to W. Alt for helpful criticism.

REFERENCES

0. Atkinson F. V., Discrete and Continuous Boundary Problems, Academic Press (1964).
1. Brunovský P. \& Fiedler B., Simplicity of zeros in scalar parabolic equations, preprint (1984).
2. Hale J. K., Topics in Dynamic Bifurcation Theory, CBMS Regional Series in Mathematics No. 47, Am. Math. Soc., Providence, RI (1981).
3. Hale J. K. \& do Nascimento A. S., Orbit connections in a parabolic equation, preprint.
4. Hartman P., Ordinary Differential Equations, 2nd edition, Birkhäuser, Boston (1982).
5. Henry D., Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics 840, Springer, Berlin (1981).
6. Matano H., Nonincrease of the lap number of a solution for a one dimensional semilinear parabolic equation, Pub. Fac. Sci. Univ. Tokyo Sec. 1A, 29, 401-441 (1982).
7. Protter M. \& Weinberger H., Maximum Principles in Differential Equations, Prentice Hall, Englewood Cliffs, NJ (1967).
8. Redheffer R. M. \& Walter W., The total variation of solutions of parabolic differential equations and a maximum principle in unbounded domains, Math. Annln 209, 57-67 (1974).
9. Smoller J., Shock Waves and Reaction Diffusion Equations, Springer, New York (1983).

[^0]: We give a proof of the fine structure of the stable manifold claimed in lemma 3.1. To this end we first construct an invariant manifold corresponding to a line, splitting the spectrum of the linearization. We use a general analytic semigroup setting

