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Consider a linear control system
&= A(t)x -|- B(t)u H

X = (% yor, ¥,) ERY, w = (uy .., u,,) € R™, A(2) and B(t) being real con-
tinuous on (—0o0, 00) # X m-matrices respectively.

The system (1) is called controllable on (—oo, 00), if to any two points
xt, %% € R* and any £, € (—oo, o0) there is a ¢; > #, and a measurable control
function u(z), ¢ €[, , ¢;] such that the solution x(t) of (1), x(,) ~= &' under
u = u(t) satisfies x(z,) = x2 (cf. [7]).

It is a remarkable property of autonomous controllable systems
(4(z) = 4, B(t) = B; A, B constant) that to any prescribed spectrum 2 there
is a closed-loop control # = Qx, (Q possibly complex) such that the spectrum
of the system (1) with # = Qw, i.e. of the system

& = (4 + BQ)x
is 2.

This fact has been known for a long time in the case of ue R'. Tor
u e R™ m > 1 it was apparently first explicitly stated by Popov (cf. [ 2], [3]),
who proved the equivalence of the above property to complete controllability
(cf. also [5], where the problem is formulated in a somewhat different way).

Recently, Wonham [4] presented another proof of it. In addition to Popov,
he has proved that if 2 contains with any complex number its conjugate
with the same multiplicity, O can be chosen real.

Lect us note that a similar result can be obtained easily from the transforma-
tion of [6], (cf. Corollary 2), which is of a somewhat different kind than in
[4] and [5].

* This rescarch was partly done under the support of NASA (NGR 24-005-063).
296



LINEAR PERIODIC SYSTEMS 297

This paper is devoted to the proof of a similar property of controllable
linear periodic systems, the spectrum of 4 4 BQ replaced by the charac-
teristic multipliers of the system

& = [A@) + BE) 0. @)

Throughout this paper by a real-type (n-) spectrum 2 will always be meant
a set of not necessarily distinct complex numbers oy ,..., 0, , containing
together with cvery complex number its complex conjugate with the same
multiplicity. All other quantities occurring in this paper will be supposed
to be real, unless stated otherwise.

Further, for any 7 X s-matrix E denote | E| = X7, 3.7 |51, B the
transpose of E, vectors being regarded as one column matrices in this
connection. By Y(¢, t,) we shall denote the solution of the matrix equation

Y = AQ)Y (3)

with Y(¢,, t,) = I, I being the unity matrix. Y(z, 0) will be simply denoted
by Y(¢).

If A, B are two matrices of # X n and # X m type respectively and the
system % = Ax - Bu is controllable, we shall call (4, B> a controllable
pair of matrices. It is well known (cf. [/]) that {4, B) is a controllable pair
if and only if rank of the matrix (B, 4B,..., A»'B) is n.

Before formulating the main theorem let us prove several auxiliary results,
some of which are of intercst by themselves.

ProrosiTioN 1. Let {4, B) be a conirollable pair of matrices, m < n, and
let B have rank m. Then, there are positive integers I;, i = 1,..., m such that

Sm.l, =n and a nonsingular n X n matrix C such that CAC = D,
C-1B = G, where

Dgarel, X I;,
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(1 is in the ith column), i,j = 1,..., m.
For the proof see [6].

CoroLLARY 1. If B =bisn X 1, {4, b) is a controllable pair, then there
is a nonsingular matrix C such that C-*AC = D, C~% = g, where

01,0,..,0 0
D=1o.01 ] £={o
Qg yeeey Oy 1

CoROLLARY 2. Let (A, B) be a controllable pair of matrices. Then, to any
(real type) spectrum X there is a complex (veal) matrix Q such that A - BQ
has spectrum 2.

Proof. {A, B)> being a controllable pair we can choose an z X #
submatrix B of B(# < m), such that (4, B} is a controllable pair and B has
maximal rank (cf. [6], p. 771). Suppose B consists of the first # columns
of B. By Proposition 1 we can find a matrix C such that the transformation
x == Cy transfers the system

% == Ax + Bu

to the system
9 =Dy + Gu

D and G being as in Proposition 1. Let A" 4 A"t 4 -+« - B, be the
polynomial with its set of roots equal to . If X' is real-type, §;,¢ = 1,..., »
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are real. We define u = Py, where p,; = —fB; — a,; and recursively
Pii = Op 43,5 — @y — Xiisya Yo Du » Where 8 is the Kronecket’s symbol.
Then,

01,..,0

D+ GP = .
0,..., 1

—Bl yeeny —Bn

and therefore its spectrum is 2. Further, if we denote § == PC-?, then the

matrix 4 - BQ = C(D + GP)C-! has also the spectrum X. Now, let Q be

the matrix with the first # rows equal to those of ) and the remaining being
zero. Then, 4 4 BO = A + BQ and thus 4 + BO has spectrum Z.

ProrosiTiON 2. If (A, B} is a controllable pair and B has maximal rank,
then there is an m X n-matrix Q such that {A - BQ,b,> is controllable.
If det 4 > 0, Q can be chosen in such a way thai

det (4 + i‘ bgy) >0, i=l.,m @)

where b, are the column vectors of B and q, are the row vectors of Q.

Proof. We can without loss of generality suppose that A, B are trans-
formed to the special form of Proposition 1, i.e. 4 = (D), B = (G)),
4§ == 1,...,m.

Suppose first detd > 0. Denote p,,; = ~ay;, j=1,.,0 p, =
(Pm1 y+-r Pun)’- Then, the last row of 4 -+ b, p,, is zero, and, consequently,
det(4 + by, p;,) == 0. Since det(4 -+ b,gq;,) = det A(l + q,,4-,) and
A5, 5% 0, for any € > 0 we can find ¢,, such that{ ¢, — p,, | < m| B |
and det(4 -+ b,4,,) > 0. Further, we define recursively

Pii = 8Ici+1,:i Oy — Z Yildvs P’L = (Pil 3eney P'in),-

v=¢+1
If
det (4+ 3 bl +bpi) #0,
v==g-+1
we define

g:; = sign det (A + Y by + bz‘Pi‘) S = %3 = 9, Vilvi +

v=4+1 vesif-l.
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If

det (4+ 3 bal+ i) =0,

v=g+1

from

det (4+ 3 bal -+ buai)

y=i+1

k13

= det (A -+ Y bvqi) : [1 + g (A + TZ bvq.’,)—'l bi]

v=g+1 v=i1

follows that there is a g, such that | p; — ¢; | < m| B |~%¢ and (4) is valid
(recall that g, , v == ¢ 4 1,..., m are alrcady chosen so that 4 + 37", . b,q, is
nonsingular).

From the above construction, it follows that 4 - BQ == T 4 S, where

0; = +1 or —1 and | S| < e. Clearly the pair (T, b,> is controllable.
By ([7], Chapter 2, Theorem 1), for ¢ > O sufficiently small <4 + BQ, b,,> =
KT + 8, b,,> is also controllable.

The assertion of the proposition for det 4 <{ 0 can be obtained by a
similar, rather simplified argument (p; = ¢;, ¢ = 1,..., m).

ProposiTION 3. Let A(t) and B(t) be w-periodic an integrable over [0, w).
Then, the system (1) is controllable if and only if the rows of the matrix function
Y-(s) B(s), s € [0, nw] are linearly independent.

Proof. 1t is well known (cf. [7]) that (1) is controllable if and only if
to every Z, there is a #; such that the rows of the functional matrix Y-1(s) B(s)
on [Z,, ;] are lincarly independent. Clearly, this is true in the periodic case
if and only if such a #, exists for every ¢, = kw, k integer. Further, we have
Y—Ys, kw) B(s) = Y-(s — kw) B(s — kw) = YI(t) B(t) for s € [kw, ;] and
t€[0, #; — kw]. Consequently (1) is controllable if and only if the rows of
Y-1(2) B(z) are linearly independent on [0, #;] for some #; > 0. It remains
to prove that this is equivalent with linear independence of the rows of
Y-4(1) B(t) on [0, nw]; the only nontrivial part of this statement is that the
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lincar independence of the rows of the matrix Y~'(¢) B(t) on [0, #,] for
t; > nw implies their independence on [0, #nw]. To prove this, note that from
YY) B(t) = 0 on [0, nw], Y(t) B(f) = Y *w) Y-Y(I — kw) B(t — kw)
and the fact that for & > » the matrix Y—*(w) is a linear combination of the

[kw, (& 4 Do, & > no.

CoroLiarY 4. Let A(t), B(t) be continuous and w-periodic. Then, (1) is
controllable if and only if there are r(1 <. r < n) numbers

<< " <t,<w (5)
and integers iy ,..., i, , 1 < i; << m, such that
(i) The wectors b, = YX(t,) b,,;l(tl),..., b, = Y\(z,) b,,;T(t,,) are lhinearly
independent (b;, denotes the i;th column of B)
(i) The pair of matrices (¥ (w), B) is controllable, where B - (b, ,..., b,).

Proof. Suppose (1) is controllable. From the set {Y~1(2) b,(2)| # € [0, o],
1 = 1,..., m} choose an arbitrary maximal sct of lincarly independent points
b; = Y4 t) by (t;), 0 <<ty <+ < t, < w. Then (i) is satisfied and every
point Y-(z) b;(t), te[0, ] i = 1,..,m, is a linear combination of b,,
j=1l..,7r. Now, let te[0, nw], t =7 + pw, 7€ [0, w], 1 <7 < m. Then,
there is an m-vector d such that Y-1(r) b(z) = Bd. We have

Y1) b(t) = Y~(w) Y-Y1) bfr) = Y~4(w) Bd.

Consequently, the lincar hull of the set of vectors {Y-(i) b(¢)| t € [0, w],
= l,..,m} is contained in the linear hull of the vectors {V-*(w)b,!
i=l,.,r,p=0,.,n — 1} But the lincar independence of the rows of the
matrix Y=1(2) B(t) on [0, nw] implies that the vectors {¥Y~(¢) b,()| £ € [0, nw],
{ == |,..., m} span R". Thus, the vectors {Y~#(w)b, | i == 1,...,7, u = 0,..., 2 — 1}
span R", or, equivalently, rank (B8, Y-(w) B,..., Y "**{()B) == n. Since ¥(»)
is nonsingular, this is equivalent with rank (&, Y(w) B,..., Y*()B) = n.
The numbers 1, ,..., #, arc not necessarily distinct, but since ¥~1(2) B(¢) arc
continuous, a sufficiently small change of the numbers #, will not affect the
rank of the matrices B and (B, Y(w) B,..., Y"Yw)B). Therefore, by a small
change of the numbers ¢, we can achieve that both (3) and (1), (i1) will be valid.
In the other direction, the corollary is obvious.

Remark 1. Since Y(w) is nonsingular, {(¥{w), B> is a controllable pair

if and only if (¥ (w), Y(w)B) is controllable.

ProrositioN 4. Let A(t), A;(t) be w-periodic integrable matrices such that
A (8) — A() for k — 0 in L(0, ). Then, Y {w) —> Y(w) for k — oo, where
Y (t) is the solution of Y = A ()Y with Y,(0) - L.
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Proof. We have

V) <+ [ 1401 | Vo)l ds

By Gronwall’s inequality
12 w
| Yilt)] < mexp f | Au(s)| ds < n exp f | Au(s)] ds for te[0, w].
. 0 0

Since A4,(?) converge in L;(0, w), j‘:’ | Ax(s)| ds is bounded; hence, | ¥, ()]
are equibounded on [0, ] say | Y,(#)] << «. Further, we have

| ) = YOI < [ | 40 Yal9) — 40 YO ds
< [717 | A — 4G9 ds
+ [ 1401 1Y) — YO ds

<[ 14— A@) s + | | A | Yols) — Y6 d.

Applying Gronwall’s inequality, we obtain | Y;(¢) ~Y ()| < «[,14u(s) -A(s)] ds.
exp{f; | A(s)| ds} which completes the proof.

THEOREM. Let A(2), B(t) be w-periodic and C* in t and let (1) be controllable.
Then,

(i) To any real-type spectrum 3, = {oy,..., 6,5 such that o,7 0,
i=1,.,n and [];_; 0; > O there is an w-periodic m X n matrix Q(t) such
that the characteristic multipliers of (2) are equal to o; .

(i) To any real-type spectrum Y, = {oy,...,0,} such that o, 70,
{ = 1,..., n there is a 2w-periodic m X n matrix Q(t) such that the characteristic
multipliers of (2) (considered as 2w-periodic system) are equal to o2

Moreover, both (i) and (ii) are sufficient for complete controllability of (1).

Proof. Suppose first that (1) is not controllable. Then, there is at least
one nonzero n-vector ¢ such that

Y $)BE) =0 forall (6)

The set of all ¢ satisfying (6) is a linear subspace of R” invariant under the
action of Y(w)', since

(Y(w) o) Y1) B(t) = - V-t —w)B{t —w) =0 forall &
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Therefore, it contains at least one eigenvector of Y(w)', ie. there is a
vector ¢, satisfying (6) such that Y(w)'c, = Ac, . Now, let O(¢) be any periodic
m X n matrix and X(t) be the fundamental matrix of (2) with X(0) == 7.
Using the variation of constants formula we obtain

6X(w) = e5¥(w) + | : Y-1(t) B(2) O(t) X(2) dt
= My + A [ caV-3e) B() O(t) X(t) dt = dcy

Thus, A is an eigenvalue of X(w)' (and, thus, of X{w)) for any Q.

Now, let (1) be controllable. Choose the numbers 0 < ¢, <7 - <, <
and {7, ,..., 7,} and define B == (b, ,..., §,) as in Corollary 4.

The proof will be accomplished in several steps which we shall number
for better orientation.

10.  For an arbitrary 7 X » matrix Q = (¢; ,..., ¢,)’ and

0<h<hy= min {; —#;_,,w —1,}
i=l,0.07

denote
lQ"" for te[t; + vo, t; + vo -+ k], vinteger

On(t) =

0 elsewhere

where Q(? is the matrix with ;th row g; and the remaining rows equal to zero,
Denote Xy ;(¢, 7) the solution of the matrix equation

X = (A(t) + B(t) Oa(t)x
with X (7, 7) = 1. We prove that for 20, 1]

Xoalty + ht, 1)) = e259% 1 Oh) (7)
locally uniformly in Q, which implies
Xou(w, 0) = Y(w, t,) &% V(t, , 1,3) a1 oo Pl Y1) -+ O(h)
— ¥() [T &4 + oh) ®)
31

locally uniformly in Q, where §; = ¥(2;)' g; . This allows us to define

L oo
Ko, 0) = lim Xo.4(w, 0) = ¥(w) T &7

i=1
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For te[0,1], 0 < & < hy we have

| Xoults +1t,)) <t [ (@h Bl Dl Xoaly+ bs, 1)) s
where
= A 0h B e (b0
and, consequently, by Gronwall’s inequality

| Xoat; + ht, )] < ne®™ - 441 L !4l for te[0, 1] )

where « is a constant independent of %, Q for % sufficiently small,
Further, we have for £ [0, 1], 2€[0, &]

| Xoa(t; - bty 2)) — e6{995 |
13
< [ 1TBAGE + Bs) + byt + Bs) 6] Koty + hs, 1)
0
— b (¢) q}esbii(tf)"”' | ds
¢ 7
< fo [ s ()l 45| Xo.u(t; + bs, £5)
, ¢
— &5l gs J‘ R At 4 hs)|| Xo u(t; - ks, t5)] ds
0
3
+ [ 1Bty + h) — B @5l Koty + B, 1) ds. (10)
0
According to (9),

[ B1AG A B Xoult + s, 1) ds < 1R 1wad™ (1)
0

¢
fo | b;(t; + hs) — b; (41 g5 || Xoa(t; +hs, t)l ds < | k]| g1 - keIl - g,
(12)

where

/31=’

gL [ 0:()l
From (10), (11), (12) it follows

| Xoalt; + ht, t;) — 995 |
t ’
< ke ya(g) + ve(9) J‘o | Xoult; + hs, ) — 449 | ds
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for t [0, 1], where y,(g), v(g) do not depend on % for k€ [0, k] and are
Jocally bounded in g. Using Gronwall’s inequality, we obtain

| Xoalt; + ht, t;) — 51 | < hyy(g) AL for tel0,1]
which proves (7).
20, Let p bc any vector such that det( + b;p') > 0. Then, there is a
real vector g such that
YY) &5 V() =T + by’ (13)
or, equivalently,

L bip'.

where § = Y(t,)'q.
Wehave

T 1

I =2

ei)’jé" — 1 + l;]ii’ 4

(Here and further we understand (¢f — 1)/¢ = 1 if £ == 0).
Using (14), (13) can be rewritten as
o AT | .,
b I S bip (15)
q9;
Denote 2; ,..., 2,4 arbitrary n vectors such that 2y ,..., %, , b; form a
basis in R*. Since | + p'b; = det(I + b;p') > 0, we can define

q’Bj _ 111(1 —{— p’l‘;j) (16)
~t P’ h](l "I— P’ ~j)

Fre g SR T A , = L, n — 1
q2, ’bj &y 14 1 n (17)

(again, £1In(l + §) =1 if £ =0). Since 2,, v = 1,...,7n — 1 and b; form
a basis, §' is uniquely determined by (16), (17). From (16) follows

5 — 1 = p'b; (18)
or, equivalently,
d'6;
~r 7 — -I i I
7 b = pb;. (19)



306 BRUNOVSKY

From (16), (17), (18) follows

o — qo:p _
gz, o 57 1 v
or, equivalently,
b 1
j ———z, = Pp'z,. 20
7 g =P (20)

Since z,, v = I,...,# — 1 and §; form a basis, from (19) and (20) follows

7.
-1 fq_J_.___l_ ==

=1 @)

Multiplying this equation from the left by b; we obtain (15).
As a consequence of this we obtain that to any set of 7 vectors p, ,..., p,
such that det(f 4 4;p;) > 0 we can find a matrix Q such that

Xoule, 0 = Y() [1 + bt )
30. Toanyr X n-matrix V, V = (v, ,..., 9,) having the property
det (1 + Z b25) >0 j= Loyt (23)
V=i
there are vectors p, ,..., p, such that

T[T +8bp) =1+ b}, det(I + ;p7) > 0. (24)

J=1 g=1

It is easy to verify that under our assumptions the vectors
ro -1’
pi=(1+ X b2) o
v=j+1
solve equation (24) and we have
" - T ozl
det(l + bipf) = det [T+ b5 (1 + 3 b2) |
y=j-+1

k3

—det(I+ ¥ 1;,7;;)—1 - det (1 + S b,

v=j+1 v=j

>0.

S ——
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Combining (22) and (24) we obtain that to any » X » matrix " such that
(23) is satisfied there is a matrix Q such that

Xonof, 0) = Y(a) + z Y(w) b2} (25)

40. By Liouville’s theorem det Y(w) = exp [} tr A(f) dt > 0. Therefore,
according to Proposition 2 and Remark 1 there is an # X 7 matrix ¥ such that
(Y(o)I + BV), Y(w) b, is controllable and det(Y(w) + 7, Y(w) 6,4)) >0,
j = 1,..., 7, which is equivalent with (23). From ([7], Chap. 2 Theorem 11)
again follows that there is an ¢ > 0 such that if | Z — Y(w)(I + BV)| <,
|b —b,] < e then {Z, Y(w)b) is also a controllable pair.

50, From 290, 39, 40 follows that there is a matrix Q such that
Xo.o(w, 0) = Y(w)I + BV)
and that for sufficiently small 2 > 0,
| Xo.1(w, 0) — Xo gw, 0)] < je. (26)
Since b; (t) and Y(w, #) are continuous, we can choose & > Q so small that

| ¥(w, t, + ) b, (t, + k) — Y(w, #,) b, | < e Denote

RA(t) = RAQWENRY(t — )] for telt; +ve, t; +-vw + A],v integer
4 0 clsewhere

where £(t) ==0for 2 = 0,1, &(t) = lfor te[8,1 — 8] 0 < &) < 1 for

te[0, 1] and &(2) is C* on [0, 1]. Clearly A(f) + B(z) R,%(2) is w-periodic,

Ct and A(t) -+ B(2) R2(2) — A(2) + B(t) Ox(t) for 8 — 0 in L, (0, w). Thus,

if we denote IW;%(t) the solution of the matrix equation

& = (A() - B{t) R’(®))=, (27)
with W,%0) = I, we have by Proposition 4
| Wil(w) — Xon(w, 0) < 3¢ (28)

for sufficiently small § > 0. Combining (26), and (28) we obtain
| Wpd(w) — Y(w)I + BV)| < e

Hence, by 4°, {W)¥w), Y(w, ¢, + k) b; (¢, + h)> is controllable. Since
A(t) + B(t), R(¢) = A(t) for te(t, +h w), Y(w,t,+ k) = W¥w),
W,3(t, + h)-tand, consequently, (W, %(w), Wi (w) W32, -+ B) 1 b, (¢, + h))
is controllable. '
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60. By the above procedure we have reduced our problem to the case
of A(t), B(z) in (1) being C* and the pair (Y(w), ¥(w, #,) by(t;)) being con-
trollable for some #, € [0, w), since the system

& = Aty + B(t)u (29)

with A(t) = A(1) + B(t) R,%(¢) and suitably re-ordered columns of B
satisfies the above properties. If the matrix Q(¢) solves our problem for the
system (29), then the matrix R,%(¢) - O(f) = Q(¢) solves the problem for
the original system (1).

70. Let us hence suppose that A(f), B(t) are C! and {Y(w), Y()b),
b = Y-(t;) by(t,) is controllable. Then, there is a nonsingular matrix C such
that D = C-1Y(w)C, g = C-1Y(w)b have the special form of Corollary 1.
It is easy to verify that the linear change of variables x == Cy transforms
Y(w) into D, Y(w) b, into g without changing the characteristic multipliers
of the system so that we can without loss of generality assume that Y(w),
Y(w)b have already this special form of D and g of Corollary 1.

Now, choose an arbitrary spectrum containing no zero element. Choose p
according to Corollary 2 in such a way that the spectrum of

Y() + Y(@) bp' = Y()I + 5]

is Z. If ¢, -+ 6, > 0, then det( + §p') > 0 and according to 2°, there is
a vector ¢° such that

X0, 0) = Y(w)I + bp']

(where X, (¢, 7) stands now for Xy ,(¢ 7) with Q = (g,0,...,0)). If
oy o, < 0, then certainly (oy *** 0,,)2 > 0 and we can apply our argument
for (1) considered as a 2w-periodic system.

80, The proof will be complete if we show that there isan 2 >0 and a
vector ¢ such that X, ,(w, 0) is similar to X ¢(w, 0). This will be proved
by an implicit function argument, for which we need first to prove the
continuity of

7]
aq;

]
Xonw, 0), Xon(w, 0) and o X, 0)

in ¢ and #% in the right (in %) ncighborhood of the point (g% 0). Since
Xowl@, 0) = Y(w, t; + k) - X, alty + b, 1) Y(1)

it is obvious that if we denote X, o(# -+ 0, ;) = "', it is sufficient to
prove the continuous differentiability of X, ,(# -+ &, ;). For the sake
of simplicity we shall use further the notation X, ,(t -1, 1) = Z, 4(1),
by(ty - 1) = b(2), b(0) = b, X, o(ts + 0, 1) == Zyp.-
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From the definition of Z,,(%) it is cvident that Z,,(%) is continuous
in g, & for 2 > 0. From (7) it follows that it is continuous in ¢ for 2 = 0.
Therefore, the continuity of Z, ,(k) in ¢, & for 2 > 0 follows from the local
uniformity of O(A) in (7).

(0/6q,) Z,.1(#) is the solution of the equation

Z = [Aty + 1) + B0 ¢'] Z -+ BD(E) €120 1) (30)

with Z(0) = 0, where ¢; is the vector with #th component | and the
remaining 0. From (30) follows

)
?_Zg,_h(l’)_ o f Zy nk) Z4(5) B(S) €17,.1(5) ds
q; 1]
1
= | Zh) Z3 ) bhs) €; - Zqalhs) ds
0
and by (7),
7 ¢ 1 . . a’h._
hm d_g.:_‘@_ — [‘ e(l—s)bq be;esbq ds — l)e; e : 1_
h—0 og; Jo "“‘—q B
g =€ 4+ 1+ b
+ bq'b, TP
4 , ettt 2 9 . .
= -a—g—]: (I + b11 q’b ) it ‘éz [ = T{’)—é: AQ,O’ (_)I)

(where b, stands for the #th coordinate of b) if ¢'b 3= 0; the validity of (31)
can be similarly verified if ¢'6 = 0.

Since the convergence in (31) is locally uniform in g, the continuity of
(9]eq,) Z, (k) is proved.

Now, consider for &, & << Jy :

B 12 0) — Zasllt)] = DAty + 1) + Bht) ] Z ot
— [RA(t, + kt) + b(kt) ¢'] Zoakt)
o [RA(ty + Bt) 4+ bt) QN[ Zo () — Zo (k)]
+ [RA(t, + ht) — RA(t + k) 4 (b(he)
— b(kt)) 4] Zoah). (32)

Denote [2A(t; + ht) — kA(t, - kt) + (b(ht) — b(kt)) ¢'] = [(h, %, £). Using
the variation of constants formula, we obtain from (32)

Zoalh) — Zost) = [ Zoal®) ZX00) T o) Zuir) . (53)

505/6/2-8
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We have
I(h &y t) = (b — k) A(t, + ht) 4- R[A@ + k) — A(t, + k2)]
+ [b(hz) — b(kt)] ¢’
= (h— &) A(ty + ht) + KAt + ht)h — R)]
- bhtYh — k)t - g’ 4 w(h, b — k), (34)

where o(#, h — k) == o(h — k) uniformly in 0 < 2 < A, and locally uni-
formly in g. From (33) and (34) we conclude

—;—h Zow(h) = %1_13}11 (h — Ry [Z,4(h) — Zyu(R)]

1 |
= [} Zoath Z3000AGy 4 ) + e + )
-} tb'(ht) q'] Z, y(ht) dt.

For 1 — 0 we obtain
lim dah Z (h) = fl e(l'mq’[A(t ) -+ ti;(O) ’] e”’Q' dt (35)
J—0 o,k 0 1 q

locally uniformly in ¢. Since the function on the right-hand side of (35) is
continuous in g, the continuity of (d/dk) Z, ,(k) is established.

90, We construct a nonsingular # X m-matrix S such that
X, (@, 0) - § = SXp o(w, 0) (36)

for & > 0 sufficiently small and appropriate ¢. Further, we shall simply
denote X, ;(w, 0) by X, 5 .

Denote s;, i == 1,...,n the columns of S and choose s, ==e,. Then,
taking into account that by 7°

0,..., 1
By ey —Fn

we see that (36) is equivalent with the set of equations
Xonsy = —Bien

XyuSe = 51 — Baen
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or, equivalently,
Sp—1 = (Xq,h + [gn) €y
Sn_g = XthSn_l "]“ B'ﬂ-{le'n (37)

0= X, .5 + Bty
This set of equations is equivalent with

n—~i—1

§; == [1 ;'11;‘2 "+‘ Z X?]’,hﬁ’H—j—H] (29N i = 1,..., n— 1 (38)
i=0

n—1 ) -
0= [ Y XBJ (39)
i=0

Denote ¢(g, k) = [X}; + S%3 BrsXi 4] €, . We have $(g%, 0) = 0, because
the square bracket in (39) is the characteristic polynomial of X . Since
X, is a continuously differentiable function of g, 2, so is ¢. 'Therefore,
by the implicit function theorem, if we prove that (5/0g)(4(g, 0)}4-q, is non-
singular, it follows that there is a continuous function g¢(k) for A sufficiently

0,.., 1
0q _l— pl yevey Oy '{' j)n

where p == (Py youe, p) == q(¥'T — D)fB'Gand § = Y(2,)'q (cf. (21)). From this
it follows that

g 0 I
0
Xaotn = % —lt Pa
Uy P14 Fiara(Pa)
(i1 T Prgir + Frn(Br reees Prisa) )

where 1 is in the n-jth row and f;, are polynomials, Consequently,

oy ~+ Pn

qs(q, 0) — A R fg(pﬂ) (40}

oy - Py 'l'fn(pn youes Do)

where f, ,..., f, are polynomials,
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We have

99(g,0) _ 94(¢,0) 9p &g
&g op 0§ og°

From (40) follows that (24(q, 0))/0p is triangular with ones in the diagonal
and, conscquently, nonsingular.
Further, if we denote p = Y w)'p, § = Y -Yw)'§, we have

ﬁ _ e(Y(m)ﬁ)’ﬁ — :1_ - 4 _ eé" . 1
(Y(w)b) ¢ G,
so that
3ﬁz . eé" J— 1 . . a_f),n _ 8 én »
o, =@ v TITm g mag A0

which proves that @5/0§ is nonsingular. Consequently,
0 = Y(w)(0p/0§) YY)

is nonsingular. Since 8§/0¢ == Y(1;) is also nonsingular, we have proved
that (0¢/6g)(¢°, 0) is nonsingular.

Thus, for any ¢° we can find an /4 >> 0 and ¢ such that (39) and, consequently
(36) is satisfied and ¢ is arbitrarily close to ¢%. From (37) it follows that S
is a continuous function of ¢ and 4. But for ¢ :==¢" and 2 =0, S =1 so
that for /2 > 0 sufficiently small .S will be nonsingular. This completcs the
proof.

Remark 2. If we allow Q(1) to be complex, then the characteristic
multipliers can be shifted to any nonzero numbers oy ,..., o, by closed loop
control u == Q(¢t)x.

Remark 3. If A(t), B(t) are only continuous, the theorem is still valid
in a weaker form: namcly, if (1) is controllable and X' is a spectrum such
that oy ,..., o, = 0, then to any € > 0 there is a matrix Q(#) such that the
characteristic multipliers o} of the system (7) satisfy | o} — o; | << e. (The
case (ii) of the theorem can be changed in a similar manner). Also the
sufficiency part remains valid.

This can be seen from the fact that (7) can still be proved in a weaker form

X alw 0) = ¥(w) - H L 6y = Poow 0) 4 0B)  (41)
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where limy,_ 68(k) = 0 locally umformly in ¢. Thus, the steps 2°-7° of the
moe ko camandad el e anage and e ratn Hoed tha N0 cenl s1bos
PlUUl cainn o ].CPCd.LCu wilLLliuur Luaugc anag we can inna wnc Yo osuln Ll..l L
X oo 0w, 0) has spectrum 2, or an arbitrary close spectrum to X, if X' contains
zero elements, Since the spectrum of a matrix is a continucus function of

its entries the statements follow from (41).

Remark 4. The matrix, which we have constructed to solve our problem,
is discontinuous. This is not essential and it can be verified that there is
a C®-matrix O(#) which solves the problem. For this purpose, let us first
note that the function £4(2) of 5° can be chosen C*® with all required
properties preserved. Choosing such a function the proof can be carried out
essentially in the same way (with some calculations, of course, more com-
plicated) with Q(¢) replaced by

gh'l()“’fs[h“l(t —t)] in [t H-ve, t; -Fve 4+ B, v integer
clsewhere.

Oh(‘f)
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