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Abstract-The optimal activity distribution in catalyst pellets for reacting systems which undergo deactiva­
tion is analysed. A general optimality criterion is developed, which allows one to conclude that, under quite
general conditions, the optimal activity distribution is of the Dirac-delta type.

INTRODUCTION

As an important component of catalyst design, opti­
mal active catalyst distribution in the porous struc­
ture of the inert support has received considerable
attention in the literature. The main results have been
recently reviewed by Dougherty and Verykios (1987).
Most previous works have been devoted to the prob­
lem of increasing .theeffectiveness factor or selectivity
in some specific reacting systems. Only a few papers
dealt with catalytic systems undergoing deactivation,
again considering specific cases (De Lancey, 1973;
Corbett and Luss, 1974; Becker and Wei, 1977a, b).
For example,De Lancey (1973) estimated the optimal
activity distribution for an isothermal first-order reac­
tion and' homogeneous poisoning using Pontrjagin's
maximum principle.

In this paper the problem of catalyst design for
systems which undergo deactivation is analysed. In
particular, we refer to noble-metal catalysts dispersed
within a particle of inert support. These systems are
widely used in industry for hydrogenation and oxida­
tion reactions, which constitute intermediate steps in
the' production of a variety of chemical products. In
most cases the catalyst undergoes deactivation. Its

aim, a. general optimality condition is derived which
allows to solve the optimization problem under quite
general conditions including any rate expression for
both the main reaction and the poisoning process
under non-isothermal conditions.

THE OPTIMIZATION PROBLEM

The catalyst which is progressively poisoned with
operating time has to· be periodically . replaced or
regenerated, depending upon whether the poisoning is
irreversible or reversible. The duration of the operat­
ing time and the values of the effectiveness factor as
a function of time depend upon the active-catalyst
distribution within the support. In general, by locat­
ing the active catalyst inside the pellet it is possible to
increase the resistance against deactivation, i.e. to
increase the duration of the operating time. On the
other hand, at least for positive-order reactions, the
maximum value of the effectiveness factor is obtained
when the active catalyst is located at the external
surface (Morbidelli et al., 1985; Chemburkar et al.,
1987).Thus, an economic criterion is needed to define
the optimal active catalyst distribution. A reasonable
one-is profit per time:

. price of the product -cost of the catalyst
profit per tune = -------------------­

operating .time

replacement or, when possible, its regeneration, con­
stitutes a significant part of the production cost.

The aim of the present paper is to optimize the
catalyst pellet performance by suitably locating the
active element within the particle support. To this

t Author to whom correspondence should be addressed.

where (Xl and (X2 are weighting coefficients propor­
tional to the price of the product and to the cost of the
catalyst, respectively, r* is the operating time, and 17 is
the effectiveness factor.

The aim of this work is to determine the initial
pellet activity distribution a (qJ, 0) and the operating
time r* for which the maximum value of the following
objective function, proportional to the profit per time,
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yf* "d-r - 1
f [a(qJ~ 0), t*] = 0 * (2)

t

(')' = at ja2 ) is obtained. We optimize over the class of
all possible distributions of the same amount of active
catalyst. Note that we admit also distributions con­
centrating the, active catalyst into isolated points
which are represented by Dirac-delta functions.

THE BASIC EQUATIONS

Let us consider a catalyst pellet in which an irre­
versible reaction is taking place together with irrevers­
ible adsorption of catalyst poison. Since the rate of the
poison adsorption is usually considerably lower than
that of the catalytic reaction (the form of which may
otherwise be arbitrary) the quasi-steady-state approx­
imation can be safely adopted. In addition, we assume
negligible external resistances to mass and heat trans­
port. The catalyst activity distribution is a function of
iocation and time, and is defined as the ratio between
the local concentration of available catalytically ac­
tive sites and its volume-averaged initial value:

Note that no restrictions are imposed on the expres­
sions of the rates of the reaction and, the poisoning
processes, for which the following general form is
assumed:

" = f <P"Rdlp!f a(lp,0)1p" dip

= (n + 1)f Ip"Rdlp = R (13)

thus representing the mean reaction rate as a function
of time.

R = R(Y, Yp,a, o); R; = Rp(Y, Yp, a, u). (12)

The effectiveness factor '1is normalized with respect to
the initial value of the reaction rate computed at
surface conditions and to tl.e initial activity distribu­
tion:

GENERAL CONDITION FOR OPTIMAL ACTIVITY

DISTRIBUTION

Consider the general deactivation process de­
scribed above [eqs(5)-(7) and (9)] in a symmetric
domain with boundary conditions (8) and initial con­
dition (10). The goal is to find the initial distribution
a(qJ, 0) subject to the constraints(3)a(qJ, r) = u(qJ, t)fa

918

defined above:

(j = (n + 1)f a(lp, 0)1p" dip. (4)

Under these conditions, the model equations in di­
mensionless form are as follows:

with initial condition

a =a(qJ, 0) at t = 0 (10)

where the initial activity distribution has to satisfy the
following constraint arising from its definition (3) and
eq. (4):

(n+ 1)fa(lp, O)<p" dip = 1. (11)

(17)

(16)

for arbitrarily small B > O.
Indeed, suppose this is not true, i.e. that eq. (16)

holds while

for some qJ~ =F lfJo. We show that in such a case it is
possible to construct another distribution a(qJ, 0) sat­
isfying the constraints (11) which violates the optimal­
ity criterion (15).

(n + 1)f Ip"fi (Ip, 0) dip = 1 and fi (Ip, 0) ~ 0 (14)

and the time i > 0, such that for t* = i and
a(qJ, 0) = a(qJ, 0) .the objective function (2)' is maxi­
mized. In the Appendix the following necessary condi­
tion for optimality is developed:

If a(lfJ, 0) is optimal, then, for any given initial
distribution a(qJ, 0), one has

f 1p"'I'(Ip, 0) fi (Ip, 0) dIp ~ f <p"'I'(Ip, 0) a(lp,O)dlp

(15)

where 'P(lfJ, r) is obtained as a solution of the system
of adjoint equations given in the Appendix with coeffi­
cients depending on a(qJ, 0), whose detailed form is in
fact irrelevant at this stage.

In order to satisfy condition (15), a(qJ, 0) can be
"substantially" non-zero solely at points lfJo at which
'P(qJ, 0) attains its maximum over [0, 1]. By "substan­
tially non-zero" we mean

(9)

(5)

(6)

(7)

oa
-= -ROt p

Mass balance of the reactant

V2 Y=.,<lJ2 R

where

Mass balance of the poison

V2 yp = <IJ; Rp

Energy balance

V2 u = - f3<IJ2 R

with boundary conditions

qJ= 0: oYjoqJ = oYpjoqJ = oujoqJ = 0

qJ = 1: Y = Yp = u = 1. (8)

The deactivation reaction is accounted for by a bal­
ance of the active sites, which in terms of the activity
distribution function reduces to
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From eq. (17) and the continuity of 'II it follows
that, for sufficiently small s > 0, all the values of
'¥(lp,O) in the interval lpo - e ~ lp ~ lpo + e are
smaller than any of its value in the interval
lp~ - e ~ tp' ~ lp~ + e. Define

therefore it is not meaningful to consider this possibil­
ity any further. Consequently, having found the opti­
mal distribution in the class of all one-peak Dirac­
delta ones we do not expect any other distribution to
improve the objective functional any further.

1

a (cp, 0) + (cp - cp~ + CPo)" a (cp - cp~ + CPo' O)/cp" for cp~ - e ~cp ~ cp~ .+... e
a(lp, 0) = 0 for lpo - e ~ lp ~ lpo + e (18)

a (lp,O) otherwise.

Then, we have a(lp, 0) ~°and

r1

cp"a(cp, O)dcp = r~; +.e cp"[a (cp, 0)
Jo J~o-s

+ (cp - cp~"+ CPo)"a (cp - cp~ + CPo' 0)] dcp
lp

+ 10, 1)\«"," _ s, "'" + e) v <",'" _ s, "'; + e» cp" a (cp, 0)dcp

=1· lpna(lp,O)dlp
<0, l)\<~o - s, ~o + s)

fll" +s

+ J""""-e (cp - cp~ + cpo)"a(cp - cp~ + CPo)dcp

=1 lp~a(lp,O)dlp
<0, l)\<~o - e, ~o + s)

i
~o + s 11+. lpna(lp,O)dlp = lpn a (lp,0)dlp = 1.
~o-S 0

(19)

In fact, for any given distribution, we have shown
through eq. (15) that it is possible to construct a suit­
able Dirac delta distribution which improves the ob­
jective functional (2). Of course, the mathematical
proof presented above is not completely rigorous and
we are not very optimistic about the change for it to
be found since '¥(lp,O) is obtained as a result of
solving a system of partial differential equations, the
coefficients of which depend on a(lp,0) itself. How­
ever, since '¥(lp, 0) is the result ofan 'integrationpro­
cess, it certainly has some continuity and well­
behaving properties. For this reason, condition (15)
can be regarded as a fully satisfactory .mathematical
justification to consider one-peak Dirac-delta func­
tion initial distributions as the only candidates for
optimal ones.

In addition, as we will see below, criterion (15)may
exclude some delta distributions as well and indicate
in which direction to move the activity location point
to find the optimal. one.

For r> 0 it is convenient to express the activity as
a product of the initial activity distribution and

which occurs together with independent chemisorp­
tion of catalyst poison, leading to the following rate
expression for the deactivation process:

First, we consider a Dirac-delta activity distribution
located at the point lpt : The initial condition, in co­
incidence with eq. (11), is

(22)

(21)R=aY

APPLICATION TO THE CASE OF INDEPENDENT

POISONING WITH FIRST-ORDER ISOTHERMAL

REACTIONS

Once it has been established that the optimal activ­
ity distribution is of the Dirac-delta type, the optimiz­
ation problem reduces to the selection, among all
possible Dirac-delta distributions, of the optimal one
depending upon the particular reacting system and
operating conditions under consideration. For illus­
trative purposes, let us consider the case of an isother­
mal first-order reaction with dimensionless rate
equation

Hence a(lp, 0) satisfies constraints (11).
Since from eq. (17) it follows that '¥(lp - lpo

+ lp~, 0) >'¥(lp, 0) for all lpo - e ~ tp ~ lpo + e,
through similar manipulations we obtain

fcp" 'II (cp, O)a(cp, O)dcp

= I.. . lpn'll (lp, 0)a (lp,0)dlp
<0, l)\<~o - s, ~o + e)

+J:."-+:'¥(CP - CPo + cp~,O)a(cp,O)dcp

>1 lpn'll (lp,0) a (lp,0) de
<0, l)\<~o - s, ~o + e)

+ J:."-+: cp"'¥(cp, 0) a (cp, 0) do

= f cp"'¥(cp,O)a (cp, O)dcp (20)

which contradicts the necessary condition for opti­
mality (15).

As a conclusion, it can be observed that the opti­
mality criterion (15) practically excludes any initial
distribution a(lp,0) which is not of the Dirac-delta
type. Indeed, it is highly unlikely that 'II(lp,0) would
attain its maximum simultaneously at more than one
point at which a(lp, 0) is substantially non-zero and
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(32)

(31)

y In Il* + y(l - Jl*)1Il* - IIIl* = O. (37)

Z(Jl*) = [(Il* - I)y + l]/lnJl*. (35)

(39)

(36)

y ~ 1/(1 -Il*).

y = 1/(1 - Il*).

From this equation we can express y as a function of
Il*:

To maximize z(Jl*) we first find its local extrema.
Those are the solutions of the equation' z' (Jl*) = 0
which is

In order to have Z(Il*) ~ 0 for some 0 ~ Il* ~ lone
needs y ~'1/(1 - Il*): for such y, z(Jl*) ~ 0 for 0 ~ Il*
~ 1 - Ill'. Note that from the expression for the right

boundary of this interval y can be expressed as

y = 1/(1l* In Il* + 1 - Il*). (38)

Since In Il* '< 0 and Jl* In Jl* + 1 - Il* > 0 for all
o~ Jl* ~.1 from eq. (37) it follows that

Comparing eqs (36) and (39) we see that for ally> II
(1 - Il*) there is a unique root of eq. (37) in the
interval <0,1 -l/y): this root is the optimal value
of Il*.

We can summarize our analysis as follows. For
each 0 < a ~ 1 there is a positive threshold value of
y below which the process cannot be profitable for any
choice of r* and Pl. For y above this threshold value
the optimal location of the active catalyst is always at
the boundary of the pellet and the optimal operating
time moves monotonically from infinity to zero for

Note that if for some Jl* the value of f is negative
for x = 0 then it remains negative for all x ~ O. Such
values of Jl* are uninteresting since for them the cata­
lytic process cannot be profitable no matter where the
active catalyst is placed.

To find the optimal value of Jl* we have to maxi­
mize the function Z(Il*) = flx=o in the subinterval of
<0, 1), in which Z is non-negative.

Using de l'Hospital's rule we obtain a formula for
zwhich is independent of a:

dJl n + 1
-= -Jl ' ..
dr n + 1 + «xu

Integrating from r == 0'10 rand u = 1to Jl we obtain

which leads to

ax
r= --(1 - III - ln rz. (33)

n+l

When using the Dirac-delta activity distribution
(23), the objective functional (2) becomes a function of
two parameters: the active point location q> 1 and the
operating timer*.Equation (33) relating rand
Jl allows us to' express the objective function (2) in
a closed form as a function of the active point location
q>t and the relative activity Il* at time r ":

q> E <0, q>l): Y = Yl , Yp = Ypl (25)

q> = q>l: Y = Yl = (n + l)/(n + 1 + xp,) (26)

Yp= Ypl = (n + l)/(n + 1 + aXJl) (27)

q> E (q> l' 1): Y = 1 - (1 - Yl) t, (q>)1t;(q> 1 ) (28)

Yp = 1- (1 - Ypl)(n(q»/(n(q>t) (29)

where (n(q» =1 - q> for n = 0

= In (1/q» for n = 1 (30)

= (1 - q»Iq> for n = 2

and x = <l>2(n(q>t), and a = <1>;/<1>2. Substituting eqs
(23), (24), (27) and the deactivation rate expression (22)
reduces eq. (9) to

oa fJ(q> - q>t) n + 1
-=- . Jl
or (n + l)q>i n + 1 + «xu

fJ(q> - q>t) dJl

(n + l)q>i dr

/'Cl: (n + 1)(n + 1 Cl: - lin n + 1 + XJ1* + 1 - J1*) - (n + 1)
*_ x a n+l+x

f (q>1' Il ) - ax (1 - Il*) - (n + 1)In Il* (34)

For 0 < a ~ 1 it readily appears that for x ~O the
denominator of eq. (34) is increasing while the numer­
ator is decreasing. It follows that, for fixed Jl*,in those
intervals of x on which f is positive, it decreases with
x. Consequently, for those values of Il* for which f is
positive for x = 0 it attains its maximum with respect
to x ~ 0 at .this point. Since x = 0 corresponds to
q>t = 1 this means that all the active catalyst should
be located atthe external pellet surface. This is be­
cause in this case <I> > <l>p, i.e. the intraparticle trans­
port resistance is larger for the main reactant than for
the poison.

the parameter y.moving from the threshold value to
infinity.

Since for a > 1 both the numerator and the denom­
inator of eq. (34) increase with x the optimal location
of the active catalyst can be somewhere inside the
pellet. Its precise location depends' upon the para­
meter y, the reaction kinetic parameters andthepellet
geometry. In this case the maximum of function (34)
with respect to x (i.e. q> t) and Jl* have to be found
numerically, using any of the standard optimization
techniques available in the literature. As an example,
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Fig. 1. (~1)cI>2 vs C( for various values of y (n :::;:: 1). Fig. 4. Optimal residual activity, Jl* vs y, for various values
of C( (n :::;:: 1).
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Fig. 2. (~1 )cI>2 vs y for various values of C( (n :::;:: 1).

0.5

'. 1.0 ---------~-------..,

(40)

which is such as to satisfy constraint (11). By recalling
that the reaction does not take place outside the
interval (qJl' qJ2> the pellet mass balances can be

Fig.. 5. Objective function, J vs y, for. various values of
C( (n :::;:: 1).

values of the ratio (X = <1>;/<1>2, the optimal location
first moves towards the pellet interior but then comes
back towards the pellet external surface, while the
optimal operation time increases monotonically. On
the other hand, from Figs 2 and 3 it appears that, for
fixed (x, decreasing values of the catalyst replacement
cost (i.e. increasing values of y) lead to optimal cata­
lyst locations closer to the pelletexternal surface and
to lower optimal operating times, -r*. However, as
expected, from the results shown in Fig. 5 it appears
that better performance is achieved when the in­
traparticle diffusion resistance of the poison is larger
than that of the main reactant.

In order to further support the results of the theor­
etical analysis reported above, and to investigate the
possibility oftheir transfer into practical applications,
let us consider the followingstep distribution function

qJE(O, qJ1) and qJE(qJ2' 1): a(qJ,r) = °
qJE(qJ1' qJ2): a(qJ,0) = 1/(qJ~+1 - qJ~+1)

3012010

5

•T

10 r-r-_----------------..,

Fig. 3. Optimal operation time, r* vs y, for various values of
C( (n :::;:: 1).

the effect of.the parameters y and (X on the optimal
active catalyst location for a cylindrical pellet (n = 1)
is shown in Figs 1 and 2, respectively. The corre­
sponding .values of the optimal operating time, opti­
mal residual activity and optimal objective function
are shown in Figs 3-5. From the results shown in Figs
1 and 3 it appears that, for fixed y and increasing
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Fig. 6. Level lines of the objective function / for various
step activity distributions (parameter values: ct = 10, y = 5,

q>2 = 1, n = 1).

(46)

(47)
'f\

(48)
~'

(49)

(50)

(51)

'P 1.00.5
o~ ---I-__~ """

o

0 0.5 'P 1.0

1.0b)

0.5
II'('P,O)

0.5

0.1

<'P, '~2)= <0.4,0.6>

0.8,.....--~

V2 P + a(1 - p<l>2) = 0

V2 q - q<l>;a - qJa = 0

8qJ/o7: + Y(1 - p<l>2) - q<l>; Yp - qJY
P

= 0

with boundary and terminal conditions

r = r: qJ (<p, 7:) = 0

rE(O,r); <P =0: op/o<p = 8q/8q> = 8qJ/o<p =0

<P = 1: p = q = O.

0) 1.0

Fig. 7. Adjoint variable qJ (lp,0) profiles. The vertical solid
line indicates location of the, optimal Dirac-delta distribution
(parameter values: ct = 10, y = 5, q>2 = 1, n = 1). (a) Step
function activity distributions. (b) Dirac-delta activity distri-

butions.

<0.6,0.75)
~ ('P,O)~--~~---~

0~6

same point. This result is of great importance with
respect, to the actual preparation of such optimally
distributed catalyst pellets, as it has been previously
discussed in the context of non-deactivating reacting
systems (Morbidelli et al., 1982).

Finally, in order to further illustrate the general
condition for optimality (15) the adjoint variable pro­
files qJ (<p, 0) for the reacting systems under examin­
ation, are shown in' Fig. 7(a) and (b) for step and
Dirac-delta activity distributions, respectively. These
have been obtained by solving numerically the system
of ,the adjoint equations which in the case under
examination reduces to

(41)

1.00.5

0.5

recasted in the following form:

<P E (0, <Pl): Y = Y1, Yp= Yp1

<P = <P 1: Y = Y1, Yp= Yp1

8Y/8<p = 8Yp/8<p = 0 (42)

<pE(<Pl' <P2): V 2Y :::::: <I>2R, V 2 Yp= <I>; Rp (43)

<P = <P2: Y = Y2, Yp= Yp2

1.0 r---------~---_

8Y/8<p = - (1 - Y2)(d'n/d<P)cp=cp)'n(/J2)

8Yp/8<p = -(1- Yp2)(d'n/d<P)cp=CP2/'n(<P2) (44)

<P E(<P2' 1): Y= 1 - (1 - Y2)'n(<P)/'n(<P2)

~ = 1 - (1 - Yp2)'n(<P)/'n(<P2). (45)

The system of eqs (41)-(45) has been solved numer­
ically, by discretizing the space coordinate <P by
a standard finite-differencescheme. The activity value
at each position inside the pellet has been computed
as a function of time by integrating eq. (9) by
a marching technique. The values of the objective
function (2) and of the effectiveness factor (13) have
been computed through suitable quadrature for­
mulae.

In the case of step activity distribution, the objec­
tive function (2) is a function of three parameters, <P 1 ,

<P2 and 1"*. In all the performed optimization runs the
optimal initial activity distribution has been given by
the narrowest possible step distribution of the
adopted discretization procedure (i.e. <P2 - <Pl = step
size in the finite-difference scheme) centered at the
optimal location predicted by the ideal Dirac-delta
distribution. A typical example is shown in Fig. 6,
where the .curves represent step distributions (i.e.
values of <Pland ({J2 with optimized operating time,
r") which exhibit the same value of the objective
function cf (2). It clearly appears that the best per­
formance corresponds to a Dirac-delta activity distri­
bution, i.e. <Pl = <P2= 0.67. It is also worth noting
that the performance of such a Dirac-delta distribu­
tion is actually quite closely approached by step dis­
tribution of relatively small width and centered at the
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Since the system parameters adopted in Figs 6 and
7 are the same, it can be noted that .also in the latter
case is the optimal Dirac-delta distribution located at
({Jl = 0.67 [as .indicated by the solid ° vertical line ·in
Fig. 7(a) and (b)]. It is rather surprising that .for all
step-size distributions considered, even the widest one
(0.05,0.95), the maximum of the qt(({J,O} curves is
very close to the location of the optimal Dirac-delta
distribution. This provides a useful initial information
for the optimum search. In Fig. 7(b) the adjoint pro­
files qt (({J, 0) are shown relative to Dirac-delta distri­
butions centered at various Iocationso.. It appears
that using criterion (15) it is possible to exclude the
locations ({Jl = OJ, 0.3and 0.5, since the correspond­
ing adjoint functions exhibit their maximum values at
other locations. In addition, the function P (({J, 0) indi­
cates in all cases that the optimal location should be
to the right (i.e. larger values of ({Jl) since the value of
the integral in the right-hand side of condition (15)
increases when moving the Dirac-delta location in
this direction. On the other hand, criterion (15) is not
fine enough-to exclude the location points to the right
of the optimal one (i.e. 0.8 and 0.9). The only way to
exclude such points is in fact by comparing the corre­
sponding values of the objective function, as has been
done in the numerical optimization procedure de­
scribed above.

CONCLUDING REMARKS

A method for determining the optimal activity dis­
tribution in catalyst pellets for reacting systems
undergoing deactivation has been developed. As the
objective function, profit per time taking into account
the price of the product and the cost .of catalyst
replacement or regeneration has been considered.
A general condition for optimality has been developed
which allows one to conclude thatDirac-delta activity
distributions are the only candidates for optimal ones.
It is remarkable that such a conclusion is of quite
general validity, since it applies to any kind of kinetic
expression for the main reaction as well as for the
poisoning process and any pellet geometry. Even
though not reported here in detail for brevity reasons,
it is worth mentioning that the same conclusion can
be reached when accounting for external mass and
heat transfer resistances as well as for other types of
objective functions. In such cases the derivation fol­
lows closely the arguments reported in the recent
paper by Wu et al. (1990) referring to the case of
non-isothermal reacting systems of a fully general
nature in the absence of deactivation. Also in this case
it has been found that the optimal activity distribution
is of the Dirac delta type.

As an illustrative example the case of an isothermal
first-order reaction with independent poisoning has
been investigated. The effect of the kinetic parameters
and operating conditions on the optimal location of
the Dirac-delta distribution, as well as on the optimal
operating time, has been discussed in detail. In par­
ticular, ithas been found that for values of the ratio

between the poison and the main-reactant Thiele
moduli smaller than one the optimal location of the
active catalyst is at the external pellet surface. For
values of this parameter larger than one the optimal
location moves towards the pellet interior to an extent
which depends upon the specific operating conditions
under examination. Finally, in order to establish the
possibility of transferring the results of this work to
practical applications, the performance of step activity
distributions has been investigated. Such distributions
have in fact been investigated experimentally in the
context of optimal catalyst design for non-deactivat­
ing systems [cf. Wu et al. (1990)].

NOTATION

a activity
a characteristic dimension of catalyst pellet
ap equilibrium poison adsorbed amount
C concentration
D diffusion coefficient
( - ~H) heat of reaction
f objectivefunction
k reaction rate constant
n integer characteristic of pellet geometry

(n = 0, slab; n = 1, cylinder; n= 2, sphere)
p adjoint variable
q adjoint variable
r reaction .rate
R dimensionless main reaction rate
Rp dimensionless poisoning rate
s adjoint variable
t time
T temperature
to characteristic deactivation time
x = <l>2'n(({Jl)' dimensionless parameter
Y = CA/CAo, dimensionless reactant concen-

tration
Yp = Cp/Cpo, dimensionless poison concentra-

tion

Greek letters
rx = <1>;/<1>2, ratio of Thiele moduli
rx 1 price of product
rx2 cost of catalyst
f3 = ( - ~H)DACAo/(A~), dimensionless reac-

tion heat
y = rx 1/rx2 , dimensionless parameter
'1effectiveness factor
A thermal conductivity
u relative activity defined by eq. (24)
(f concentration of available catalytically ac-

tive sites
't = itr, dimensionless time
u = T/~, dimensionless temperature
({J dimensionless space coordinate
<I> = a [ro/(DACAo)] 1/2, reaction Thiele modu-

lus
<l>p = a[ap/(DpCpotO)] 1/2, poison Thiele modu-

lus \
qt adjoint variable
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Subscripts
* terminal conditions
o surface conditions
p poison
1,2 activity location
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r = 0: ~a(cp, 0) = a(cp, 0) - d (cp, 0). (A9)
Thus using eqs(A4)-(A6), eq. (AI) reduces to

M = (n + 1)If qJ"(:~OY + ::p ~Yp

oR OR)+ -~u +-~a de dr
OU oa

+(n + 1)J:fqJ"p[V2~y - <l>2(:~~Y

oR e« OR)J+--~Yp -~u + -~a de dr
oYp au oa

+ (n + 1)I f qJ"q[V2~yp - <I>:(~~~Y

oR oR OR)J+ z:» ~Yp + z:» ~u + z:» ~a. de dr
oYp OU oa

+ (n + 1)J:fqJ"s[V2~U + P<l>2(:~~Y

+ oR bYp+ oR bu + oR ba)JdCPdt
oYp OU oa

iiil
a+ (n + 1) .. cpn -('P~a) dcp dr

o 0 Ot

+ (n + 1)fqJ"'I'(qJ, O)ba(qJ, O)dqJ (A10)

where p(cp, r), q(cp, r), s(cp, r) and 'P(cp, r] are adjoint variables
(corresponding to Lagrangian multipliers) and the following
relationships have been used:

(All)

(A4)

(A3)

(A8)

(A13)

(A12)

cp = 1: p(l, r) = q(l, r] =s(l, r) = 0

iiil
(OR ·oR

M = (n + 1) 0 0 qJ"bY oY + V
2p

- p<l>2 oY

oR oR. OR)
- q<ll2_P + sP<Il2- - 'P-P de dr

p oY oY oY

and integrating by parts twice one obtains

f qJ"pV2bYdqJ = f qJ"OY V2pdqJ (A14)

f qJ"q V2bYpdqJ =fqJ"b Yp V2qdqJ (AIS)

f: qJ"sV2budqJ= f: qJ"bu V2sdqJ. (A16)

Substituting eqs (AI2) and (A14)-(A16) into eq. (AI0) and
grouping terms multiplied by ~Y, ~Yp, ~u and ~a into separ­
ate integrals one obtains

(
oR oR oR OR)

V2~Y=<Il2-oY+-~Y+-~u+-oaay - aYp p au oa

(
oR oR oR OR)

V2~y = <Il2 _P~y+ -_P~y + -_P~u + _Psa (AS)
P Pay oYp p au oa

(
oR oR oR OR)

V2~U = - P<Il2 -oY +--.~y +-~u +-~a (A6)
oY oYp p OU oa

o~a os, e«, oRp oRp
--=-~y+-~y +-~u+-~a (A7)

Ot aY aYp p OU oa

cp = 1: ~Y(I, r) = ~Yi1, r) = <5u(l, r) = 0

Let us denote ~X = dX/dB. By differentiating eqs (5)-(7), (9),
the boundary condition (8) and eq. (A2) with respect to Bat
B = 0 we obtain

APPENDIX: DEVELOPMENT OF THE OPTIMALITY

CONDITION (IS)

Let r be the optimal time and let d (cp, 0) be the optimal
initial activity distribution. Then, it follows that

1(12) = I 17 dr = (n + 1)II(jJ"RdqJdr (AI)

is maximum over all ds subject to the constraints (14). In
particular, if we take any a(cp, 0) satisfying eq. (14), then

ae(cp, 0) = d (cp, 0) + B[a(cp, O)--.d (cp, 0)] (A2)

will satisfy eq. (14) for all O~B ~ 1. Thus, in order to satisfy
eq. (AI) we must have
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which substituted into eq. (A3) leads to the general condition
for optimality

M = (n + 1)fcp"'P(cp, 0) [a(cp, 0) - d (cp, 0)] de (A23)

oR oR
V2q + -(1 - p<1>2 + s{3<1>2) - -._P(q<1>2 + qJ) = 0 (AI9)

oYp oYp p

oR oR
V2 s + -(1 - p<1>2 + s{3<1>2) - _P(q<1>; + qJ) = 0 (A20)

OU OU

oqJ oR oR
- + -(1 - p<1>2 + s{3<1>2) - _P(q<1>2 + qJ) = 0 (A21)
Ot oaoa p

eq. (AI7) reduces to

+ (n + 1) r' rl

CP"DYp(OR _ p<1>2 oR + V2qJo Jo oYp oYp

20Rp 2 oR ORp)
- q<1>- + s{3<1> - - qJ- do dr

poYp oYp ar,

+ (n + 1) fi fl <p"bu (OR ,- p<1>2 oR _ q<1>; oRp

Jo Jo ou ou OU

oR OR)+ V2
S + s{3<1>2 OU - qJ ouP d<p dr

ii il (OR 2 oR 20Rp
+ (n + 1) . <p"ba - - p<1> - - q<1>p-

o 0 oa oa oa

2oR oRp OqJ)+ s{3<1> - - qJ- + - do dr
oa oa Ot

+ (n + 1)f cp"'P(cp, 0) Da(cp, O)dcp. (A1?)

By selecting p, q, sand qJ so as to satisfy the following system
of adjoint equations:

i
1 d1

b1 = (n + 1)· <p"qJ(<p, O)ba(<p, O)d<p =-.
o de

Finally, using eq. (A9), eq. (A22) leads to

(A22)

V 2p +:~(l - pet>2 + Spet>2) - ~~(qet>; + 'P) = 0 (A18) f cp"'P(cp, O)d (cp, O)dcp;>f cp"t/J(cp, O)a(cp, O)dcp. (A24)




