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The Attractor of the Scalar Reaction Diffusion 
Equation Is a Smooth Graph 

Pavol Brunovsk~ 1 

For the scalar reaction diffusion equation with Dirichlet boundary conditions, 
it is proved that its maximal compact attractor is the graph of a C 1 function 
from a subset with nonempty interior of a subspace of the state space the 
dimension of which is equal to the maximal Morse index of the equilibria of the 
equation. 
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1. I N T R O D U C T I O N  

Consider the scalar reaction diffusion equation 

u,=uxx+ f(u) (1.1) 

with Dirichlet boundary conditions 

u(t,O)=u(t, 1)=0. (1.2) 

We assume that f is C 2 and satisfies 

lim sup s-if(s) < ~2 
Isl ~ 

and that all stationary solutions of (1.1) are hyperbolic. The [generic 
(Brunovsk~ and Chow, 1984)] set of such f ' s  we denote by f#. 
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For f e N ,  (1.1), (1.2) can be considered as an abstract differential 
equation on the Hilbert space X =  L2(0 , 1) which generates a C 2 semiflow 
S, on any of its dense subspaces X ~, 0<e~< 1 (Henry, 1981; Miklav6i~, 
1985), where X ~ is the fractional space associated with the operator A 
given by A u ( x ) = - u " ( x )  if defined and if u (0 )=u(1 )=0 .  We note that 
X m =  Hlo and X I =  D(A)= H~ c~ H 2. The semiflow St is dissipative (i.e., 
there is a bounded set B ~ X ~ such that each trajectory eventually enters B) 
and every trajectory has a compact closure (Hale et aL, 1984; Hale, 1987). 
The set E of equilibria is finite and contained in B. 

By Hale et al. (1984) and (1987), S, admits a maximal compact 
invariant set ~r which is given by 

d =  U W"(v) (1.3) 
v E E  

where W"(v) is the unstable manifold of v (Henry, 1981). 
Brunovsk) and Fielder (1988, 1989) present a complete description of 

the connections between stationary solutions. The purpose of this paper is 
to prove additional properties of d announced by Brunovsk) (1989). In 
order to be able to formulate them, we introduce some notation. 

Let v e E. By 20@) < 21(v) < 22(v) < ... and ~bo(V), ~bl(v), ~2(V), we 
denote, respectively, the eigenvalues and normalized (in X) eigenvectors of 
the linearization of (1.1), (1.2) at v which is the Sturm-Liouville problem 

y"+ [ f ' ( v ( x ) ) + 2 ] y = O ,  y(0) = y(1) =0.  (1.4) 

Further, for 0 ~ m ~< n we denote X~(v) = span {~bm(V),..., ~b n _ l(v)}, Xn(v) = 
span{~b ..... }, Xj(v) := Xn(v)~ X ~. The (Morse) instability index i(v) of v is 
given by 2i(v) 1 < 0 < 2i(v) (note that since, by assumption, v is hyperbolic, 
2 n r  for any n~>0). 

The main result of this paper is the following 

1.1. Theorem 

Let f e N and let N := max{i(w): w e E}. Then, given v e E, there exists 
an open subset U of XN(v) and a C 1 function h: U--+XN(V) such that 
JV" := graph h contains ~ and is positively and locally negatively invariant. 

This theorem extends a result due to Jolly (1989) by which, for special 
f [of the Chafee-Infante type (Henry, 1981)], d is the graph of a 
Lipschitz continuous map. Also, for v e E with i(v)= N it answers positively 
the conjecture of Fusco [proved for finite dimensional approximations of 
St by Fusco (1987)] according to which WU(v) is a graph over a subset of 
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X~o(V)(v). In fact [cf. Remark 3.4(1)], the same proof can be used to 
establish the correctness of Fusco's conjecture also for v e E with i(v) < N. 

Theorem 1.1 is proved in Section 3. In Section 2 an invariant manifold 
theorem is established which is needed in the proof of Theorem 1.1. Some 
technical parts of the proofs of the results of Section 2 are presented 
separately in the Appendix. 

2. LOCAL INVARIANT MANIFOLDS CONTAINING GIVEN 
T R A J E C T O R I E S  

In this section we consider an abstract differential equation, 

dy/dt = Ay + F(y) (2.1) 

on Y= E ~, where P is C 1 on some neighborhood of 0 and satisfies 

F(0) = 0, DF(0) = 0. 

Equation (2.1) generates a local C 1 flow we denote by qS,; by modifying ~b 
outside some neighborhood of 0 we can make ~ global. 

We assume that the spectrum of A, a(A), is disjoint from the 
imaginary axis and the line Re 2 = -ft.  Then we have 

a(A) = A1 w A 2 ~ A 3 

where 
A I =  {2~ a(A): Re 2 >  0}, 

A2= {26a(A): 0 > R e  2 >  -f i} ,  

A3 = {2~a(A): Re 2 <  -f l}.  

By P / a n d  Yi, i =  l, 2, 3, we denote the spectral projection corresponding 
to Ai and its image, respectively, and we write Ai := A I r,. For y s Y we 
write y i =  Piy, Fi(Y)= PiP(y), i =  1, 2, 3. Adopting these notations we can 
write (2.1) equivalently as 

y i + A i y i = F i ( y l , y z ,  y3), i =  1,2, 3. (2.2) 

It is well known that a scalar product ( - , - )  can be chosen in Y in such 
a way that the projections Pi are orthogonal and that for suitable 6 > 0, 
0 < 7 < f l - &  we have 

(Y~,AIYl)>~TIy~] 2 

- ( f l - 6 )  ]y212 ~< (Y2, A2Y2) <~ - 7  ]y212 

(Y3, A3y3) ~< -(f i+6)lY3[ 2 

(2.3) 

(2.4) 

(2.5) 
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where the norm [. I is generated by this scalar product. This follows, e.g., 
from Palis and de Melo (1980, Corollary to Theorem 2.5, Chap. 2). 

The formulation of the main proposition of this section as well as 
some of the arguments become more transparent after a coordinate change 
which places certain local invariant manifolds through 0 into coordinate 
planes. Those are 

(i) the unstable manifold W"(0) which is C ~ a n d  tangent to Y~ 
at 0, 

(ii) the stable manifold W'(0) which is C 1 and tangent to Y2 + Y3 
at 0, 

(iii) a locally invariant C ~ manifold V which is tangent to Y1 + Y2 
at 0, and 

(iv) the invariant manifold W which is tangent to I13 at 0. 

While the existence of the unstable and stable manifolds is standard 
(Hartman, 1964; Palis and de Melo, 1980) and the existence of W is 
established, e.g., by Hartman (1964) (cf. also Brunovsk~, and Fiedler, 
1986), the existence of V does not seem to appear in this immediate form 
in the literature. After truncating the nonlinearity (in a way which is well 
known from the proofs of the center-unstable manifold theorems), it 
follows immediately from Chow and Lu, (1988). Alternatively, V can be 
obtained from general theorems establishing invariant manifolds for flows 
which admit splitting of the state variable into two components such that 
one component of the difference of two trajectories has a strictly larger 
exponential decay rate than the other one (Kurzweil, 1970). 

We note that while W"(0), W~(0), and W are uniquely defined, V is 
not. Neverthless, it does have to contain WU(0). Unlike WU(0), WS(0), and 
W, in general, it may not be smoother than C 1 no matter what the order 
of smoothness of P is. 

Since the manifolds W"(0), WS(0), V, W are tangent to Y1, I12 + Ya, 
Y1 + Y2, Y3, respectively, and since W c  WS(0), W"(0) c V, there exists a 
local C 1 coordinate transformation x =  q~(y) with q~(0)= 0, D~(0 )= id ,  
which places W~(0), W'(0), V, W into YI, Y2 + I13, Y1 + I12, II3, respec- 
tively. We work in this new coordinate system. Because of the lack of 
higher smoothness of q~, some care is needed, however. Although ~b 
conjugates ~t with a C 1 flow q)t in the x-space (by <p,= ~ o ~ , o  qs-~), the 
vector field x ~ A x  + F(x) ,  F (x )  = Dcb(ob- l (x ) )  F(~b-l(x)) that generates 
q), may not be smoother than C O any more (Palis and de Melo, 1980). For 
this reason we have to avoid the differential equation in some of our 
arguments and work directly with the flow instead. This complication turns 



Attractor of Scalar Reaction Diffusion Equation 297 

out to be minor and outweighed by better transparence of the statement 
and arguments in the new coordinates. 

Since Dq~(0) is the identity we have 

D ~ t ( O ) = D ~ t ( O ) = e  At 

Hence, we have 

for all t. 

~p~(x) = e'Ax + R(t, x) 

where R is C a, 

R(t, 0) = 0 and IDxR(t, x)[ <<. L(Ixl) 

for 0~< t~< 1 and Ixl sufficiently small, L: ~+ -~ ~+ satisfying 

(2.6) 

(2.7) 

lim L ( t / )  = 0.  
r/~0 

(2.8) 

In addition, since ~0~ leaves Y~, Y~ + Y2, Y2 + Y3, and Y3 invariant, we 
have 

R2(t, x l ,  O, O) = O, R3(t, xa, x2, 0) = 0, (2.9) 

Rl(t, O, x2, x3) = 0, R2(t, O, 0, x3) = 0, (2.10) 

in some neighborhood of 0, where Rj := PjR for j = 1, 2, 3. 
Of course, when addressing the differential equation 

2 =  Ax + F(x) (2.11) 

generating q),, we cannot assume F is C 1 any more but we still have 

[r(x)t ~< L(lx[)[x[, (2.12) 

with L possibly larger but still satisfying (2.8). 
Denote 

r(~) := {x: !x21 =~, Ix~l <,1}, 

/~(~) := {xe r(~): Ix31 ~<q}, 

F12(r/) := (P1 + P2) r(t]), 

n(~)=  {x: Ix~l <~, Ix21 <n}. 

For a given subset 2" of Y denote 

,p(s) := {q~,(x): t>o,  xeS}, 

qs(X) := {q~,(x): xeZ ' ,  t > 0 ,  ~o,(x) e g2(t/) for 0<s~< t}. 
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Below we frequently deal with manifolds which are positively invariant 
and locally negatively invariant. We call them briefly PLN-invariant. 

(iii) 
(iv) 
(v) 

2.1. Proposition 

Let ~ be a PLN-invariant manifold for opt of  dimension dim(Y a + Y2). 
Assume the following for some ~l > 0 sufficiently small." 

(i) U : = ( P I +  P 2 ) ~ n F ( q )  is an open subset of  Flz(q), 
Un Y2# ;g. 

(ii) There is an open neighborhood B of 0 in Y1 + II2 and a C a func- 
tion a: B ~  Y3 such that Z : = ~ n F ( ~ / ) = g r a p h  a lu  and 

I,~(x,, xOI ~< ~, (2.13) 

Icr(xa, xO-~r(xl,  xDI <~ Ixa-x~l  + Ix2- xil, 

for (xa, x2), (x'l, xl) e B. 

�9 ( F ( n l ) C ~ ) = o ~ ( F O h ) ) ~ f o r  0<qa~<q. 

n w " ( o )  = ~ .  

(2.14) 

Then, ~ extends to a C a PLN-invariant manifold J/ /= ~ u (b(D) con- 
taining Wu(O), where D is a locally invariant open disk of dimension 
dim(Y1 + Y2) such that OeD. 

The proof requires several preparatory lemmas. Observe that because 
of LemmaA.1 (ii) we have IP3xl<2r/ provided xe~b~(Z) and t />0 is 
sufficiently small. 

2.2. Lemma 

For r />0 sufficiently small let U~F12(11) and let B be an open 
neighborhood of U in Y1 "q- Y2" Let a: B --* X 3 be C 1 and satisfy (2.13), 
(2.14) for each (Xl,X2), (x], x'a)eB. Then, (P1 +P2) O,(S),  where 
27 := a(U), is an open subset of  Y1 + II2 and there exists a C 1 function 
s: (P1 + P2) 45,(S) ~ X 3 such that 

(i) ~ , ( S ) = g r a p h s ;  

(ii) for each ~ > 0 there exists a 6 > 0 such that 

Is(xa, x2)l <~ E Ix21, (2.15) 

Is'(xl, x2)l < e, (2.16) 

Is(x1, x2)-s (x i ,  x;)l < e(Ix'l - x l l  + Ix2-  x;I), (2.17) 

provided Ix21, Ix~l < & 



Attractor of Scalar Reaction Diffusion Equation 

(iii) 

299 

s extends to a C 1 function in a neighborhood of each point 

(xl,  x2) e (P, + P2) I~q(~')\ Y1. 

Proof  

By (2.13), (2.14), and (2.11), for x e Z  we have 

(x2, Azx2 + F~(x)) < - ?  Ix212 + Ix21 IF~(x)I ~< ( - ~  + L(~))~ 2 < 0 (2.18) 

provided tl is so small that L(tl) < 7. The inequality (2.18) means that the 
tangent vector to the trajectory of x e Z  at x is not contained in T~X. 
Therefore, q~(Z) and q~,(Z) [as an open subset of q~(Z)] are C 1 sub- 
manifolds of Y and 

dim q~.(Z)= dim q~(Z)= dim( Y~ + Y2)- (2.t9) 

We prove that for ~/> 0 sufficiently small, ~ , ( Z )  is a graph over its 
(Pa + Pz)-projection, i.e., that for any (x~, x2) e (P~ + P2) ~b,(Z), there 
exists a unique x3 e Y3 such that (Xl, x2, x3) e ~b,(Z). 

The proof is indirect. Assume that for some (Xl, x2) there exist x3, x;  
such that both x := (xl,  x2, x3) ~ ~ ( 2 )  and x' := (xl,  x2, x;)  e ~,(X).  
Then there are ~ r ~' ~ Z and t, ~ ~> 0 such that x = (Pt+ ~(~) and x'  = ~o,(~'). 
By Lemma A.5, for sufficiently small r/> 0, 

[P3(~0r +,(z) - (p,(z')l I(P1 + P2)(cpr +~.(z) - q0s(Z')[--1 

is bounded for s >~ 0 by some constant c > 0. For  s = t we obtain 

05~ k ] X 3 - -  Xt31 ~e(lx 1-xi[ q-Ix2--x~[)=0, (2.20) 

! . t with xl := x l ,  x 2 .= x2, a contradiction. 
For  (x l ,x2)~(Pl+Pz)q~, (Z)  we can now define s(xl,x2) as the 

unique x3 such that (x~, x2, x3) e q~(Z). By the implicit function theorem, 
s is C 1 if and only if (PI+P2)I~,(z) is a local diffeomorphism at each 
x e  q~,(Z). Because of (2.19) this is equivalent to 

( P I + P 2 ) y ~ O  fo rany  O ~ y E T x ~ , ( Z  ). 

This, however, follows immediately from (2.20) if we let x i --, x l ,  x ;  -+ x2. 
To prove (ii) we first show that there exists a function T: N+ --+ N+ 

such that T(6)--+ oo for 6 4 0  and t~> T(6) as soon as x e  q~,(Z), Ix21 <6, 
x e q~,(S). 
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Indeed, assume that this is not the case. Then there exists a sequence 
of points xkeq~,(X) such that x2k~0 and Xk=q~,~(r tk--,t*<oe, 
~ k ~ . e ~ .  By continuity we have P2(~0,.(x*)=0, which contradicts 
Corollary A.2. 

Define k(t) and A(t) by (A.6) and (A.35), respectively. From 
Lemma A.1 (iv), and Lemma A.5 it follows, respectively, that there exists a 
T >  0 such that 

k(t) < ~, A(t)<E for t ~ T .  (2.21) 

Let 6 > 0  be so small that T(a)~>T. Then (2.21) means that (2.15) and 
X r (2.17) are satisfied for [x2], [ 2[ < 6; (2.16) follows immediately from (2.17) 

for Ixj-x~l ~ 0  for j =  1, 2. This completes the proof of (ii). 
To prove (iii) we first show 

q~,(L~)\ Ya -~ q52,(Z). (2.22) 

Indeed, let {x n} --+x, x" = ~o,.({'), ~n~S, and xr  Ya, i.e., x 2 # 0 .  Then {tn} 
is bounded by Lemma A.1 (iii) and, therefore, we may assume ~ " ~  r 
t , ~ t < o o .  By continuity of opt we have cpt({)=x, I(Pa+P2)q~s({)l <2r/ 
for 0 < s ~< t, hence x E ~2~(-~). 

Because of (2.20), to obtain an extension of s to a neighborhood of 
(Pa+Pz)x, we repeat its construction with U replaced by some 
neighborhood of U in the sphere Ix2[=q and t20/) replaced by 
{x: IXll <2q,  Ix~l <~}. | 

Let now U, r/, a, and s be as in Lemma2.2. Extend s to 
(P1 + P2) a s ( S )  c~ Ya by defining s(xl, 0) = 0 for (xa, 0) e (P1 + P2) ~n(~Y') - 
By Lemma2.2 (iii), at each point (xa, x2)e(Pl+P2)q~, ( f ) \Ya ,  s is a 
restriction of a C a function defined in some neighborhood of (Xl, x2). 
Therefore, s satisfies the hypotheses of the Whitney C 1 extension theorem 
(Abraham and Robbin, 1967) at each such (xa, x2). The estimates 
(2.15)-(2.17) of Lemma2.2 mean that these hypotheses are satisfied at 
points of (P1 + P2) q~,(Z') c~ Ya as well with 0 as the candidate for s'(xl, 0). 
Applying the Whitney extension theorem we obtain the following. 

2.3. Corollary 

Let the assumptions of Lemma 2.2 be satisfied. Then s extends to a C a 
function ~ on YI+ Y2 such that ~(Xl, 0 ) = 0 ,  Y(xa, 0 ) - -0  tf (xa ,0 )6  
(P1 + P2) ~ , ( S )  c~ Ya. 

Combining Lemma 2.2 and Corollary 2.3 we obtain the following. 
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2.4. L e m m a  

Let  Z,  ~7, a, U, B, and ~ be as in L e m m a  2.2 and Corollary 2.3. Assume 
( Y2 "-}- Y3) (3 U :/: ~J. Then there exists a 0 < ~11 <~ tl such that ~ ~ := ~ [ rl~(,~) 
extends to a C ~ function s~ : Y1 + Y~ --* U~ such that 

graph s~ ca f2(tll ) = (bnl(graph al) w (Y~ :~ f2(ql) 

is a locally &variant manifold o f  qo t containing ( qV,(X) u Y1) ~ f2(tl~). 

Proof  

Since locally Y2 + Y3= WS(0), for x e U c ~ ( Y 2 +  Y 3 ) # O  we have 
l i m t ~  ~o,(x)=0, which implies 0eq~(X).  By Corollary2.3 we have 
Y(0, 0 ) =  0, ~'(0, 0) = 0. Thus, for ~/1 <~ r/sufficiently small the function al := 
~l (el + p~)r(n~) admits a C 1 extension to a neighborhood of (P1 + P2)F(ql)  
satisfying (2.13), (2.14) with r/ replaced by q~ and U:=  ( P I + Pz ) / ' ( q l ) .  
Also, by its definition, at admits a C ~ extension to a neighborhood of U. 
Applying Lemma2.2 (i) to o- 1 instead of a allows us to define sl" 
( P I + P 2 ) q ~ , ( X 1 )  ~ Y3 by graph Sl:=Os,,(Z1), where Z" 1 : = g r a p h a l .  
Extend Sl to Ylc~f21(tl~) by defining S(Xl, 0) := 0. Near any point of 
(PI +P2)~ql(~Y?l)\Y1, Sl is a restriction of a C ~ function by Lemma 2.2 
(iii) (applied to al), while at any point of YlC~g2(ql), sl satisfies the 
assumptions of the Whitney C 1 extension theorem because of Lemma 2.2 
(ii) (applied to am). Therefore, si extends to a C ~ function on Y~ + Y~. 

Trivially, both ~,1(Z'1) and Y1 c~ f2(ql) are locally invariant and their 
union contains ( ~ ( Z )  c~ q~,~(Z~)) u ( Y~ ~ g2(t h)). Thus, all that remains to 
be proved is 

(PI + P2) ( P r / l ( ~ ' l )  ----~ (P~ + P2) ~(~1)\ Y1 �9 (2.23) 

Since the restriction of P1 + P2 to I~r/l(~l) is a local isomorphism, 
(P1 + P2) 05,~(Xt) is open in (PI + P2) s Y1. To prove (2.23) we show: 
that it is also closed in (P1 +P2)O0/1).  

Let ( x l , x 2 ) e ( P l + P 2 ) ~ 2 ( q ~ )  and x2va0. Assume that there are 
sequences ~ X  1, ~k--~e~l, lk~O such that ~0tk(~k)~l~r/l(X1) and 
(P~ + P2) (Ptk(~k) --* (Xl, X2). 

Since x2#0 ,  from Lemma A.1 (iii) it follows that {tk} is bounded. 
Therefore, we may assume that t k ~ t * > ~ O .  By continuity we have 
(x~, x2) = (P1 + P2) ~0,.(~) ~ q),l(S~), hence q~,.(~) E ~b~(Z'l) by 
Lemma A.1 (ii). This completes the proof. I 
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Proof of Proposition 2.1 

All the hypotheses of Lemmas 2.2 and 2.4 and Corollary 2.3 being met, 
define s~ as in Lemma 2.4. Denote 

d / / :=  ~ ~ ~(graph sl r s (2.24) 

The PLN-invariance of d / fo l lows  immediately from its definition and the 
PLN-invariance of ~.  By Lemma 2.4 we have 

qS(graph s~ c~ f2(r h )) ___ 4 (  Y~ c~ f2(t h )) = W"(O). 

It remains to be proved that Jg  is a manifold. 
Since graph a l c F(t/1), applying consequently Lemma 2.4, hypotheses 

(v), (iv), (iii), and Lemma 2.4 again we obtain 

~ 45(graph S 1 0  ~ ( q l ) )  

= I ~ ( ~  ('~ r ( t ]  1) ) (") ~ ( $ 1  ) = I ~ ( ~  O oc t / )  ~ /"it/1)) ~ ~ ( $ 1 )  

= o ( a , , ( s )  ~ r ( , 1 ) )  ~ O ( _ r , )  = O(O,(S) n/'(,11)). 

By (2.18), the trajectories of q~, cross e(rh) transversally, hence 
q~(q~,(S)c~F(th))=Nc~(graphslc~f2(th) ) is a submanifold of Y of 
dimension dim Y1 + dim Y2. Since both N and q~(graph s~ ~ f2(t/~)) are sub- 
manifolds of Yof the  same dimension, so is J/4 = qS(graph sl c~ f2(th) ) u N. | 

2.5. Remark 

When introducing the invariant manifold V which is tangent to 
Y1 + Y2 at 0, we have mentioned that it is not unique. Proposition 2.1 gives 
a method to construct additional manifolds tangent to Y1 + II2 at 0 
provided one of such manifolds is known (in our case the latter is represen- 
ted by the manifold which we have placed to the Y~ + Y2-plane by our 
coordinate transform). If one takes r/> 0 sufficiently small, defines U := 
F(rl)c~(Y~+Y2) in Proposition2.1 (and Lemma2.4),  and chooses a 
function a: U ~  Y3 satisfying the estimates (2.13) and (2.14), then there is 
a unique invariant manifold tangent to Y~ + II2 and containing graph a. 
Note that the right-hand sides of (2.13) and (2.14) can be replaced by pq 
and q, respectively, p > 0 and q > 0 arbitrary. 
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3. PROO F OF THEOREM 1.1 

Recall that we denote 

N = max i(w); 
w E E  

(3.1) 

by [ �9 I we denote the norm of X. Also, recall the notation introduced before 
Theorem 1.1. We start our proof by preparatory lemmas. Their proofs are 
heavily dependent on the papers (Brunovsk) and Fiedler, 1986, 1988, 
1989)o Therefore, we have to introduce some notation used there. 

By the zero number of a continuous function v ~ 0 on [0, 1 ], denoted 
by z(v), we understand the number of its strict sign changes (Brunovsk?~ et 
al., 1986, 1988, i989). We denote 

Z n : =  { v ~ E : z ( v ) = n o r v - O }  

if f ( 0 )  = 0, n is even and i(0) = n or n + 1 and 

Zn := { v e E : z ( v ) = n }  

otherwise (Brunovsk) and Fiedler, 1989, pp. 6, 11). Further, for an 
interval I ~  ~, we denote 

E l =  {v ~ E: v'(O) e t}. 

As Brunovsk) and Fiedler, (1989), we order the elements of E by their 
initial slope v'(0) and we use freely the terminology above, below, maximal, 
neighbor, etc., relatively to this ordering. 

3.1. Lemma 

For all vl # v 2 e E  one has z(v I - v 2 ) < N .  

Proof 

Without loss of generality assume 

v'l(o) > o, Iv~(o)l -~ vl(o) ,  

[if v'x(0)<0 and Iv~(0)l ~<vq(0), replace f ( u )  by 
Brunovsk) and Fiedler (1989, Lemma 4.2) we have 

z(v,-v2)=z(v,). 
Further, we have 

N -  1 ~ max z(w) <<. N. 
w e E  

(3.2) 

- f ( - u ) ] .  Then by 

(3.3) 

(3.4) 
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This follows from Brunovsk) and Fiedler (1988, Lemma 5.1) or Brunovsk) 
and Fiedler (1989, Lemma 2.1), according to which for 0 ~ w E E  we have 

i(w) e {z(w), z(w) + 1} (3.5) 

Suppose now z(v~ - vz) >~ N. Then, from (3.3) and (3.4) it follows that 

z(vx)=z(vl-v2)=N. (3.6) 

From (3.1) and (3.5) it follows that 

i(v~)=N. (3.7) 

We complete the proof by showing that the existence of v~, v2 such that 
(3.2), (3.6), and (3.7) hold simultaneously is contradictory. 

We start the proof by showing 

E(0, vi(0)) = .QS. (3.8) 

First, we prove 

E(0, /91(0))  o Z N : ~ .  (3.9) 

Suppose that this is not true and denote ~ the maximal element of 
E(0, v](0)) c~ g N. Then, ~ is the neighbor of v~ in Z N and v~(0) #'(0) > 0. 
Thus, i(ffOr by Brunovsk) and Fiedler (1988, Lemma2.2). Since 
i(#)e{z(~),  z ( ~ ) + I } = { N , N + I } ,  by (3.4) we have i (~)>N,  which 
contradicts (3.1). 

Knowing (3.9), from Brunovsk~ and Fiedler [1989, Lemma 2.2(i)], 
we conclude Zk c~ E(0, v~(0)) = if5 also for k < N. Since Z~ c~ E(0, v](0) = 
for k >  N by (3.4), this proves (3.8). 

From (3.8) it follows vzeE[---vrl(0), 03. In order to show that this is 
impossible we distinguish two cases: 

(a) Nodd, (b) Neven. 

In case (a) it follows from (3.2) that Vl(X):= v l ( 1 - x )  is the maximal 
element of E( - 0% 0) c~ ZN. Indeed, since ~](0) = -V'l(0), if 
w eE(-- l )r l (O) ,O)~Zu,  then wEE(O, V'l(0)), which contradicts (3.8) (cf. 
also Brunovsk) and Fiedler (1989, Lemma 2.5). 

From Brunovsk) and Fiedler (1989, Lemma2.4) it follows that 
E(V'l(0), v~(0)) r  Since i(vl)=i(vl)=Z(Vl)=Z(Vl) by symmetry, we 
have [E(-V'l(0), 0)w (0, v](0))] c ~ Z k = ~  for k < N  by Brunovsk) and 
Fiedler [1989, Lemma2.6(i~)]. Therefore, v;(0)=0. By Brunovsk~ and 
Fiedler (1989, Lemma 2.3), this is possible only if f ( 0 ) =  0 and v 2 - 0  and 
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can be excluded by the perturbation argument used at the end of the proof 
of Brunovsk) and Fiedler (1986, Theorem 1.5). In case (b), -v '~(0)~ 
v;(0)~<0 and E(0, v ] ( 0 ) ) = ~  implies that the maximal element w of 
E ( -  o% v](0)) satisfies -v'l(0) ~ w'(0) ~< 0. If w'(0) < 0, by Brunovsk) and 
Fiedler (1989, Lemma 2.4) and (3.7) we have z(w)= N - 1 .  Since N - 1  is 
odd, ~(x) := w(1 - x) e E, 0 < w'(0) < v'l(0), a contradiction to (3.8). There- 
fore, w(0)= 0 which can again be excluded by the perturbation argument 
mentioned in case (a). | 

3.2. Lemma 

For every u 1 ~ U 2 ~ ~ one has z(ul - ua) < N. 

Proof  

From (1.3) it follows that Ul ~ WU(vl), u2~ W"(v2) for some vl, v2~E. 
We distinguish two cases: 

(a) vl r  (b) vl =v2. 

Case (a) 

Since St (u j )~v j ,  j =  1,2 and t ~ - 0 %  in H 2 ~ H  ~ and since (by 
Brunovsk~ and Fiedler, 1989, Lemma 3.2) v l - v 2  has simple zeros, for t 
near - o o  we have z ( S , ( u l ) - S , ( u 2 ) ) = z ( v l - v 2 ) .  Since by Lemma3.1 
z ( v ~ - v 2 ) < N  and since z (S , (u l ) -S , (u2) )  does not increase with time 
(Brunovsk~ and Fiedler, 1989), Z(Ul - u2) < N. 

Case (b) 

Denote v := vl =v2 and y(t, x ) :=  S~(ul)(x)-S, (u2)(x  ). The function 
y(t, x) solves the linear equation 

y ,=  yxx + a(t, x) Y" (3.10) 

with the boundary conditions 

where 

We have 

y(t, O)= y(t, 1)=0,  

! 

a(t, x) = fo f ' ( (1  -- 0) S,(u2)(x) + OS,(ul)) dO. 

lim 
t ~  o:3 

uniformly in x. 

y ( t ) = 0  and lira a(t, x ) = f ' ( v ( x ) )  (3.11) 
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Since y(t) ~ 0, by Henry (1985), it follows from (3.11) that 

lim y ( t ) [ y ( t ) l - l =  __+~b~(v) 
t ~  - - o o  

[~bj(v) defined in Section 1] for some O<~j<N. This implies z (y ( t ) )=  
z ( O j ) = j < N  for t near - o o  and, since z(y( t))  does not increase with t, 
also z(y(O)) = z(ul - u2) < N. I 

3.3. Proposition 

For any v e E ,  ~/ is the graph of  a function h: PN(v)~4---~ XN(V). 

Proof 

The statement of the lemma is equivalent to: u = u' whenever u, u' e d 
and U--u'~XN(V). Since by Atkinson (1964, Exercise 2, p. 549),z(u-u')>>.N 
if 0 # u -  u' ~ XN(V), we have u = u' by Lemma 3.2. I 

3.4. Remarks 

(1) The argument used to prove Proposition 3.3 remains valid if X~ v, 
X u are replaced by any two subspaces Y, Z such that dim Y = N ,  
Y G Z = X ,  Y c ~ Z =  {0} and 

z(u) >1 N for all u e Z. (3.12) 

In particular, by Atkinson (1964, Exercise 2, p. 549), (3.12) holds if Z 
is the subspace spanned by all the eigenfunctions except of the first N ones 
of any Sturm-Liouville problem and Y is any complement of Z. 

(2) By a straightforward modification of the proofs of Lernma 3.2 
and Proposition 3.3, one can prove that for any v e E, i(v) = n, W"(v) is a 
graph of a function h: P~(v) WU(v) ~ Xn(v). This property of W~(v) has 
been conjectured and proved for finite dimensional approximations of 
(1.1), (1.2) by Fusco (1987). 

3.5. Lemma 

For each v e E  there exists a q>O such that for any two points 
Wl ,  W 2 E ~  , one  has 

IP N(V)(W1 -- w2)l <~ q IpN(v)(wl -- W2)[. (3.13) 

In other words, the function h of  Lemma 3.3 is globally Lipschitz. 

Proof 

It follows from Chow and Lu (1988) and Foias et al. (1986) that for 
a given veE ,  there exists an M > N  and a C 1 M-dimensional PLN- 
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invariant submanifold ~ / o f  X (called inertial manifold) such that d c J / .  
For  any chosen v e E, the manifold ~z' is a graph of a globally Lipschitz C 1 
function g: U~XM(V),  where U is an open subset of XoM(V). 

Assume that q does not exist. Then, since . J  and the unit sphere in 
XM(v) are compact,  there exist sequences {w~}, {w~} such that w~ ~ w*, 

P o ( w l  w~)l ~ y ,  [ y [ = l  and w * ~ r  for j = l ,  2, M k M k - Po (WI - -  w k ) l  1 

IPN(Xf--w~)l [P~(wf-w~)l  -~ ~ k  (here and below in this proof  we drop 
the argument v at the projection operators and their images). 

Note that 

PN(W~--W~) M k = P N ( W 1  - -  W k)  + P M ( W  k - -  W k)  

M k = P N(Wl -- W~) + g(pMw~)-- g(PoiW2),k 
hence 

[P N(W k -- W~2)I ~ I P N (~ ,~= -- wk)l + I lpM(wk __ wk)l, 

where 1 is the Lipschitz constant of g. Thus, 

IpM(w~--  w~)l IPN(W~-- w~)l IpoM(w~-- w~) 
~ - - - w ~ ) l  ~> [pN(w~ W~)[ 1 N k k IPo(Wl-W2)l 

M k k 
>>.k- 1 - 1 IPN(Wl - - W 2 ) I  

M k k ~ l 
IP N(W I -- W21 ( k -  1) -->. c~ 

N k IPo ( w l -  w2k)l "/1 + 1 

o r  

Consequently, 

for k-- ,  oo. 

N k k N k k IPo (wl-w2)I I P o ( w , - w 2 ) l  
IpNyl = li+moo ~< limo+ = 0  7 k - - ~  ~ - -  . ..-'S-~-~ 

IP o  ( w i - w 2 ) l  ~ [ P N ( W l - - W + )  I 

which means y ~ XN M. 
We have 

M k k - - i  k IPo (wl - w2)t (w I - -  W k )  

M k [Po (wl = ] P o ( w  1 w~)l-1 M k k M k M k -- -- W2) + g(Po ( w l ) ) -  g (Po (w2)] 

= I +  g ' ( r y ( ( l - O ) w ~ + O w ~ ) d O ) y  I r y ( w ~ - w ' ~ ) l - ~ e o M ( W ~ - W ~ )  

where lim k ~ ~ ~k = 0. 
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M We have y e X N (1)), fl  g,(p~t(1 - O)w* + Ow*) cloy e XM(V), hence 

N 1 ) dO] y Po [Z+ fo g ' ( P ~ ( ( 1 - O ) w *  +Ow* =0 ,  

and therefore, 

z(E.§ o,w,+ow,,.o].).. 
by Atkinson (1964, Exercise 2, p. 549). 

The zero number is lower semicontinuous on X, hence for sufficiently 
large k we have 

z(w~ -- w~) ~ U. 

This contradicts Lemma 3.2. I 

2.6. Corollary 

For each v e E there ex&ts a q > 0 such that 

IPN(V) yl <. q [P~(v) yl 

for  any y e T,  W"(w), u e WU(w), w e E. 

Indeed, since W U ( w ) c d ,  we have for any C 1 curve 7: [0, ~o) 
w"(w), ? (0 )  = u, ? ' ( 0 )  = y e r ~  WU(w) 

[PN(Y)[ = lim 1/~ [Pu(V(e) -- 7(0)1 
~ 0  

~< q lim 1/e [pU(?(~) __ 7(0)1 = q [P~V(V) y[. 
~ 0  

Proof of Theorem 1.1 

By Proposit ion 3.3, for any chosen v e E  the set d is a graph of a 
function h: p U ( v ) d  ~ XN. Also, from Corollary 3.6 it follows that h is C I 

o n  each pN(WU(w)), w e E .  It remains to be proved that there exists a 
PLN-invariant  C 1 manifold JV of dimension N containing d .  since d is 
a compact  attractor, it is obvious that Jl r can be restricted in such a way 
that it will preserve its invariance properties, contain d ,  and be a g r a p h  of 
a C 1 extension of h. 

The manifold 0/r will be constructed by induction. Let us order the 
equilibria into a sequenbce wl ..... Wr in such a way that i(w;)>~ i(wk) if j <  k. 
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We construct a sequence {Vfj} of C 1 locally invariant manifolds of dimen- 
sion N such that JV);+ 1 extefids an open submanifold of ~ and 

4:=  U �9 

v ~ j  

Then, ~ wiU be a locally invariant manifold of dimension N containing A. 
Denote 

j ,  :=max{ j :  i(wj) >~n}. 

We define 

U W"(wJ) . 
1 ~ J ~ J N  

For a given j >  JN denote n := i(wj) and assume that ~ 1 has been 
constructed to contain 0 1 . < ~ ; - t  WU(w~) �9 To complete the induction step 
we extend an open submanifold of ~ , containing s~; ~ to a PLN- 
invariant manifold ~ containing WU(wj). 

To this end we employ Proposition 2.1. First we note that the inertial 
manifold theorem of Chow and Lu (1988) and Foias et al. (1986) allows 
us to reduce the extension step to one for finite dimensional systems. As 
mentioned in the proof of Lemma 3.5, [-8, 9, 20] provide for an M<N- 
dimensional PLN-invariant manifold J / w h i c h  can be expressed by Jr  
graphg,  where g: Q ~XM(Wj) is C 1 and Q is an open subset of Xff(wj) 
containing PY(wj)(d). The semiflow induces a local flow opt on Q by 

q)t(u) = P y ( w j )  S,(u + g(u)). 

To simplify the formulations we extend go t to a global flow on X~t(wj) by 
modifying it outside some neighborhood of PY(w;)d if necessary. 

Since d = ~/ ,  in particular, we have W"(w~)~ ~ for all v. Therefore, 
we may add ~/};_ 1~ Jg to our induction hypotheses. In addition, we 
assume that 

~ - 1  = U ~(D~) (3.14) 
v < j  

where D~ is a locally invariant open disk of dimension N containing a 
neighborhood of w~ in W"(wv). From the construction of ~ j  it is seen 
immediately that it also lies in Jr and satisfies (3.14) with j -  1 replaced 
by j. 

We now introduce some notation to match that of Proposition 2.1. 
First, we note that the spectrum A of the operator L of the linearized 

865/2/3-5 
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problem (1.4) for v :=wj [-defined by (Ly)(x)= y"(x)+f'(v(x))y(x) for 
y s H~ c~ He]  admits a partition A w A4, A = A~ w A2 w A3, where 
Aa := {-2o(Wj) ..... --~n_l(Wj)}, A 2 := {-2 , (wj )  ..... --2N-~(Wj)}, A3 := 
{--2N(Wj),..., --2M_ ~(Wj)}, and A4 := {2M,... }. The corresponding splitting 
of Y := Xo~(Wj) is Y= Y1 | I12 @ Y3, where Y1 := X~(wj), I12 := X~(wj), 
and Y3 :=XN(wj) �9 Then for Ai := L IA i (2.3)-(2.5) are satisfied with 

?<min{t2n l(Wj)l, I~n(Wj)l}, 

fl = 1/2(2 N_ l(wj) + )bN(Wj)), 

o < 6 < 1/2( ,~ . (wj)  - "~x- I(Wj)). 

As in Section 2 we introduce coordinates x =  (x~, x2, x3) in such a 
way that x0*)) = 0 and the manifolds WU(wj), W'(wj), V, and W (the latter 
two introduced in Section2) locally at 0 coincide with Y1, I12+ Y3, 
YI+ Y2, and Y3; by Pi we denote the orthogonal projection Y ~  Yj., 
j = 1, 2, 3. We do not distinguish between ~/~j_ 1, s~j_ 1, ~0t, etc., and their 
representations in the x-coordinates. Then, ~0, is generated by the differen- 
tial equation (2.11) and satisfies (2.6), with R satisfying (2.7)-(2.10). It is 
then sufficient to construct ~ as a submanifold of the x-space. 

As the manifold N of Proposition 2.l we take a suitable restriction of 
J~/- 1 of the form (3.14) (with D~ possibly replaced by their open subdisks) 
which contains ~ _  1. Below, we prove that J / / can  be chosen to satisfy the 
hypotheses of Proposition 2.1. The PLN-invariant manifold N which is 
provided by Proposition 2.1 is of the form (3.14) and contains both ~ and 
WU(0). Trivially, ~/_c ~/. Therefore, we can take it for Jgj. This completes 
the induction step and, thus, also the proof of the theorem. 

It remains to be verified that the requirements of Proposition 2.1 can 
be met by a suitable choice of ~.  

By Lemma 3.5 we have ~r = graph h, where h: (P~ + P 2 ) d  ~ Y3 is C 1 

and satisfies 

Ih(Xl, x 2 ) -  h(X'l, x~)[ ~< q ( [ x l - x ] ]  + Ix2-x~[)  

for some q > 0 and any (x 1, x2), (x~, x~) e (P1 + P 2 ) d ;  by rescaling II3 we 
can achieve q~< 1/4. Since d is compact it follows that there is a 
neighborhood C of d such that 

Ix3 -- x~[ ~< (1/2)(Ix1 -- x]l + Ix2 -- x~[ (3.15) 

for any x, x' ~ (~/jj_ 1 w d ) n  C. 
The set d ,  being the maximal compact attractor, is Lyapunov stable, 

i.e., for any neighborhood Q of d there is a neighborhood R of d such 
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that ~b(R)_ Q. In particular, by possibly restricting the disks Dv we can 
make ~:=U~<jq~(D~) to satisfy c l ~ c C .  Then (3.15) holds for all 
x, x' ~ ;J~ u ~ r 

By Henry [-1985, Properties (5) and (1), p. 191], 0 sc l  W"(wv) for 
some v implies W"(w~)n WS(0)v a 0, the intersection being transversal by 
Henry (1985, Theorem 7). Since W'(0) coincides with Y2 locally at 0, for 
sufficiently small t/> 0 we have 

W~(w~)nF(rl) n Y 2 r  if 0ec l  W"(w~), (3.16) 

W"(w,) c~ Q(r/) = ~ if 0 r cl WU(w~). (3.17) 

Since i(w~) >1 i(O) for v ~<j, from (1, Theorem 7) and (3.16), it follows that 

Q(t/) n (~r - d j_  1) ~ ~ (3.18) 

for r/> 0 small. 
By Henry (1985, Property (5, p. 191), w~r WU(wj) for v<j. Therefore, 

by possibly restricting Dv we can achieve 

U D. n (Q(r/) u WU(wj)) = ~2~ (3.19) 
v < j  

for ~/> 0 sufficiently small. 
Let q > 0  be so small that (3.17) and (3.19) hold. To complete the 

proof we distinguish two cases: 

(a) 0 s c l ~  1, (b) 0 r  

Case (a) 

By (3.17) we have F( r / )n~c~ Y 2 ~ ;  because of (3.16), (3.17), by 
possibly restricting D~ further, we can achieve that 

~b(D~)nclf2(r / )=~ if 0r  W"(w~) (3.20) 

provided q > 0  is sufficiently small. Then 
x, x' e ~ w d ,  and since 0 s d ,  we have 

Ix~l = Ix~-OI ~ (1/2)(Ix21 + Ix~l) 

since (3.15) holds for all 

for x ~ c l Q ( r / ) n ~ .  (3.21) 

Take open subdisks Gv of Dv containing w~ such that G, c Dv, v < j ,  
and denote N:=Uv<;q~(Gv), U:=(PI+P2)~c~F(tl). Then there is a 
neighborhood B of O in Y1 + Y2 such that B _  (PI + P ) N  and, therefore, 
we can define a :=h lB.  By (3.15) and (3.21), N, U, B, and cr satisfy 
hypotheses (i) and (ii) of Proposition2.1; by (3.19), hypothesis (v) is 
satisfied as well. 
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To verify hypothesis (iv) we first note that from ~ ( N ) =  N it follows 

~(r(n~) n ~ )  _~ ~ ( r ( n  ~)) n ~.  (3.22) 

The opposite inclusion follows from the fact that S, and, consequently, also 
~o, is gradient-like, i.e., there is a scalar function V on Y which decreases 
strictly along nonconstant trajectories (Henry, 1981). 

Indeed, let x E ~ ,  x =  ~0,(r r ~F(q~), t~>0. By definition o f ~  we have 
x =  ~oc(~') for some t '~O, ~'~D~, v < j ;  by (3.17) we have 

WU(wD n w~(O) ~ O. (3.23) 

Since V decreases along nonconstant trajectories, from (3.22) it follows 
V(O) < V(w~). If t />0 ,  D~ are chosen sufficiently small it follows that 
V(x') < V(x") for all x'eF(rl),  x"eDv,  hence V(~)~< V(r from which it 
follows that t'-t>>.O. This means ~ e ~ b ( N ) n F ( t l l ) = Y t n F ( t h )  and 
x = (p~(r e q~(N n F(t/~)). This completes the verification of hypothesis (iv). 

It remains to verify hypothesis (iii). From (3.22) and the definition of 
S it follows that 

(3.24) 

where A(r/):= {x: Ixll =~, Ix21 ~ ,  [x3l ~ ) .  For xeA(q) ,  x( t ):= q),(x) 
we have 

(1/2 )d/dt Ix1121,=o = ( A ix 1 . x 1 ) + ( Fl(x), xl ) 

/> [~,7 2 - L ( n ) ] ,  > 0 .  

provided ~/>0 is sufficiently small. This proves q~n(A(r/))=~ and, by 
(3.17), verifies hypothesis (iii). 

Case (b) 

By assumption it follows from (3.17) and (3.18) that we can restrict 
the disks D~ in such a way that, for sufficiently small t />0,  we have 
Q(r/) n ~ = ~ .  For such q > 0 we can chose U := F(rl), s: F12(q) ~ Y3 

arbitrarily satisfying (2.13), (2.14) and ~ := ~ u ~o( ,,~)(graph a) for some 
e > 0 sufficiently small. This choice of N obviously satisfies the hypotheses 
of Proposition 2.1 | 

A P P E N D I X  

In this Appendix we prove several technical lemmas which are needed 
in Section 2. 
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We consider the differential equation 

2 i = A ~ x i + F i ( x i ) ,  i : = 1 , 2 , 3  (A.1) 

on Y= Y1 + Y2 + Y3 from Section 2 in the transformed coordinates. That 
is, we assume that A,. satisfy (2.3)-(2.5), Fr are continuous and satisfy (2.6), 
and (A.1) generates a unique flow ~0 t which can be represented by 

qot(x ) = etAx + R(t,  x)  

with x := (xl, x2, x3) and R := (R1, R2, R3) being C 1 and satisfying (2.9) 
and (2.10). As in Section 2, by Pj and Rj we denote the orthogonal projec- 
tion Y ~  Yj and PjR,  respectively, j =  1, 2, 3. 

Note that (2.3)-(2.5) imply 

]e -Al t  ] <~e -~', (A.2) 

[eA2'[ <~e -~t, le-A2'l <~e (~ ~)~, (A.3) 

leA3'[ <~ e -~p + ~ '  (A.4) 

for t >~ 0, respectively. 
Recall the definitions of F(t/), O(t/), and F(t/) from Section 2 and 

denote 
f2(t/) := {x e f2(~/): ]x3l ~<t/}. 

For given q > 0 define 

p(t)  = sup {[(P2 + P3) ~0t(x)l x e f2(q) w/"(q), q~,(x) e f2(t/) for 0 < s ~< t}, 

(A.5) 
k( t )  = sup fle3~o,(x)l } 

[P2 ~0,(x)[ "x e F(q), 99,(x) s f2(t/) for 0 < s ~< t . (A.6) 

A.1. Lemma 

For q > 0 sufficiently small we have the following. 

(i) I f  x e  [ '(~)c~O(q) and q~ s(x)et-2(rl) for  O<s<<, t, then 

IP3x(t)t <~ 2~. (A.7) 

(ii) I f  xeclf~(~l),  ~0,(x)ef2(t /)for 0 < s < t  and IPtq)z(x)l =~/, then 
IP~x(t + r)l > r/for v > 0 sufficiently small. 

(iii) lim, ~ ~o p(t)  = O. 

(iv) Ik(t)[~<2for t>~O and 

lim k(t)  = 0. (A.8) 
t ~  
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To simplify the formulations in the proofs in this Appendix, once we 
consider ~0t(x) for some t > 0  we automatically will assume that 
~o~(x) ~ cl ~(~/) for 0 < s ~< t without explicitly saying so. In other words, we 
restrict q~t to the (local) flow in cl O(q). Once we prove Lemma A.l(i) it 
allows us, in addition, to restrict q~, to ~(t/)w/~(t/). This does not concern 
the formulations of the results, which are given in full. 

Proof 

(i) 
from (2.9) and (2.10) that 

IR2(t, xl ,  x2, x3)l ~< Z(q)(Ix21 + Ix31), 

IR,(t, Xl, X2, x3)l ~ Z(r/)lxll, 

[R3(t, Xl, x2, x3) [ ~ Z(~/)[X3[. 

For xEl?(rl)w~(q) ,  t/ sufficiently small and 0 ~< t~< 1 it follows 

(A.9) 

(A.10) 

(A.11) 

Denote x ( t ) :=  ~,(x). If Ix3(t)[ =q,  ~om (2.5) and (2.12), it follows 
that 

(1/2)d[x3(t)12/dt = (x3(t), A3x3(t) + F3(x(t)) ) 

<~ -( f l  + ,5)rt 2 + L ( ~ ) ~  ~ < 0 

provided r/is so small that L(r/)</3 + 6. This proves (A.7). 

(A.12) 

(ii) If r/is so small that (i) holds, by (2.3) and (2.11) we have 

1/2 d Ixl(t)l 2/dt = (xa(t), Axe(t) + F~(x(t)) ) >1 7rl 2 - qZL(q) > 0, 

provided q > 0 is so small that L(~/) < 7. This proves (ii). 

(iii) Let q > 0  be so small that (i) holds. Then [xj(t)l ~<2q for 
j =  1, 2, 3, and by (A.9) we have 

Ix=(t + 1)[ ~< (e-V + L(t/)) ]x2(t)[ + L(t/) Ix3(t)l, 

[x3(t + 1)1 ~< (e -(~+6)+L(rl) ) [x3(t)l , 

hence 

Ixz(t + 1)l + Ix3(t + 1)[ <~(e-V+2L(rl))(lx2(t)l + Ix3(t)[). (a.13) 

Let r />0  be so small that a : = e - V + 2 L ( r l ) < l .  Applying (A.13) to 
t = 0, 1 ..... n -  1, we obtain 

Ix2(n)[ + [x3(n)l ~ 2a"q. 
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If n := [ t] ,  the integer part of t, we have 

Ix2(t)l + Ix3(t)l ~<e -7('-"1 Ix2(n)l § + Ix3(n)t) 

+ e  -(~+6)(t-n) [x3(n)l +L(q)]x3(n)] 

~< (1 + 2L(2~l))([x2(n)] + Ix3(n)]) ~< 2(1 + 2L(q))a"~l 

Since the left-hand side of the inequality depends only on r/, this proves 
(iii). 

(iv) Let ~/>0 be so small that (i) holds. If Xz( t )~0  , denote Z(t)= 
Ix3(/)[ Ix2(t)l -~. If Z(t)<<. 1, we have from (A.9) and (A.11) 

Ix3(t § 1)[ ~<e- [e-( '+6)  + L(r/)] Ix3(t)l 
Z( t§  1) Ix2(t+ 1)l (~-6)lx2(t) l-L(q)Elxz(t) l  § Ix3(t)l-I' 

e-~+6) + L(q) 
<<'e (8 ~)_L(~I)(I + x(t)) z(t)" 

Let r/> 0 be so small that b := [e ~,+6)+ L(r/)] [e - ( ~ - 6 ) -  2L(r / ) ] -1< 1. 
Then, from Z(0)~< 1 we obtain by induction ;((n)~< 1 for t >~n ~> 0 integer 
and, in turn, also z(n)~< b ". 

Let now n = It] .  We have 

[Z(t)l = Ix~(t)l Ix=(t)l 1 ~ [e-(/~+6)(t-.) + L(r/)] Ix3(n)l 

X [e -(/~- 6)(t-m Ix2(n)l -- LOl)(lx=(n)l + Ix3(n)l )-1-1 

~< (1 + L(q))(1 -- 2L(q)) -1 g(n) <~ (1 + L(r/))(1 -- 2L(q)) lbn. 

Since b and the right-hand side of the inequality depend on ~/ only, this 
proves (iv). | 

From the local invariance of YIC~(~/I) and LemmaA.1 (iv) we 
obtain the following. 

A.2. Corollary 

For sufficiently small r/> 0, one has IP2~o,(x)l ~ 0 provided x ~ _fi( q ) and 
qL.(x) 6 Q(~l) for  O < s <<. t. 

In most of the arguments below there is no need to consider the com- 
ponents xl and x2 separately. Therefore, in order to shorten the formulas 
we frequently aggregate them into one component xlz :=x l  + x2. Corre- 
spondingly we write Y12 := YI + I12, A12 := A1 + A2, P12 := P1 + P2, etc. 

For fixed x, x' denote y(t) := ~o,(x') - ~ot(x ). From (2.6) it follows that 

yi(s+r)=e~Aiyi(s)+bi .12(r ,s)y12(s)+bi .3(z ,s)y3(s)  (A.14) 
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for O~s<~t, 0~<~<min{1, t - s } ,  and i=  12, 3, where 

/ ,  1 

bi, j(z, s) = J0 OxjRi(z' (1 - 3) q),(x) + Oqgs(x')) dO. 

In the lemma below we consider y(t) satisfying (A.14) with bi, j(r, t) 
such that 

[bi, j(r, t)[ ~< L for i, j = 12, 3, z ~> 0, and some L > 0, (A.15) 

[b3,12('r, t)] <~ p(t), (m.16) 

where p satisfies 

A.3. Lemma 

Let q > 0 be given. 

lim p( t )=0 .  (A.17) 
t ~  

Let y ( t ) =  (Y12(t), y3(t)) satisfy (A.14) with bi, j 
satisfying (A.15) and (A.16), p satisfying (A.17). Then for sufficiently 
small L > 0 there exists a positive function r: [0, ~ ) ~ [0, ~ ) depending on 
p only and satisfying 

such that if  

then 

lim r(t) = 0 (A.18) 
t ~ o o  

[y3(0)[ ~< q [y12(0)l (A.19) 

ly~(t)l <~r(t) ly12(t)l. 

Proof 

Let y(0) satisfy (A.19) and y12(0):/: 0. Denote 

2 (0  := ly3(t)l ly12(t)l 1 

If 2(n) ~< q, we have 

2(n + 1) ~ (leA3J + L) l y3(n)r + min{p(n), L) fy12(n)J 
(le-A~21 - - 1 - Z ( 1  +q)) lylz(n)r  

x2(n) + ~rn, 

(A.20) 
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where 
e ~#+6)+L e 2a+Le [J-6 

Z = e - ~ B - ~ ) - ( l + q ) L - l - ( l + q ) L e  ~ ~" 

min{p., L} 

~r~= e-(l~-6)_ L( 1 + q)" 

Let L > 0 be so small that 

and 

Z < 1 (A.21) 

zq + an < q. (A.22) 

From (A.22) it follows 2(n)~< q by induction, and from (A.21) we obtain 

n - - 1  n 1 

2(n)<xnq+ ~ Z , - l - j a y = Z , q + K  ~ ~,-1 Jmin{pj, L} 
j = 0  j = 0  

where K =  [e -(~-~) - L ( 1  + q)]- l .  
Let e > 0. Choose N =  N(~) so large that 

( l - z )  lp,<~e/3K for n>~N, z2Uq<e/3, zN <(NLK)-le/3. 

Then, we have for n >/2N 

N 1 

2(n) ~< z2Nq + zNK zN-l-JL+K ~ Zn-l-JPj<~e/3+~/3+e/3<e. 
j=O j=N 

Let n o w n ~ < t < n + l .  Wehave 

(lea3~t-n)[ +L)lY3(n)l +Pn lY12(n)l 
[[e-A12(t-,)]--1 __ ( 1  q-  q)L] l Y 1 2 ( n ) l  ' 

<~ M22(n) + Mlp(n), 

(A.23) 

(A.24) 

whereM l:=[-e (~-6~C--L(q+l)]  l a n d M  2 : = ( 1 + L ) M 1 .  
Let {en} be any sequence of positive reals satisfying e, ~ 0 for n ~ ~ .  

Define 

r ( t ) :=M2e ,+Mlp([ t ] )  for 2N(e,)~<t<2N(en+l). 

Then r depends on p only and satisfies (A.18); from (A.23) and (A.24) we 
obtain (A.20). | 
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A.4. Lemma 

There exists a q > O, such that if r 1 is sufficiently small, x, x' 6 f'(q), and 
Ix 3 -x~[  ~< [x12-x]21, then 

[P3(~ot(x) - -  X')[ ~ q[(P1 + P2)((P,(x) - x')[ (A.25) 

whenever t >~ 0 and ~o s( x ) e s for 0 < s <~ t. 

Proof 

As usual we write x(t)  := qgt(x ) and assume that ~/> 0 is so small that 
Lemma A.l(i) holds true. We split the proof into three cases: 

(a) t~<r, [x12-x]21 ~Z1YI, 

(h) t~<~, Ixa2-xi21>Z1~, 
(c) t>~, 

Z1 and r to be determined later. In each of the three cases we prove 
separately that for sufficiently small t />0,  a q > 0  satisfying the 
requirements of the lemma can be found. 

Case (a) 

We have 

Ix3(t) , 2  -x3 l  _< 2 [ I x 3 ( t ) - x 3 1 2 + l x 3 - x ~ ]  2] 

Ix12(t) , 2~ - x12  Ix12(t)-x1212+ Ix12-Xx2[Z-2 (x12( t ) - x12 ,  X12-- X'12 ) 

We find X1 > 0  and 0 < z ~< 1, for which there exists a constant 2 < 1 such 
that 

( X l 2 ( t ) - - X l 2 ,  X12 - - X ] 2 5  <<-21X12(t ) - -X1211X12--  X12[ (A .26 )  

provided t ~< z, Ix12 - x'121 ~< Z~r/and ~/> 0 is sufficiently small. 
Suppose for a moment that (A.26) holds. Since 

[Xx2(t) - -  X12[ Ix12 -- X'lzl ~< 1/2[ [Xl2(t ) - -  X1212 q_ ]X12 __ X]2[ 2-], 

we then have 

Ix3(t)-x'312 2[ Ix3( t ) -x312+ Ix3-x ; [  ~] 
Ix12(t)-  x~212 <<" (1 - - ,~  ) [ [ X 1 2 ( t ) - - X 1 2 1 2 - [  - Ix12-- x]212] 

2 [ Ix3(t)-x312 " Ix3-x;12 ] 

~< ~ k IXl2(t) - x1212 "1- IX 1"'~- - -  x'a~ I - ~ :  J 

2 ~ ]x3(t)-x312 
< ]--S-2 / 1 + Ix12(t)- x~2lzJ" 
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For t ~< 1 we have by (2.6) 

Ix3(t) - x3] ~< Ix(t) - xl <~ lAx(x) + F(x(s))l ds <~ K~ trl, (A.27) 

where K1 :=2(IAI +L(~/)). Further, using the variation of constants for- 
mula we obtain 

Ix12(t)-  x121 i> IXz(t)-  x21/> [x2 l -  IXz(t)l 

>~rl-e 7tq- 2telA31L(q)~l >~ K2tq 

with K2 = 1 -  e - ~ -  2e IA31L(q). Hence, if z ~< 1 and if ~/> 0 is so small that 
e-~--2elA31LO1)< 1, for 0~<t~<z we have 

Ix3(t)-x'312 <~ 1 + ~-~2 
Ix12(t)-xi~[ ~ ~ 

i.e., (A.25)is satisfied with q =  ( 1 - 2 ) - 1 ( 1  +KZ/K2). 
To complete Case (a) it remains to find 1 ~> z > 0 and Z~ > 0 such that 

(A.26) is satisfied for 0~<t~<z and Ix12-x'12[ <~)h~l for ~/>0 sufficiently 
small. 

Let ~, be the orthogonal projection of the neighborhood of the point 
x12 in PlzF(r/) into Tx12P12I'(rl). Denote 

f:=~z,(x12-x'12) Ix1:-  x'121 

Then there exists a function c~: ~+ ~ ~+ (independent of q) such that 
c 0 ( t ) ~ 0  for t ~ 0  and 

I x ~ -  x'l~- f i x12 -  x'~21t <<. ~oOI ~txl~-x'1~l) Ix~-x]~l.  

We have 

< X l 2 ( t )  - -  X 1 2 '  X12 - -  X'12 > = [X12 - -  x'121 (x12(t) -- x12, f >  

+ (x12(t)--x12, xi2 --x'12 - - f  Ix12 -x'~21 ), 

hence 

~< ~(~-1 Ixa2- x'l=l) Ix12- x'121 [x12(t)-x~zl. (A.28) 

We now estimate (x12(t)-x12,  f ) .  Since ( x z , f ) = 0 ,  ( x l , x 2 ) = O  , we 
have 

(x12(t) - x12, f ~  = IXlz(t) - xnl  2 _ (x12 - x12(t), Ix2] 1x2 ~2 

= ]x12(t)-x1212-tl 2(X2(t)--X2, X2) 2. (A.29) 
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Further ,  for 0 ~< t ~< 1, by (2.4), (2.6), and (A.27) we have 

< X2(I)-- X2, X2> = I f ~ [A2x2(s)-- F2(x(s) ], x2> ds 

f2 >1 t<Azx2, x 2 > - q  [IA2I [x2(s ) -x21 21-2L(2r/)] ds 

/> t[7 - IA2I  tK1 -- L01)] q 2. 

Hence, for z ~> (1/4)]A2]-1K~-17 and L ( q ) <  7/4 we have 

( x 2 ( t ) - x 2 ,  x2> ~> t(?/2)q 2. (A.30) 

Substituting (A.30) into (A.29) we obtain 

(x12(t) -- x12, f >2 ~< ix12(t ) _ x12] 2 _ t272/4. 

On the other  hand, from (A.27) we obtain for 0 4 t ~< 1 

t~> (K1 ~t) -~ I x ( t ) - x l / >  (K~q) -1 Ix~2(t)-x~21, 

which implies 

(x12(t) - x12, f ) 2  ~< A~ Ix~2(t) - x~212 (A.31) 

with ~,1 := 1 -  (1/4)K~-272 < 1. F r o m  (A.28) and (A.31) it follows that  

(x12(t) - x12, x12 - x'12 ) ~< 2 Ixl2 - x]21 Ix12(t) - x121 

where 2 = 2 1 + w ( ~ / - l l x 1 2 - x ' 1 2 1 ) .  If Z1 is chosen so small that  wC~l)< 
1 -•1, we have 2 < 1. 

Case (b) 

If t < z  and IX12--X]2[ ~ l q  we have 

[x3 ( t ) -x~[  2q ~< 
IXx2(t)-xi21 x~.-Ix~2(t)-x121" 

Further ,  by (A.27) we have 

Ix12(t) - x121 <~ K1 qt. 

If z~< (1/2) z 1 K {  1, then 

Ix3( t ) -x '3 l  <<. 4Z? 1 Ix12(t)- x'12l, 

i.e., (A.25) holds with q :=4Z~ -1. 
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Case (c) 

Let z~< 1 be given. For  t>~0, 0~<s~<~ we obtain from (A.3) and the 
variation of constants formula 

f2 I x z ( t + s ) l =  eA2"x2(t)+ e A2(s ~ ) F 2 ( x ( t + a ) ) d a  

<~ e -Ts [Xz(t)[ + 2se iA21L(rl)~l. (A.32) 

In particular, for t = z we have 

Ix2(t)l ~< z2/~ (A.33) 

where Z2 := e-7~ + zelA2LL(rl) < 1 for r/> 0 sufficiently small. 
Assume that (A.33) holds for t = k z .  We prove that for r / > 0  

sufficiently small (A.33) extends to all t e [kT, ( k +  1)~]. 
From (A.32) and (A.33) applied to t := k ,  we obtain for 0 ~< s < z 

x2(kz + s) <<. e-~X2rl + se IA2l L(rl)rl <~ X2rl, 

provided e YSz2q-selA21L(rl) <~ Z2 for 0 ~ s ~< z, i.e., if (1 - - e - 7 ~ ) Z 2  - 

selA=lL(~l) >>. O. Since 1 -  e -~s is convex, this is true if ~/> 0 is chosen so 
small that 1 - e -~*/> ~elA2lL(rl). 

By induction we obtain [x2(t)l ~< Z2~/for t/> r. Hence, for t ~> v we have 

Ix3(t)-x'31 Ix3(t)l + Ix;I 
~< ~<2(1 -~2) -1. 

[x12(t)--x'121 [x~ l -  Ix2(t)l 

Hence, (A.25) holds with q :=2(1 -;~2). I! 

A.5. L e m m a  

For rl > 0 sufficiently small we have 

lira A(t)  = O, 

where 

+ _ , 
�9 l e , ( s , + ~ (  )-S,(x))l 

A(t)  := sup S,(x')]  : z >i 0; x,  x' e F(r/), 

~ps(x) e t2(r/) for  0 < s ~ < t + ~ ,  ~o~(x')eI2(q) 

fx3- x;I ~ Ix~2- x'121~. 
3 

for 

(A.34) 

O<o'~<t, 

(A.35) 

865/2/3-6 
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Proof  

First, we note that  by Lemma A.4, for sufficiently small t / >  0 there 
exists a q > 0 such that  

IP3(r-pr - x')l  < q l(P~ + P2)(rPr - x')l 

provided x, x '  e/~(~/), and [X 3 --X31-~ [X12-- X'12 I. 
The assumptions of  L e m m a  A.3 are satisfied for 

y( t )  :=  q)t+~(x) - r 

with L :=  L(~/) and 

p( t )=sup{ lDx ,2R3(s ,  (1 - -0 ) (p~+~(x)+&p~(x ' ) ) [ :  t>~O, O<~s<<. 1, 

0 ~ 9 ~ <  1, x, x '  ~ cl ~(r/)}. 

To check that  p(t)  satisfies (A.17), note that  from (2.9) it follows that  
Dx12R3(s, x12 , 0) = 0  and, since R is C 1, ,Dx~2R3(s , x)  ~ 0  for x3 ~ 0 
uniformly for 0~<s~<l  and x e O ( q ) .  Hence, (A.17) follows from 
LemmaA. l ( i i i ) ,  N o w  (A.34) is an  immediate  consequence of  Lem- 
ma A.3. | 
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