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I. Introduction. A surprising feature of the flow of polymers is associated with a
sudden increase in the volumetric flow rate when the pressure gradient is gradually
increased beyond a critical value. This striking phenomenon, called "spurt", was ap
parently first observed by Vinogradov et al. [15] in rheological experiments involving
the flow through thin capillaries of highly elastic and very viscous non-Newtonian flu
ids like some synthesized polybutadienes and polyisoprenes. The interested reader is
referred to [15, Table I] for more detailed information about microstructure charac
teristics of samples. The spurt phenomenon is a kind of a flow instability in pressure
driven shear flows of viscoelastic fluids.

Much effort is being spent to explain spurt and related phenomena mathematically.
Several authors have considered mathematical models based on differential constitu
tive equations due to Johnson, Sagelman, and Oldroyd exhibiting local extrema of
the steady shear stress as a function of steady strain rate (see [6-8, 10-13]). These
papers show that the spurt phenomenon is dynamic and , hence, cannot be explained
in a satisfactory manner by only studying the steady-state equations. Dynamical the
ory can explain phenomena observed in experiments and in numerical simulations,
and it can also predict phenomena like latency, shape memory, and hysteresis which
should be observable in future experiments.

In this paper we modify the models of [6] and [13] by adding a diffusion term to
the constitutive equation. The resulting system of equations (in dimensionless units)
governing planar shear flow has the form

aVt = v x x + Ux + f ,
2

at = - a + g(vx ) + v ax x

where V(l , x) is the velocity of the planar flow, a(t, x ) is the polymer contribution
to the shear stress, g: 9{ -+ 9{ is a given smooth function, and f > 0 is the pressure
gradient driv ing the flow.

Unlike the models investigated in [13] and [6] and the other models in [10-12],
system ( 1. I) contains the spatial diffusion term v

2
Uxx' Spatial diffusion is usually
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neglected in non-Newtonian models because of the spatial homogeneity of the struc
ture . In the model of [4] (also see [3]), Brownian motion prevents polymer molecules
(treated as dumb-bells) from being completely independent of each other , giving rise
to a diffusion term in constitutive equations. Typical values of 11

2 will be described
in Sec. 6. The structure of steady states of system (I.l) is determined by treating
11

2 > 0 as a small parameter and by applying the singular perturbation theory of
[9]. Th is theory enables us to select steady states that appear to be appropriate for
capturing the spurt phenomenon.

System (I.l) with 11
2 = 0 exhibits the same behavior in steady shear as the more

realistic models studied in [10-12], where the differential constitutive equations also
involve normal stresses (in particular, the first normal stress difference), giving rise
to a governing system of three -quasi-linear parabolic-hyperbolic PDEs in place of
the two in system (1.1). The dimensionless parameter Q representing the ratio of
Reynolds number to Deborah number is very small. The analytical study in [11-13]
is based on treating the respective governing equations as singular perturbation prob
lems with Q as a singular parameter. Their approach is to determine the complete
dynamics when Q = 0 and then to show that the dynamics of the full system is
similar for Q> 0 sufficiently small. By contrast, our quasi-linear system (1.1) with
11

2 > 0 is parabolic, and the theory of parabolic systems can be exploited to deter
mine the global dynamics for a > 0 sufficiently small. In particular, the existence of
a global compact attractor and an inertial manifold can be established . It should be
noted that the feature of mathematical models studied in [11-13] that makes their
qualitative analysis (asymptotic behavior as t --t 00, stability properties, etc.) par
ticularly difficult is that the governing equations possess uncountably many isolated
steady states. From this fact one can deduce that these governing systems can admit
neither a compact global attractor nor a finite-dimensional inertial manifold.

The paper is organized as follows. In Sec. 2, we use general ideas from [6] to
derive a non-Newtonian model of shearing motions incorporating spatial diffusion.
Basic properties of the model (existence and long-time behavior of solutions, qual
itative properties of steady states) are established in Sec. 3. It is shown that in the
case of a generic g, the asymptotic behavior of solutions is very simple-each so
lution tends to some steady state and the number of steady states is finite. We also
prove exponential stability of two particular steady states playing a crucial role in
the explanation of spurt . In Sees. 4 and 5, spurt and hysteresis phenomena in our
mathematical model are established. The phenomenon of spurt is associated with
extinction of a stable steady state when the pressure gradient increases beyond a
critical (bifurcation) value. The results of numerical simulations for small values of
Q , II > 0 are presented in Sec. 6. We have performed numerical simulations of spurt
and hysteresis phenomena for sample PI-3 (see [15]). Numerical results match the
data observed experimentally by Vinogradov et aI.

2. Non-Newtonian model of shearing motions including diffusion. In this section,
we derive a mathematical model for shearing motion of a fluid leading to a system
of governing equations including a diffusion term in the constitutive equation.
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(2.1)

We consider the planar shear flow of a viscoelastic fluid in an infinite narrow
strip: x E [-h, h] and y E (-00, 00), with the flow directed along the y-axis. We
suppose the fluid to be non-Newtonian, incompressible, and the motion to take place
under isothermal conditions. We restrict ourselves to motions that are symmetric
with respect to the centerline. Under our assumptions the flow variables will depend
only on the transversal variable x. Hence, the velocity vector v has the form
v = (0, v (t, x )) with v(t, x) = v(t , - x ). It is easy to verify that the mass balance
is then automatically satisfied . The equation governing the motion of the fluid is the
balance of linear momentum

o (~~ +(v, V)v) =VS

where {l is the constant fluid density and S is the total stress which can be decom
posed as

(2.2)

(2.3)

Here p is the isotropic pressure of the form p = Po(t , x) +f· y where f is the
pressure gradient driving the flow, e is the Newtonian viscosity, and jj is the rate
of deformation tensor, i.e., jj = (Vv + (Vv)T)/2. According to [6, Sec. 2] the extra
stress

_ ((Jxx,
L= yx

(J ,

satisfies
aXY

= o" = ~:o[A,(s)],

a
Xx

- (JY1 = ~:o[A,(s)] ,

«" + aY1 =0

where yo, 5"i are generally nonlinear operators acting on the relative shearing his
tory

A,(s) = -1'
vx(-r, x) dt:

1-.
Since we assume the flow to be planar, Eq. (2.1) reduces to

{lv, =evx x + (Jx + f

(2.4)

(2.5)

where a := aXY
•

We specify the operator YO in such a way that it takes into account long-range
molecular forces. According to [4], the latter provide the constitutive equations by a
diffusion term ,}ax x ' The first normal stress difference determined by the operator
5"i plays no role in our model.

Let A denote the selfadjoint closure in L2(0, h) of the operator defined on

Ci (O , h) by Au = -ux x for any u E Ci(O, h) := {u E C
2(0,

h); u(O) = u)h) =
O} ; its domain D (A ) is the Sobolev space W; ·2(0, h) = {u E W 2.2(0 , h ) ; u(O) =

ux(h ) = O} . Let A., v > 0 be fixed. Then the operator - (A. + v 2A ) generates an

anal ytic semigroup exp(-(). + v 2A )l) , t ~ 0 ; (see [5, Chapter I]).
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Assume that g:!R -+ !R is an odd Lipschitz continuous function. As usual,
we identify g with the Nemitsky operator g: W1,2(O , h) -+ L 2 (0, h) defined by
g (u) (x) = g(u (x» for a.e . x E [0, h]. Due to the assumptions on g the nonlinear
operator g is well defined and Lipschitz continuous.

Let 1 E L 2(O, h) be defined as

l:x ...... f·x foranyxe[O,h] . (2.6)

(2.7)

We define

~(At ) = loco exp(-().+ v
2A)s

). [g (- ;sA/(S») +)..1] ds - 1

1 2forany vEC(!R:W' (O,h», supll v (t) lI w,.2 < oo, and r g O
tE9I

where A/s) is defined by Eq. (2.4), i.e., A/(s) = - fL, vx(r , x ) d t ,

Clearly ,

~(At) = loco exp(-(). + v 2
A)s)[g(vx(t - s , .» + ).1] ds -]. (2.8)

In case u = 0 , the definition of the functional ~ coincides with that of [6,
formula (5)]. However, since the operator). + v 2A , v > 0 , is a diffusion operator
generating an analytic semigroup, the operator exp(-(A. + v 2A)s) , s > 0 , smooths
out solut ions, i.e., exp( -(). + v 2A)s)w E D (A) for any w E L 2(0 , h ) and s > 0 (see
[5, Chapter IJ).

Differentiating Eq. (2.8) with respect to t and substituting u := 0'+1 = ~(At)+1 ,
we obtain the following constitutive equation of rate type:

2 -
U t + (A. + v A )u = g(vx) +).j (2.9a)

with boundary conditions

or, equivalently,

with boundary conditions

u(t, 0) = ux(t , h) = 0 (2.9b)

(2.10a)

att , 0) = 0, (2. lOb)

(2.11)

respect ively.
We note that ux(t , h ) = - f implies vxx (t , h) = 0 which is the boundary con

dition appearing in the theory of multipolar fluids (see, [2, Sec. 3]). The boundary
condition u(t , 0) = 0 (u(t , 0) = 0) implies that the function u(t ,·) (u(t, ·)) can
be extended as an odd function to the interval [-h, h] for all t . It ensures the
symmetry of the flow about the centerline.

Summarizing, our model leads to the initial-boundary value problem

(lv/ = ev xx + ax + f;
2

at = v Uxx + g (vx ) -).0' ;

v(O, x ) = vo(x ) and 0'(0 , x) = ao(x ) for a.e. x E [0 , h] ; \

vx (t , O) = v(t, h) = O, u (t ,O)=O , anda)t,h)= - f for t 2: 0.
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To facilitate the discussion, we scale the space variable x by h , times t by ). - 1 ,

v by h)' , (J by e.l , f by el/h , and v 2 by h2). , and replace g(';) by g(A.;)/e).2 .
The resulting system is

a V t = vxx + Ux + L,
2

(Jt = V (Jxx + g(vx) - (J

for (r , x) E [0, 00] x [0 ,1]

with boundary conditions

vx( t , O) = v (t, I) = O,

(J(t, 0) = 0, ux(t, I) =-f

and initial data

v(O, x ) = vo(x ) and u(O, x) = uo(x) for a.e. x E [0 , I].

There are two dimensionless parameters:

. h2).
a = _f!_ and v > O.

e
According to [15] and [4], the typical values of a and v are

a = 0(10-9
) and v 2 = 0(10-4

).

(2.12)

(2.13)

(2.14)

Hence, we may treat a and v as small parameters.

3. Existence of solutions, asymptotic behavior, steady-state solutions and their sta
bility. In this section, we study the problem of existence of solutions, their long-time
behavior , and some qualitative properties of steady states of the system (2.12). Using
the abstract theory developed in [5] we establish local and global solvability. For g
real analytic we furthermore prove that the asymptotic behavior of the solutions is
simple-each trajectory approaches some steady state and the number of steady state
solutions is finite. To single out the appropriate stationary solutions, we apply the
results of the theory of singularly perturbed boundary value prob lems of [9].

3.1. Existence ofsolutions. In terms of the variables v and u the initial bound
ary value problem (2.12) takes the form

aVt = vxx + ux'
2

ut = v uxx - u + g(vx) + [x ,

vx(t, O)=v(t, 1)=Oandu(t ,O)=ux(t , 1)=0 fort ~O ,

v (O, x ) = vo(x ) and u(O, x ) = uo(x) for x E [0, I].

To facilitate the discussion , let

S = Vx + u = V x + a + J.
Obviously ,

(3.1)

(3.2)

(3.3)
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In terms of Sand u, the system (3.1) takes the form
2

as, = Sxx + av uxx + a(g(S - u) + f x - u),
2

u, = v uxx - u + g(S - u) + f x

with boundary conditions

(3.4)

u(t, 0) = ux(t, I) = 0,

and initial data

S(O, x) = So(x) = VOx(x)+ uo(x), and u(O, x) = uo(x) for x E [0, 1]. (3.5)

(W)

on [O,cl ),

on (cl , c2 ) ,

on (c2 , 00).

Throughout this paper we will assume that a and v are small parameters. The
pressure gradient I is assumed to be positive. The function h(u) := u + g(u) is
assumed to be C 2 with a single loop as shown in Fig. l.

More precisely, we make the following hypotheses:

(i) g: 9t ..... 9t is an odd C2 function with bounded first and second derivatives
satisfying g(u)u 2': 0 for any u E 9t;

(ii) there exist constants 0 < c1 < c2 such that

h'(u) = 1+ g'(u) > 0, h" < 0

h'(u)=l+g'(u)<O

h'(u) = 1+ g'(u) > 0, h" > 0

Under assumptions (W), there exists a 1'0 > 0 such that

l
max r ' (Yo)

(h(u) - 1'0) du = O.
minh-'(yo) .

/
Maxwell's line

1m - - - - - - - - - - --

u

FIG. 1. van der Walls type curve



SPURT FOR A NON·NEWfONIAN FLUID 401

The last integral condition is commonly known as Maxwell 's equal area rule (the
area A equals B). In Fig. 1 the line u = Yo is called Maxwell's line. We also note
that the function h(u ) = u + g( u ) satisfying (W) is somet imes called van der Walls
type curv e.

In what follows, we let X denote the real Hilbert space L 2 (O, 1) with norm 11·11
and inner product (', .). Recall that the operator A defined in the previous section
is sectorial and positive in X with domain D(A) = {w E W2,2(O , 1) ; w (O) =
wx (I) = O}. Hence , fractional powers of A can be defined . Let X r , y ~ 0 , be the
Hilbert space consisting of the domain D(A7 ) endowed with the graph norm

(3.6)

The operator A has a compact resolvent A-I: X -+ X .
Now one can treat the governing equations (3.4), (3.5) as abstract differential

equations in the Hilbert space
2' = X x X . (3.7)

To do so, we let eI> = [~] . The system (3.4) then becomes

d .
dt eI> + LeI> = F(eI» , (3.8)

where the linear operator L is defined by

L[8] := [A(~S+ V
2U)]

= (~A
u ,/Au 0

(3.9)

(3.10)

on its domain D(L) = D(A) x D(A) . The nonlinearity F is given by

F([~]) = [;~~=~~=~:~] .
It is routine to verify that L : D (L) c 2' -+ 2' is a sectorial operator generating

an analytic semigroup exp(-Lt), t ~ O. Since A-I is compact, it is easy to show
that L has a compact resolvent L -I: 2' -+ 2' . The fractional power L 1

/
2 is then

easily computed as

(

I A1/ 2 ~AI/2)
~ T+vV'O

o vA I
/ 2

and D(L 1/2) = D (A 1/2) x D(A1/2) . Hence there is an equ ivalent norm in 2"1/2 such
that

2'1 /2~ x'" X X 1/ 2 ,

and it can easily be verified that

X 1
/
2={WEW I ,2(O , 1) ; w( O)= O}.

(3. 11)

(3.12)

Since we have assumed that the first and second derivat ive of g are bounded, the
nonlinearity F is a C l mapping from 2"1/2 into 2" .
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Now we can apply the general theory of abstract parabolic equat ions [5]. According
to [5, Theorems 3.3.3, 3.3.4, 3.4.1, and 3.5.2], for any initial condition «1>0 E :r1

/
2

the abstract equation (3.8) has a unique solution «1>(t) defined on [0 , (0 ) by the
property

1/2 I _ 1/2
«1>EC\oc([O, oo) , :r )nCloc«O ,oo), a. ),

«1>(t ) E D(L ) for t > 0 and «1>(0) = «1>0'

Hence, Eq. (3.8) defines a C I -semidynamical system (T(t ) , t ~ 0) in :r1
/
2 defined

by
T(t )«1>o = «1>(t , «1>0) for any t ~ 0

where «1>(t , «1>0 ) is the solution of Eq. (3.8) with «1>(0) = «1>0 E:r1
/
2.

3.2 . Asymptotic behavior 01solutions. We now turn our attention to the asymp
toti c behavior of solutions of Eq. (3.8). First, we will study the set of steady states,
i.e., stationary solutions of Eq. (3.8) which we denote by g' . Clearly,

g' = {[~] ; U E D (A ) is a solution of v
2
Au = - 11+ g( -u) + IX} . (3.13)

In fact, [~] E g' iff

UEC\O , I) , v
2uxx +u+ g(u) - l x , U(O )=Ux(l) =0. (3.14)

Here we have used the assumption that g is an odd C2 function .
The system (3.8) admits a global Lyapunov funct ion V : :r1

/
2

-+!R defined by

V ([~]) = ~ {±IISII~/2 + v
2

11 S - ulI~/2 + liS - ull
2
+ J(S - u)}

where r r W(X)
J (w) =210 10 (g(s) + Ix) ds dx. (3.15)

Indeed , a simple calculation shows that for any solution [~gl] the following formula
holds:

d ([S (t)] ) I 2 I + a v
2

2
d t V u(t ) + ~ IIS(t) 1I 1 /2 +~IIS(t) 1I1 =0 for any t > O. (3.16)

Due to the assumption g(u)u ~ 0 for any u E !R it follows that the funct ional
V is bounded from below. From Eqs. (3.14) , (3.16) it follows that the real-valued
function t ..... V([ ~gm, t ~ 0, is strictly decreasing unless [~g;] = [~] E g' is a
steady-state solution of Eq. (3.8). Then a standard argument (see, e.g., [16, Theorem
4.1]) enables us to conclude that the omega-limit set

n (<<1>o) := {«1> E :r1
/
2

, there exists tn -+ 00 such that T (tn )«1>o -+ «1>}

sat isfies
(3.17)
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for any <110 E 2"1/2 . Since the operator L has a compact resolvent L - I, it follows
from [5, Theorems 3.3.6 and 4.3.3] and Eq, (3.17) that

lim dist(T(t )<1Io' g' ) = 0 , (3. 18)
1-00

where dist (<I> , ?f) = inf(lI<I> - '1'112'1/2 , <I> E ?f) . In the following simple proposit ion ,
we obtain bounds on steady states, and we show for g real analytic that the numb er
of possible steady states is finite.

PROPOSITION 3. 1. Let Uo ~ c2 be such that h(uo) ~ f . Then O:s u(x ) :s Uo for any
solution u(x ) of Eq. (3.14) . Moreover, there exists a consta nt M = M (g , f) > 0
such that

v sup lux (x )! + sup lu(x)l:s M.
xE[O, 1] x E[O, 1]

If g is real analytic, then the number of solutions of Eq. (3. 14) is finite.
Proof. Let u be an arbitrary solution of Eq. (3. 14). Since h(u ) := u + g (u )

is nondecreasing on [uo' 00) and h(uo) ~ f , it follows that u(x ) ~ Uo implies

v
2u

xx(x) = h(u(x)) - fx ~ h(uo)- f x ~ f( 1-x) . Thus the function u(x ) is strictly
convex whenever u(x ) ~ uO' Since u(O) = 0, if u(xo) > Uo for some Xo E (0 , I] ,
then there exists Xl E (0 , I) such that u(xI ) = uO ' u(x ) > uo' and ux(x ) > 0
on (XI' 1) . This means that u cannot satisfy uJI ) = O. Hence, u(x ) :S Uo for
every X E [0 , 1] and v > O. The inequality os u(x ) can be obtained in a simila r
way. The estimates for u(x) and vUx(x) follow from the well-known interpolation
inequality

v sup lux(x) l :s 2 ( sup lu( x)1+ v
2

sup IUxx(X)I )
x E[O, ll . xE[O,I] xE [O, l ]

for any u E C
2
([0 , I]) and v > O.

Now we assume that g is real analytic. We fix a v > 0 and define the map
J.l >-+ ¢(J.l) as ¢( J.l) = u~{I ) where lI' (x) is the solution of the initial-value problem

v 2u
xx = u + g(u) - f x , ul'(O) = 0 , u~(O) = u . Sinc e g is Lipschitz continuous

and analytic, the function ¢(J.l) is well defined and analytic on !R . Furthermore,
¢(J.l ) = 0 if and only if ul' (x ) is a solut ion of the BVP (3.14). Suppose to the
contrary, the existence of infinitely many solutions of the BVP (3. 14). Then the
set {J.l E [-M/v , M/v]; ¢( J.l ) = O} must have an accumulation po int. Because of
analyticity of ¢, we have ¢ == 0 on !R . Hence, there is a solution ul' (x ) of the
BVP (3.14) for J.l > M]» which is inconsistent with u~ (O) = u . 0

The omega-limit set 0 (<110 ) is connected [5, Theorem 4.3 .3]. Thus, by Eq. (3.17),
Q(<1Io) is a singleton whenever g' is finite. We have thus established the following.

THEOREM 3.2. Assume the hypotheses (W). Then, for any init ial condition <110 E

2"1/2, the evolution problem (3.8) has the un ique solution <11 = <1I(t , <110) , t ~ 0,
its omega-limit set 0 (<110 ) being contained in the set of stead y-state solut ions g'. If,
in addition, g is real analytic, then each trajectory tends to a single steady state.

3.3. Steady-state solutions. We now exam in e steady-state solutions of Eq, (3.8).

Recall that [~] is a steady state if and only if S:; 0 and II E C4(0, I ) is a solution
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(3.19)
2

V uxx = u + g(u) - f x ,

u(O) = ux(l) = O.

The steady-state velocity profile v is then calculated as vex) = f; u(e;) de;. Since v
is assumed to be small, the problem (3.19) can be viewed as a singular perturbation
of the reduced problem

From now on, we assume
0= u + g(u) - [x, (3.20)

(3.23)

(3.22)

(3.21)

IE [/miD , l max]'

where 0 < lroiD < I'm and I'M < I mn < 00 . From Fig. I it is clear that the problem
(3.20) has a unique C l solution u = ¢>I (x), x E [0, I], whenever IE [fmin' I'm)'

When I E [I'm' l max ] there exist C l functions ¢>j(x) defined on two overlapping
intervals I j contained in [0, 1], where 0 E II ' I E 12 , i = I, 2, and such that
h(¢>j(x» - [x = 0, x E Ii' and tP2(X) > ¢>1 (x) on II n 12 , Hence, there also exist
discontinuous solutions of (3.20). Indeed, any function u = u(x) where u = ¢>I (x)
on [0, 1]\12' u(x) E {¢>I (x), ¢>2(X)} on II n 12 and u = ¢>2(X) on [0, 1]\11 is
the solution of (3.20); the number of discontinuities of u is unlimited. Inevitably,
each solution of (3.20) is discontinuous whenever I E (I'M' l max ] . In the case IE
(Yo' l max ] and v small we expect the existence of a solution of (3.19) having an
abrupt transition at some interior point Xo E (0, I) . When ¢>I is defined on the
whole interval [0, I] we also expect that (3.19) has a solution that is close to ¢>I on
[0, I] for v small.

To make the above discussion precise, we employ general results of singularly per
turbed equations due to Lin [9]. To this end, let us consider (3.19) as the equivalent
2 x 2 system

vUx =W,

vWx = u.+ g(u) - [ x ,
u(O) = w(l) = O.

In case I E [fmiD ' I'M) the piecewise continuous function

{

(0,0), x E [0, v 1/2),

U~= (¢>I(X) , 0), XE[vI/2,I-VI/2) ,

(tPI(I),O), xE[l-v1/2, I]
is a formal approximation of the system (3.21) in the sense of [9, Theorem 2.1].
When I E (Yo' Im;u] (Yo is determined by Maxwell's equal area rule), there is
another formal approximation of system (3.21) given by

. 1/2
(0, 0), x E [0, v ) ;

(tP l (x), 0), x E [v 1/2, Xo- v I/2] ;

U~= (z(? ) , z'(?», XE(XO-vl/2,XO+VI/2) ;

(¢2(X) , 0), x E [xo+ v l
/
2

, 1- v l
/
2

) ;

(tP2(1) , 0) , XE[1 _1/1/2, I].
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Here Xo E (0 , I) is determined by fxo = Yo and Z = Z(T) is the heteroclinic
solution of th e second-order autonomous ODE

Z" = Z + g (z ) - Yo (3.24)

such that lim,__oo Z(T) = rP, (xo) , lim
t

_ oo Z(T) = rPz (xo) , Z > 0 , and z' > O. The
existence of such a solution follows (by phase-plane analysis) from the fact that (due
to the hypothesis (W» rP 1(xo) and rPz (xo) lie on the same level curve of an integral

for the system (3.21). We note that rP . (xo) = minh-' (yo)' rPz(xo) = maxr' (yo)
for any f E [Yo' f max ] , and hence the solution Z does not depend on f.

It is now easy to verify that the formal approximations v;! ) and o;,Z) satisfy
the hypotheses (HI )-(H3 ) of [9]. We omit this detail. Then the main result of [9]
adapted to the BVP (3.19) reads

THEOREM 3.3 [9, Theorem 2.2]. Let U v be a formal approximation of (3.19) given
by (3.22) or (3.23) . Then there exists vo > 0 and <50 > 0 such that for 0 <
v ~ vo there exists a unique true solution u = uv(x) of system (3.19) with r :=

sUPxEIO ,lJ IUv(x) - U(x)1 ~ <50 , where UvCx) = (u(x) , vu x(x» . The remainder r is

of order o(v '/ Z) when v -t 0+ .
REMARK 3.4. Theorem 2.2 of [9], however, does not specify the explicit depen

dence of the remainder r on the coefficients of Eq. (3.19) . The decay of the remain
der r may depend on the parameter f . Nevertheless, for any fixed rf > °small
enough, using the implicit function theorem and following the lines of the proof
of [9, Theorems 2.2, 4.3, and 4.4], one can show that the remainder r = r (v , f)
for the formal approximation 0;,1) (o;,Z» is O(v IIZ) uniformly with respect to

f E [fmin' YM - rf] and f E [Yo + n , f max ] , respectively, when v -t 0+ .

For f E [fmin , YM)' Theorem 3.3 asserts the existence of a true solution U~I ) of

Eq, (3.19) approximating the given formal approximation U~. We have

u~l)(x) ~ rP ,(x ) and v~l)(x) ~ [rP1(l;)dl; for any x E [0, I] as v -> 0+.

(3.25)
Again, by Theorem 3.3, for any f E (yo' f max ] , there exists a solution u~) of Eq.

(3.19) such that

lim u(Z)(x) = rPl (x) for any x E [0 , x o) ,
v- o. v

(3.26)

Hence, for small u » °the solution u~) has a graph as in Fig. 2 (see p. 412).
By the Lebesgue dominated convergence theorem we have the uniform convergence

x E [xo' I ];

x E [0 , xo]
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FIG.2

x

FIG. 3

when t/ -+ 0+ . Hence, the family (V~2»)v>O converges uniformly to the velocity

profile v62
) with a kink located at Xoas shown in Fig. 3.

It is now clear that given a pressure gradient f E (Yo' yM ) , for any v sufficiently
small there exist at least two solutions U~l), U~2) of Eq. (3.19) satisfying Eqs. (3.25)
and (3.26), respectively.

Integrating the velocity v with respect to x yields the steady-state flow rate per
cross section

Q = 2{V(X)dx. (3.27)

Denote by Q~ the volumetric flow rate corresponding to the velocity v~i) given by
Eqs. (3.25) and (3.26), respectively. Clearly, for any 1/ > 0 there is d = d(g, 1/) > 0
such that

Q~2) _ Q~l) ~ d for any f E [Yo + '1, YM) and v > 0 sufficiently small . (3.28 )
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We conclude this section by discussing the stability of steady states. We first show
that linearized stability of a solution Ii of system (3.19) extends to that of the steady
state solution [gl of Eq. (3.8).

LEMMA 3.5. Let 0 < Q < 1/ sUPuE!l\ Ig'(u)!. A steady-state solution [gl of Eq. (3.8)
is exponentially asymptotically stable with respect to small perturbations of initial
data in the phase space ;;e1/2 = X I

/
2 X X I

/
2

, provided the principal eigenvalue flo

of the linearized Sturm-Liouville problem BI[ul = v 2uxx - U - g'(-u(x))u = uu ,
u(O) = ux(l) = 0 is negative.

Using Lemma 3.5 we are able to prove the theorem below establishing stability of
the solutions [ ql, i = I, 2, as well as their uniqueness for certain parameter values.

Uv

The details of the proofs of Lemma 3.5 and Theorem 3.6 are given in the appendix.

THEOREM 3.6. Assume that 0 < Q < 1/ sUPuE!l\ Ig' (u)1 and g satisfies the hypotheses
(W).

(a) If f E [fmin' YM ) and v > 0 is sufficiently small, then the principal eigen

value flo of the linearized Sturm-Liouville problem BI[ul = uu at U~2) is negative.
Consequently, the steady-state solution [ ?,1 of Eq. (3.8) is exponentially asymp-

Uv

totically stable with respect to small perturbations of initial data in the phase space
2"1/2 = X I /2 x X I / 2 •

(b) If f E (Yo' fmaxl and v > 0 is sufficiently small, then the principal eigen

value flo of the linearized Sturm-Liouville problem BI[ul =uu at U~I) is negative.
Consequently, the steady-state solution [ ?,,] of Eq. (3.8) is exponentially asyrnp-

Uv

totically stable with respect to small perturbations of initial data in the phase space
2"1/2 = X I / 2 X X I / 2 •

(c) There exists a unique steady-state solution ofEq. (3.8) whenever f E [fmin' Ym )

or f E (YM' fmaxl and t/ > 0 is sufficiently small .

4. Spurt. Having developed the mathematical background we are in position to
explain the occurrence of spurt for a fluid governed by the system of equations (3.8).

Suppose that we are loading the pressure gradient quasi-statically from f min to
fmax allowing the system to settle down to its equilibrium state at each step.

Since V~I) = v~l)(f) depends continuously on f, the volumetric flow rate Q~l ) =
Q~l)(f) of the steady-state velocity V~l ) = V~l)(f) for f < YM forms a continuous
curve. At each step of the "loading-stabilization" procedure, the volumetric flow
rate corresponding to the velocity v(T) is close to Q~l) = Q~l )(f) when T is large
enough .

The situation changes dramatically when the pressure gradient f passes YM ' For
f > YM the solution has no other possibility than to settle down to the unique steady
state solution
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of system (3.8) which is globally asymptotically stable by Theorem 3.6. Hence , by
Eq, (3.28), this small change of the pressure gradient causes a jump of size d > 0 in
the volumetric flow rate as shown in Fig. 4. This jump is equal to the area between
the two equ ilibrium solutions V~l ) and V~2) (see Fig. 4).

For f varying in the interval (I'M' f max ), the "loading-stabilization" can be re
peated. The corresponding volumetric flow rates are close to the continuous curve
f ...... Q~2}(f ) of the steady-state volumetric flow rates in Fig. 5.

Let us note that earlier models that did not include the diffusion terms in their
constitutive relations also captured the spurt phenomenon [10-12]. For f> I'M the
principal difference between our explanation of spurt and that of papers mentioned
is: the change in volumetric flow rate as f passes through the critical value I'M on
loading is much more drastic in our model than the earlier ones; here the "kink"
develops at the point 0 < YO/I'M < I very suddenly and then moves slowly with a
definite speed toward the centerline. In [10, II]. the kink develops at the wall; for
f> I'M' the layer position is x· = I'M/f. The phenomenon of latency that occurs
on loading described in [10, II] is not discussed here.

v

x

FIG. 4

Pressure gradient YM f

FIG. 5. Spurt
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5. Hysteresis. We now consider the loading-unloading cyclic process. The be
havior of the volumetric flow rate during the loading period has been described in
the previous section. Recall that the volumetric flowrate increased rapidly when the
pressure gradient passed the value YM' Now let us unload the pressure gradient start
ing from f = f max • By convention, as long as f stays larger than Yo' the solution
still settles down on

On the other hand, for any f < Ym there exists the unique solution

Therefore, the solution

ceases to exist at some critical value near "0' Figure 6 shows two branches of the
bifurcation diagram corresponding to the stable steady states

i = 1,2.

By Eq. (3.28), Q?l(f) - Q~ll(f) ~ d(,,) > 0 for any f c [Yo + n , )1M) where
" > 0 is fixed. Hence, there is a hysteresis loop as shown in Fig. 7 (see p. 416).

u

FlO. 6
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t; Yo

Pressure gradient

FIG. 7. Hysteresis

t

f

6. Numerical simulations. In this section we present some numerical results ex
hibiting spurt and hysteresis . Recall that our model leads to the system of governing
equations

I2 V t = eVn + ax + f;
2

at = v uxx + g(vx) - Aa

for (t, x) E [0, 00] x [0 , 'cap]
with boundary conditions

(6.1)

v)t , 0) = v(t, 'cap) = 0, a(t, 0) = 0, ux(t, 'cap) = - f
and initial data

v(O, x) = vo(x) and a(O, x) = ao(x) for a.e. x E [0, 'cap]' . (6.2)

We will consider an analytic function g of a particular form
u

g(u) = III + (I _ a2)u2 /A2 (6.3)

where Il > 0 is the elastic modulus, a is the dimensionless slip parameter, and A is
the relaxation time of the polymer. The particular choice of the function g is taken
from [II , Sec. 3].

First , we determine the magnitude of the coefficient v > 0 in Eqs. (6.1) . Following
[4]

2 k·e
v ::::~ (6.4)

where e is the absolute temperature, k is the Boltzmann constant, and .; is the
hydrodynamic resistance of one dumb-bell bead (assumed to be constant). If we take
typical values of e"" 102K , .; "" 1O-9kg S-I and recall that k"" 1O- 23J K- 1

, we
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obtain v 2
"" 1O- 12m2

S-I. In our numerical simulations we have chosen the fixed
value

(6.5)

We next tum to the Vinogradov et al. rheological data. In all experiments, the
radius of the capillary was

- 3
rcap = 0.48 x 10 m.

The elastic modulus J1. and the density fl have been taken constant for all samples
and equal to

(6.6 )

respectively.
Numerical experiments were performed for the polyisoprene PI-3 which was the

first sample for which spurt was observed [15, Fig. 3b]. According to [15] and [8,
p. 323] we have

A = 0.1 S-I,
. J1. 3-1

e = 0.014841 = 8.9 x 10 Pa s a = 0.98. (6.7)

We see that the constants Q = flr;pA/e = 2.58 x 10-9 and v2/r;pA = 10- 4 intro
duced in Sec. 2 can be treated as small parameters. It is easy to verify that the real
analytic function

h(u) = AU + !!. . .U--;;----;;.....-
e I + (I - a2)u2/(e 2A2

)

is of van der Walls type (see the hypothesis (W)).
As our first numerical experiment, we simulated spurt. In S. I. units , we choose

f.
7 - 2 -2 f. 7 -2-2

min = 9.3 x 10 kg m s, max = 51.2 x 10 kg m s ,

tif = 1.8 x 107kg m-2 s-2.

The startup initial condition (for f = fmin ) was chosen to be (vo' uo) = (0, 0) . At
each loading step, the solutions were followed for a sufficiently long time Tmax =

150 sec to allow them to settle down. Since Q > 0 was very small, we could use
the Crank-Nicholson implicit time-space discretization scheme. The spatial mesh
contained a total of 40 nodes. The time step was chosen as tit = 0.005 sec .

Figure 8 (see p, 418) shows the results obtained (Fig. 8(a)) and compares them with
Vinogradov et al.'s experimental data (Fig. 8(b), the flow curve for PI-3 is labeled
by 3). Following [IS] c-g-s units are employed and axes are in the logarithmic scale.
The nominal shear stress T is defined by T = rcapf (see [8, Eq. (48)]). Since we have
considered a planar flow instead of a capillary flow the corresponding definition of a
volumetric flow rate is

3 f'"p
Q = - 2- in V(X) dx

rcap 0

(see [8, Eq. (47)]).
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FIG. 8(a). The spurt phenomenon for the sample PI-3 .
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Finally, we have performed numerical simulations of a loading-unloading cycle.
The hysteresis loop under the cyclic load is displayed in Fig. 9.

Figure 10 shows the steady, kinked velocity profile for the spurt value of the nom
inal shear stress r = 1.61 x I06dyne cm-2 (log r = 6.21).

1.50

1.00

0.50

Cl

~ 0.00
~
'=
0

·~-o.50

E
::l
'0
> -1.00

-1.50

5.60 5.80 6.00

t

6.20 6.40

Nominal shear stress

FIG. 9. The hysteresis loop under cyclic load

-6.00 -4.00 -2.00 0.00 2.00 4.00 6.00
x=O.OOOI m

FIG. 10. The velocity profile at the critical value of pressure



420 P. BRUNOVSKY A N D D. SEVCOVIC

7. Discussion. We have proposed a modification of the mathematical model of
shearing motions leading to a system of governing equations including a diffusion
term v 2axx in the constitutive equation. In addition, we have described the asymp
tot ic behavior of solutions which is simple in typical situations-each solut ion tends
to some steady state and the number of steady states is finite.

The diffusion term makes the system of governing equations parabolic. As a con
sequence of the resulting parabolic smoothing effect the system will admit a finite
dimensional inertial manifold as well as a compact global attractor. In a subsequent
paper we will study singular limits when Q = er;"'pA/e tends to zero.

Acknowledgments. The authors are thankful to J. A. Nohel and A. Tzavaras for
introducing them to the subject and helpful discussions.

Appendix.
Proof of Lemma 3.5. Let [~] be an arbitrary steady state solution of Eq. (3.8).

The linearization of Eq. (3 .8) at [~] has the form

where the linear operator B is given by

B[S] = [~Sxx:v2Uxx-U,+gl(-U(X))(S-U)], (A. I)
u v uxx - u + g (- u( x) )(S - u)

its domain being D (B) = ([~], S , U E W2.2(O, I) ; S(O) = S)I) = u(O) = ux(1) =
O} C L 2(O, I ) x L 2(O, 1). Denote by B 1 the Sturm-Liouville operator

(A.2)

on its domain D (B l ) = {w E W 2•2(O, I) ; w(O) = wx(l) = O} c L 2(O, I).
Assume that the principal eigenvalue f,lo of the linear problem B1[u] = uu , u E

D (B l ) is negative. Since B 1 is a selfadjoint Sturm-Liouville operator, we have

(A.3)

for any U E D(BI ) , uf.O. Moreover, B1 is invertible and B;I: L 2 ->

compact. Hence, the operator B is also invertible and

where the linear operator A was defined in Sec. 2. Since , by Eq, (3.6), A-I : L2 -> L2

is compact, B- 1
: 2' -> 2' is compact as well. Therefore, the spectrum a(B ) consists

of eigenvalu es.
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We will show that Re.l < 0 for any l E a(B ) = ap(B). Suppose to the contrary
that there exists an eigenvalue l E a (B) such that ReA ~ O. Let [~l denote the
eigenvector of the linear problem

(AA)

(A.8)

(A.7)

Subtracting the equations for Sand u we obtain i«. = l (S - u). Thus,

Sx(x ) = -OAl (S - u)(~) d~. (A.5)

Taking the inner product of (A.5) with - f ; (S - u) (~ ) de. we obtain

-liS - ull
z

- (u, S - u) =aAlll (S - u)(C) de.I I

Z

Since Re I ~ 0 , we have liS - ullz ::; -Re(u , S - u) ::; lIullllS - ull and hen ce,

liS - ull ::; lIull. (A.6)

From (A.5) we have S(x) = -oAf; t(S-u)(e.)de.dr . Thus S = OA J (S-u) where
J: Lz -+ Lz is a linear bounded operator with IIJII ::; I Therefore, u satisfies the
equation

BI[u] +aAg'(-u(o»J(S - u) = AU.

Take the inner product of (A.7) with u to obtain

(BI[ul, u) = l (lIull
z

- o(g'(-u(o»J(S - u) , u» .

Since BI is selfadjoint, we have Im(A - ol(g' (-u(o»J(S - u), u)/lIuIl 2
) = 0 and

> (B l [ul, u) = A (I _0 (g'(-u(·»J (S - u) , U») .
#0 - lIull z lIullz

According to (A.6) we have

aI(g'( -u(o»J(S - u) , u) Is asup Ig' (s)I"J(S - u)lIl1ull s asup Ig' (s)1 < I
lIullz sE!ll lIull z

sE!ll

because II JII s I. Therefore,

" >l(l_a(g'(-U(o»J(S-U) ,U») > 0
" 0 - lIullz - ,

a contradiction. Hence, ReA. < 0 for any A E a(B) 0 By [5, Theorem 5.1.1], the
steady-state solution [g] of Eq. (3.8) is exponentially asymptotically stable with re

spect to small perturbations of initial data in the phase space 2"1/Z = X I
/
2 x X I

/
2

. 0

Proofof Theorem 3.6. (a) For any u E D(BI ) , u"# 0, we have

(Bl[ul, u) = _1_ (_v2 t uZ(x)dx- t h' (U(I )(X»)U2(X)dx)
lIullz lIull2 Jo x Jo v

< - -!'-z t' h' (U(I)(X» uz(x) dx .
- lI ull Jo v
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We have h' (rP l (x) > 0 for x E [0 , I) . Therefore, h' ( u~l)(x» > 0 for any x E [0 , I)
and v small. Hence, the principal eigenvalue 11-0 of B I satisfies

(BI [u], u) 0
11-0 = sup 2 <.

UED(B,) . ui O lI uli
(A.9)

(b) Let us now consider the solution U~2) of Eq. (3.19) having an abrupt transition
at the point xo =Yo/ f E(O, I) .

First we prove that U~2) is increasing on [0 , I). The curve h(u) - fx = 0 splits
the first quadrant into two parts (Fig. A.I ).

The function U~2) is convex or concave at x depending on whether the point

(x , u~) (x ) belongs to the left-hand or to the right-hand component labeled by + , - ,
respectively. According to Theorem 3.3 we have

(2) 1{2 1{2
sup{!uv (X)-rPI(X)!, XE[O ,Xo-V ]}=O(v ),

(2) 1{2 1{2
sup{!uv (x) - rP2 (X)I, x E [xo+ v ,I]} = O(v )

as v - 0+ . Since U~2) is a solution of Eq. (3.19) and 0 :::; u~2) (by Proposition 3.1),

we have IxU~2 ) (0) > O. Indeed, fxu~2)(O):::; 0 would imply

Since U~2)(0) = -bU~2)(O) = 0, we have U~2)(X) < 0 for some x > 0 , a con- .

tradiction . By an obvious indirect argument, one can show that lxu~2)(X) cannot

h(u) -fx =O
u

+

x

FIG. A.1.
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42 3

. . '/2] ' [ '/2 I] T h d (2). . . .become negative In [0, Xo- II U Xo+ II , . 0 prove t at ax Uv IS posrtrve In

(xo - 11'/2, Xo + 11 1
/
2) suppose the contrary. Since u?) is convex in + and concave

in -, this is possible only if there exists an x E (xo - 11
1/2

, Xo + 11
1
/

2
) such that

fxU~2)(x) < 0 and u~2)(x) = tP3(x). tP3 being the middle branch solution of h(u) 
[x = 0 is shown in Fig. A.2.

Let us introduce the "fast-time" variable r = (x - XO)/II for x E (Xo_11'/ 2, Xo+
v l

/
2) and put u(r) = U~2)(XO + IIr). Then frU(T) = vfxU~2)(XO + VT). According to

Theorem 3.3 we have

z being the heteroclinic solution of the problem (3.24). Since x - Xo = 0(11 1
/
2) , we

have ItP3(x )- tP3(xO)!= 0(11'/2) as II -+ 0+ . Therefore, fxU~2)(X) = IIfrU«X-XO)/II)

must have the same sign as frz«X -xo)/v) for any v small. Hence fxU~2)(X) > 0,
a contradiction.

Knowing that for any I E (yo ' lmaxL U~2) is increasing in [0 , I) for II small

we return to the linearized eigenvalue problem B,[u] = J1.u where B,[u] = 112
Uxx

h'(U~2)(x»U, u(O) = ux(l) = O. First we prove the following useful lemma.

LEMMA A. Assume IE [/miD, lmax]. Let Ii be any nondecreasing solution of (3.19)
such that Ih(Ii(I» - II < (I - a)1 and h'(Ii(x» ;::: 0 on [a, I] for some a E (0 , I).
Then the principal eigenvalue J.lo of the linear operator B I [w] = 11 2W

xx-h'(Ii(x»)w ,
W E D(BI ) , is negative.

Proof. Denote ¢I(x) = fxli(x) . Then ¢I satisfies

v 2tPxx -h'(Ii(X» cf>=-I , cf>x<0) = cf>( 1) =0 , (A. I O)
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and ¢ > 0 on [0 , 1) . Let W be a solution of

B1[w] =v
2
wxx-h'(Ii(X»W = JloW , w (O) =wx(I) = O (A. I I)

corresponding to the principal eigenvalue Jlo of B 1 • Since (A.II) is a Sturm
Liouville problem , there exists w satisfying (A. I I) such that w > 0 on (0 , I) and
fdw(x) dx = 1. If we mult iply (A. I I) by ¢ and integrate over [0 , I], we obtain

Jlo[ w(x)¢(x) dx = v
2
(wx¢ - w¢x) l~ - I [ w (x ) dx [because wx(O)¢(O) 2: 0]

~ - w(I)(h(Ii(i) - f) - I ~ w (I)lh(Ii(I» - 11- f.
(A. 12)

Now suppose to the contrary that Jlo 2: O. Since w > 0 on (0 , I) , wx ( I) = 0, we

have v 2w
xx = h'(Ii(x »w+JloW 2: 0 on [a, 1] . Hence, w (x) 2: w(l) on [a , I]

and , consequently,

1= [W(X)dx2: [W(X)dx2:(i-a)W(I).

From (A.12) we obtain

Jlo[ w(x)¢(x) dx < O.

Since w 2: 0 , ¢ 2: 0, we have Jlo < 0 , a contradiction. 0

Now it is easy to complete the proof of part (b). We fix an a > xo' Then , by

Theorem 3.3, sup{lu~2)(X) - tP2(x)l, x E [a , In = O(v 1
/
2) asv -> 0+ . Therefore,

Ih (u~) ( I» - I I < (I - a)1 and h' (U~2)(X» > 0 on [a, I] forany v > 0 sufficiently
small. Lemma A completes the proof.

Note that, for certain singularly perturbed problems , an asymptotic estimate of
the form Jlo(v) = O(v) as v -> 0+ is proved in [I].

(c) Our next goal is to prove uniqueness of solutions of (3.19) for I E [fm in ' Ym)U
(YM , / max ] and v small. Let us consider the case IE (YM' Imax] . First , we show
linearized stability of an arbitrary nondecreasing solution Ii of (3.19). By Lemma A
it is sufficient to prove that Ih(Ii(I» - I I< (l-a)1 and h'(Ii(x)) 2:0 on [a , I] for
some a E (0, I) . To this end, we recall first that according to Proposition 3.1 there
exists an M > 0 such that

v sup Ilix(x )1+ sup /1i(X)1s M (k13)
x E[O, I J x E[O,I ]

for any solution Ii of (3.19) and v > O.
Let Ii be a nondecreasing solution for (3.19). Let I > a> YM/I . Then for any

x E [a , I] we have f x » YM ; so Ii is concave on [a, I] . Thus, by (A.13 )

r I 4Mo~ lix(x ) ~ i ll lix(e; ) de;. x _ a ~ I _ a (A.14)

for any x E [a , I] where a = (a + 1)/2 . Therefore, there exists a constant M1 > 0
such that

O ~ f x - h(li(x » ~ Ii; - h(Ii ('; ) + M 1(~ - x ) (A. IS)
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for any Z, x E [a, 1], x ~,;. Thus, by (A.14) and (A.15)

o~ v l
/
2(fx - h(Il(x)))

x+ 1/2

~ Ix v (R - h(Il(,;)) + M! (,; - x)) d,;

2 r:" M V ( M )= -v l, Ilxx(c;)d,; ++ ~ 2M + T u =: M 2v .

Hence Ifx - h(Il(x))1 ~ M2v l
/
2 for any x E [a, I], v > 0, and any nondecreasing

solution 11 of (3.19) .
For v ~ «(fa - "l'M)/M2)2 we have

h(Il(x)) ~ fx -Ifx - h(Il(x))1 ~ fa -Ifa - "I'M I="I'M for any x E [a, I].

Since h(u) ~ "I'M for u ~ c2 (see Fig. 1), we have Il(x) ~ c2 on [a, I] , hence
h'(Il(x)) ~ 0 for x E [a, I]. By Lemma A, the principal eigenvalue Jio of the

problem B![w] = v 2wxx - h'(Il(x))w = uui , WE D(B!) , is negative.
Now, consider the parabolic equation

2u; = V uxx - h(u) + f x ,

u(t,O)=ux(t, 1)=0, t~O, u(O,x) = uo(x) , XE[O, I].

This equation generates a gradient-like semidynamical system .Y(t) , r ~ 0, in the
Hilbert space X I

/
2 = {u E W I ,2(0 , I), u(O) = O} defined by .Y(t)uo = u(t ,·),

where u(O, .) = uo(-) (see [5, Chapter 4]). The set .Jt = {u E X!/2, ux(x) ~ 0, a.e.

on [0, I]} is a closed convex cone in X I
/
2

• Moreover, .Jt is invariant under .Y,
i.e.,

u(t, .) E.Jt whenever u(O, .) E.Jt for any r ~ O.

Indeed, the function

( ) {
-ux(t,x), XE[O, 1], t~O;

W t,X =
-ux(t,-x), xE[-l,O], t~O,

is the solution of the scalar parabolic equation

2 ,
w, .= v wxx - h (u(x))w - f,

Wet, -l)=w(t, 1)=0.

Therefore, w(t, x) ~ 0 whenever w(O, x) ~ 0 by the Maximum Principle (see
[14]). Hence, .Y is a semidynamical system on the complete metric space .Jt with
the topology induced by X I

/
2

•

To complete the proof we argue similarly as in [I, Theorem 4]. Since .Jt is invari
ant, it is the union of (disjoint) attraction domains of the nondecreasing stationary
solutions of (A.14). Because those solutions are asymptotically stable, these attrac
tion domains are open in .Jt. Since the set .Jt is connected, it cannot be a union
of two nonempty disjoint open sets; hence, U~2) is the unique stationary solution in
.Jt .
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Now, let u be an arbitrary solution of (3.19) (not necessarily nondecreasing). By
Proposition 3.1, u is bounded and u ~ O. Then there exist Ir , u+ E % nD(A) such
that u-(x) ~ u(x) ~ u+(x), x E [0 , 1]. With regard to the Maximum Principle [14,
Chapter 3, Theorem 3] we obtain 5"(r)Ir(x) ~ 5"(r)u(x) ~ 5"(r)u+(x) for any
r ~ 0 and x E [0, I] . Since 5"(r)u± E % , for any r ~ 0, we have 5"( r)u± -> u~2)

as r -> 00 Thus u = u(2)

Hence, ~he sol~tion UI2)' is unique, provided t/ is small and IE (YM' Imax ] . The
proof of uniqueness of solutions of (3.19) for IE [/min , Ym) is similar. 0

REFERENCES

[I] S. Angenent, J. Mallet-Paret, and L. A. Pelletier, Stable transition layers in a semilinear boundary
valueproblems,J. Differential Equations 67, 212-242 (1987)

[2] H. Bellout, F. Bloom, and J. Netas, Phenomenological behaviorofmultipolar viscous fluids, Quart.
Appl. Math. SO, 559-583 (1992)

[3] A. V. Bhave, R . C. Armstrong, and R. A. Brown , Kinetic theory and rheologyofdilute. nonhomoge
neous polymer solutions, J. Chern . Phys. 87, 3024-3025 (1991)

[4J A. W. EI-Kareh and G. L. Leal, Existence ofsolutionsfor all Deborah numbers for a non-Newtonian
model modified to include diffusion, J. Non-Newtonian Fluid Mech. 33, 257-287 (1989)

[5J D. Henry, Geometric theory of semilinear parabolicequations, Lecture Notes in Math., vol. 840,
Springer-Verlag, New York, 1981

[6] J. K..Hunter and M. Slemrod, Viscoelastic fluid flow exhibiting hysteretic phase changes, Phys. Fluids
26,2345-2351 (1983)

[7] R. Kolkka and G. lerley, Phase space analysis of the spurt phenomenonfluid for the Giesekus vis
coelastic fluid model, J. Non-Newtonian Fluid Mech. 33, 305-323 (1989)

[8] R. Kolkka, D. Malkus, D. Hansen, G. Ierley, and R. Worthing, Spurt phenomena of the John
son-Sagelmanfluid and related models, J. Non-Newtonian Fluid Mech. 29,303-325 (1988)

[9] Xiao-Biao Lin, Shadowinglemma and singularlyperturbedboundaryvalueproblems,SIAM J. Appl.
Math. 49, 26-54 (1989)

[10] D. S. Ma1kus, J . A. Nohel, and B. J. Plohr, Analysis of new phenomena in shear jlow of non
Newtonianfluids, SIAM J. Appl. Math. 51, 899-929 (1991)

[11] D. S. Malkus, J. A. Nohel, and B. J. Plohr, Dynamics of shear flow of a non-Newtonianfluid,
J. Comp. Phys. 87, 464-487 (1990)

[12J J. A. Nohel and R. L. Pego, Nonlinear stability and asymptotic behaviorofshearing motions of a
non-Newtonianfluid, SIAM J. Math. Anal. 24, 911-942 (1993)

[l3J J. A. Nohel, R. L. Pego, and A. E. Tzavaras, Stability of discontinuous steady states in shearing
motion ofa non-Newtonianjluid, Proc. Roy, Soc. Edinburgh Sect. A liS, 39-59 (1990)

[14J M. Protter and H. F. Weinberger, Maximum principles in differential equations, Springer-Verlag,
New York, 1984

[15J G. Vinogradov, A. Malkin, Yu. Yanovskii, E. Borisenkova, B. Yarlykov, and G. Berezhnaya, Vis
coelasticpropertiesand jlow ofnarrowdistributionpolybutadienesand polyisoprenes, J. Polymer Sci.
Part A-2 10, 1061-1084 (1972)

[16] G. F. Webb, Existence and asymptotic behaviorfor a strongly damped nonlinear wave equation,
Canad. Math. J. 32, 631-643 (1980)


