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EVERY NORMAL LINEAR SYSTEM HAS
A REGULAR TIME-OPTIMAL SYNTHESIS

PAVOL BRUNOVSKY

1. Introduction

In [2] (cf. also [3]) Boltanskij introduced the concept of regular synthesis for the
time-optimal control problem. This concept allowed him to formulate conditions
under which Pontrjagin’s maximum principle was a sufficient condition of op-
timality. Although all the known examples of time optimal synthesis for normal
linear systems satisfy Boltanskij’s conditions, no proof has been given so far that
this would be true in general.

The main aim of this paper is to prove that every normal linear system (cf.
Section 5 for definition) admits a regular time- optimal synthesis (Section 6). For
this purpose, however, the definition of regular synthesis has to be slightly
modified. In Section 4 we prove that this modification is not essential: it is still
possible to prove the optimality of the regular synthesis under this modified
definition.

The proof of the existence of regular synthesis is largely based upon the theory of
subanalytic sets. The necessary material is summarized in Sections 2, 3.

Although the existence theorem of Section 6 does not contribute directly to the
sufficient conditions of optimality (the sufficiency of Pontrjagin’s maximum
principle for normal linear systems can be proved by other, simpler means — cf.
[3, 19)), it gives an insight into the structure of the closed-loop optimal control.
Moreover, it can be required that the synthesis has an additional transversality
property which appears in [5] as a restrictive condition under which the coincidence
of the open-loop optimal trajectories and the Filippov trajectories of the system
under the action of the closed-loop optimal control is proved for systems with
scalar control (Section 7).

2. W-stratification

Let M be a differential manifold and U, V be submanifolds of M such that
V < U\U. We say that U, V have the Whitney property (a) if for every x € V and
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every sequence of points {x, } from U such that x, — x and TU,, (the tangent space
of U at x,) converges, TV, cl{im TU.,, (the limit to be understood in the topology

of the Grassmann manifolds of planes of dimension dim U in the tangent bundle
™ of M — cf. [11]).

Let G be a subset of a differential manifold M. By a W-stratification of G we
understand a locally finite (in M) partition 2 of G into submanifolds (called strata)
of M such that if P, Q €  and PnQ# @, then Q c P and P, Q have the Whitney
property (a). By the dimension of ? we understand the maximum of the
dimensions of its strata.

It is shown in [11] that if we denote P> Q if P> Q, P# Q, then > is transitive
and P> Q implies Q3 P.

Lemma 1. Let ? be a W-stratification of G M. If P, Q€ ? and P> Q, then
dim Q <dim P.

Proof. Let n =dim M, K =dim P, x € Q. Then there exists a sequence x, - x,
x, € P. Since the set of k-dimensional planes through 0 is a compact subset of the
Grassmann manifold of k-dimensional planes in R", we can choose the sequence

{x.} in such a way that {T,Q} converges. Therefore, T.Q clim T.P, which is

possible only if dimQ <dimP.

3. Subanalytic and semianalytic sets.

Let A be a real analytic manifold (we shall drop the word “‘real” in the sequel)
A subset M c A is called semianalytic if for every x € A there exists a neighbour-
hood U of x such that MU is a finite union of sets of type {y e U| g:(y)=0,
fiy)>0,i=1,...,p,j=1,...,q}, where g,, f; are analytic functions in U. A set
M c A is called subanalytic, if for every x € A there exists a neighbourhood U of x
such that MU is a finite union of sets of type f,(Y,)\f.(Y:), where Y, and Y, are

. analytic manifolds and f,, f, are proper analytic maps Y,—» U, Y,— U, respec-
tively. Recall that f is proper if f~'(K) is compact for every K compact.

For the following properties of semianalytic and subanalytic sets the reader is
referred to [8]:

SA 1. The closure and interior of a semianalytic (subanalytic) set, the intersec-
tion, union and difference of two semianalytic (subanalytic) sets are semianalytic
(subanalytic, respectively).

SA 2. Every semianalytic set is subanalytic.

SA 3. Let A, B be analytic manifolds, f: A — B analytic. The pre-image f '(M)
of any semianalytic set M c B is semianalytic.
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SA 4.Let A, B be as in SA 3, f: A — B analytic proper. The image f(M) of any
subanalytic set M = A is subanalytic.

SA 5. Every semianalytic (subanalytic) subset of a second countable analytic
manifold A admits a W-stratification (in A), the strata of which aré connected
analytic submanifolds of A, which are semianalytic (subanalytic, respectively).

Henceforth we shall call a CASA set any connected analytic submanifold of A
which is subanalytic in A.

Lemma 2. Let A be an analytic manifold and let M be a subanalytic set in
R" X A, the natural projection of which on R" is bounded. Then, the natural
projection of M on A is subanalytic.

Proof. Because of the boundedness of the projection of M on R" we can
consider M as a subanalytic subset of the product of the one-point compactification
of R™ (which is the n-sphere §") and A, S”" X A. The statement of the lemma
follows from SA 4, because the natural projection map of $” X A on A is proper.

Lemma 3. Let M be a subanalytic subset of an analytic manifold A. Let X be an
analytic vector field on A. Then, M admits a locally finite partition % into CASA
sets such that for each P € P the set Py of those points x € P at which X is tangent to
P is subanalytic.

Proof. First assume that M is an analytic submanifold of A and that M =
f(Y)\N, where N is closed subanalytic, Y is an analytic manifold and f is proper
analytic on Y with Df of constant rank on f~'(M). Then we have

(0) T,,,M =Df(y)T,Y

for each y e f~'(M). We prove that the set My of those points x € M at which X is
tangent to M is subanalytic in A.

Take any point x € A and any subanalytic coordinate neighbourhood U of x with
compact closure. We identify U with a subset of R™, m being the dimension of A.
Then, f~'(U) can be covered by a finite family % of subanalytic compact
coordinate neighbourhoods. It suffices to prove that the set MY=
{x|x e Mxnf(W)} is subanalytic for every We W.

We can consider W as a subanalytic subset of R", n being the dimension of Y.
Let ey, ..., e, be the coordinate basis of R". Consider the matrix Q(y) =(Df(y)e.,
..., Df(y)e., X(f(y))). It follows from (0) that the vectors Df(y)e,, ..., Df(y)e.
span T;,,M for every y e f~'(MnW). Therefore, My can be characterized as the
intersection of M with the f-image of the set of those points y € W for which all the
subdeterminants of Q(y) of order >r are zero. The values of these determinants
are analytic functions of y. Consequently, S is a semianalytic subset of W from
which it immediately follows that f(S)NnM = MY is subanalytic.

Now we prove the lemma by induction. Assume that the statement of the lemma
holds for all subanalytic subsets of A of dimension <r (i.e. admitting a stratifica-
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tion of dimension <r). Let dim M =r +1. Due to SA 5 we may without loss of
generality assume that M is a submanifold of A. By definition of subanalyticity we
have M =f(Y)\g(Z), f, g analytic proper, Y, Z analytic manifolds. Denote
Y, ={y € Y| rank Df(y)<i}. Locally at any y € Y, Y, can be characterized as the
set of points at which all the subdeterminants of the Jacobian of f of order >i are
zero. Since these subdeterminants are analytic, Y, is semianalytic in Y. Further, Y
are obviously closed and Y= Y,, M =f(Y,.,)\g(Z) We have

M = f(Y\g(Z) = {f(Y)\Nf(Y.)ug(Z)}If(Y.)\g(2)].

The set f(Y,)\g(Z) is subanalytic and of dimension <r Consequently, it admits
the partition with required properties by the induction assumption. The set
FIYMNf(Y )ug(Z)]is open in the submanifold M and therefore is a submanifold of
A. The application of the first part of the proof to this set with N = f(Y,)ug(Z)
concludes the proof.

Lemma 4. Let M be a subanalytic subset of an analytic second countable
manifold A and let X', .. , X" be analytic vector fields on A. Then there exists
a locally finite partition M of M into CASA sets such that for every N e M and
1<i<r, X' 1s either everywhere or nowhere tangent to N.

We shall call # as well as its components flow consistent (to the vector fields
X', ,X)

Proof. Due to SA 5 we can without loss of generality assume that M is a CASA
set. By Lemma 3 there exists a partition  of M such that for every P € 2 the set
Py ={xeP, X'(x)e TP} is subanalytic. Obviously, if Px:# P, Px:=P\Px: is an
open submanifold of P.

By SA 5, Px' admits a partition N into CASA sets. We prove that if Px1 ¥ P,
then dimA, <dimP <dimM.

Assume the contrary. Then there exists an N e Np, N¥ P, dimN =dimP and,
consequently, N open in P. Let x € P be a boundary point of N. There exists
a neighbourhood U of x such that PN U is given by PAU ={xe AnU| fi(x)=0,
..., f;(x)=0}, where n—s is the dimension of P and f, are properly chosen
coordinate functions for P. Consider the functions g,: PnU—R' given by
g.(x) =Df.(x)- X'(x), where Df, is the differential of f,, i =1, ..., s. Obviously, X"
is tangent to P at x if and only if

(1) g.(x)=Df,(x)- X'(x)=0, i=1,..,s.

Since x is a boundary point of N, the set of points x e PnU for which (1) is
satisfied as well as the set of points x € PN U for which (1) is not satisfied are not
empty, the former being open in P. This, however, is impossible, because g, are
analytic.

As a result of the partition we have obtained a partition £, of M into CASA sets,
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consisting of the sets of &, and the connected components of Px, P € . As the
next step we partition every component of .#,; which is not flow consistent with
respect to X in the above way, X' replaced by X*. Those components of .#, which
are flow consistent are left unaltered. Then we take succesively X*, X*, ..., X" and
repeat the partition of M consisting of the components obtained by the preceding
partition and those unaltered by it. If the resulting partition is not flow consistent,
we repeat the cycle of r partitionings again. We show that after a finite number of
repetitions of the cycle the flow consistent partition will be obtained.

Indeed, if a component of some partition is flow consistent, it will not be affected
by further partitionings. Furthermore, after every cycle the dimension of the
components which are not flow consistent is lowered by at least one. This follows
from the fact that if a vector field is everywhere transversal (parallel) to some
submanifold of M, then it is so to every submanifold of M (open submanifold of M,
respectively).

Lemma 5. Let A be a second countable analytic manifold and let G be a locally
finite union of CASA sets in A of dimension <k. Then G admits a W-stratification
of dimension <k with CASA strata.

Proof. As a locally finite union of CASA sets, G is obviously subanalytic and
therefore it admits a W-stratification & with CASA strata. Since no submanifold of
dimension >k can be contained in a locally finite union of submanifolds of
dimension <k, the dimension of this stratification is <k. By SA 1, foreach S € &,

S is subanalyticand so is G = |J $. Therefore, the statement of the lemma follows
Se¥

from the above dimension argument provided we prove that S admits a stratifica-
tion of dimension <k.

Let &, be a W-stratification of S into CASA strata. Assume that there exists an
S, € &, such that dim S, > k. If S, = S\S, then for x € S, there exists a sequence of
points x, — x, x, € S. Because of local finiteness of ¥, we may assume that x, € S,
for some S, € ¥,. Then it follows from the definition of stratification that S,c S,
and, by Lemma 1, dim S, <dim S,. Consequently, there exists a set S, € &, such
that S,nS#0 and dim S,>k.

Let x €S.:nS. The set S is locally closed, i.e. for every x € S there exists
a neighbourhood U of x such that SN U is closed in U. This means that there exists
a neighbourhood U of x such that $;,nU = S,;nSNU = S;nSNUcSNU. This
implies dim S =dim S,, which contradicts dim S <k.
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. Regular synthesis

Consider a control system

x=f(x,u),

xeR",ueUcR™, f: R" X R™— R" being C'. Given an initial point x, and target
point x,, by an admissible control we understand a bounded measurable function u:
[0, T]— U such that the solution x(z, x,, u) of the equation

(2) X =f(x, u(1))

satisfying x (0, x,, u) = x, exists on [0, T] and satisfies x(T, x,, u) = x,. We say that
the control u(t) steers the system from x, to x,. An admissible control will be called
optimal if it steers the system from x, to x, in minimum time.

Given a target point x, and an open domain G containing x,, by a regular
synthesis we shall understand a pair (¥, v), where & is a locally finite (in G)
partition of G into C' connected submanifolds of R (called cells) and v- G— U
(the closed-loop optimal control) is a function satisfying the following properties :

A. The set G’ admits a W-stratification of dimension <n, where G' = U{S € ¥|
dim S<n} (if & is a family of sets, we shall use the notation U¥ = U{S|S € ¥}
= {xeS|Se¥}).

B. The set {x,} is a cell, v(x) is C' on each cell S and can be extended into a C*
function on some neighbourhood of S.

C. The cells of & are of two types, type I and type IL. If S is a k-dimensional cell
of type I, then f(x, v(x)) is everywhere tangent to S and through every point x € S
there is a unique solution &, (¢) of the differential equation

(3) x=f(x,v(x)),

which locally stays in S. There exists a (k — 1) — dimensional cell IT1(S) such that
the vector field x — f(x, v(x)) is transversal to I1(S) and every trajectory of (3)
from any x € S enters I1(S), the entering time being a continuous function of x. If §
is of type II, there exists a unique cell £(S) of dimension k + 1 of type I such that
from every point of S a unique trajectory of (3) starts and locally stays in (S);
v(x) is C' in SUZ(S).

D. Every trajectory &, (¢) of (3) starting at x € G (which is uniquely defined by C
until staying in G) reaches x, in finite time, passing only a finite number of cells,
and satisfies Pontrjagin’s maximum principle with the control u,(¢) = v(&.(2)).

E. The time in which &, (¢) reaches x, is a continuous function of x in G.

To avoid misunderstandings we now specify in which sense we shall understand
transversality, since this concept is being used in two different contexts.

A vector field X on a manifold M is said to be transversal to a submanifold N of
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M if X(M)NnTN =0 (X to be understood as a section map X from M to TM, the
tangent bundle of M) or, in other words, if for every x e N, X(x) ¢ T.N.

A C'map f: M— N (M, N manifolds) is said to be transversal to a submanifold
S of N if Df(x) (T.M)+ T;,S = T;,N for every x € f~'(S) (cf. [1]). In particular, if
dimM <codim S, f transversal to S means f~'(S)=40.

In most cases it will be clear from the context which meaning of transversality we
have in mind, since the first of them is used for vector fields, the second for maps.
The only case which needs some amplification is the case of a trajectory of a vector
field. If we say that a trajectory x(¢), t € I of a vector field X on M is transversal to
some manifold N = M we shall always understand this as transversality of the map
x: I—-M to N (and not as transversality of X to N).

Our definition of regular synthesis differs from that of Boltanskij ([2, 3]) in two
ways. First it does not admit the exceptional set N from which more than one
trajectory of (3) is allowed to start. Such a set can be included without complica-
tions and we omit it only because it does not occur in linear systems we deal with in
this paper. Secondly instead of assuming that the sets U{S € ¥| dim S <k}, k=1,
..., n are “‘piecewise smooth” we assume A. We show that the proof of optimality
of the regular synthesis goes through under assumption A.

In order to do so we note that the only place where piecewise smoothness is
needed is the following lemma (which appears as Lemma VIL.6 in [3]):

Let M be a piecewise smooth set in G of dimension <n. Let u(t), t €[0, T] be
a piecewise continuous control which steers the system from x, to x,, the trajectory
x(t, xo0, u), t€[0, T] of (2) lying entirely in G. Then, in any neighbourhood of x,
there exists a point y, such that the trajectory x(t, yo, u), t €[0, T] of (2) meets
M for at most finitely many values of t.

This lemma is applied to the set M = G'. We show now that from property A of
the synthesis the statement of the lemma follows for M =G'.

Let xoe G and let u(z), t €[0, T] be a piecewise continuous control such that
x(t,x0,u)eG for te[0, T]. Let K be a subanalytic neighbourhood of the
trajectory {x(t, xo, )| t €[0, T]} such that K is compact and K = G. There exists
a neighbourhood V, of x, such that x(¢, y, u)e K for all ye V, and ¢ €[0, T)].

As the set KNG’ is subanalytic and compact, it admits a finite W-stratification
A of dimension <n. We associate with # an oriented graph as follows: we take
the strata of # as vertices and the oriented pairs (M, N), M, N € # as edges if
M < N. Because of the property of the ordering mentioned before Lemma 1 this
graph has no cycle. We define the height of M e #, h(M), as the length of the
longest path ending in M (i.e. the number of edges in the longest connected
oriented sequence of edges ending in M). Since the graph has no cycle, A (M) is
defined for every M e # and h(N)<h(M) implies N3} M.

First we show by induction that the following statement holds:

Denote M, = {M e M|h(M)<i}. Then the set of those points y, € V, for which
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x(t, yo, u), te[0, T] does not meet U.#; at switching points ¢ of u(t) contains an
open dense subset V, of V. Henceforth u.; etc. is understood in the sense
specified in A, unless the index i appears below the union symbol.

Assume that the i-th induction statement holds. Let M c #,,,\/#; and let T be
a switching point of u(t). Since dimM<n and the map y—x(z,y, u) is
a diffeomorphism of V; and x(7, Vi, u), the set W, », of points y € V, such that
x(t,y, u) €M is dense in V,. On the other hand, since McMuM,, M is closed in
x(t, Vi, u) and, consequently, W, \ is open in V;. Thus, W, , is open dense in V/ ;
since V; is open dense in V,, W, \ is open dense in V.

We take V.., as the intersection of the sets W, » for T, M running through the
switching points of u(¢) and A, . ,\/#;, respectively. Since the number of switching
points of u(t) as well as #, ., \#; are finite, V,,, is open dense. The set V=V, is

open dense and for every y € V, x(¢, y, u) does not meet U/ if ¢ is a switching
point of u(¢).

Similarly, by induction in height we prove that the set of points y € V for which
x(t,y,u), te[0, T] meets every stratum of .# transversally is open dense in V
(note that since x(¢, y, u) does not meet U if ¢ is a switching point of u(t),
transversality makes sense). Assuming that the set V, of points of V such that
x(t, y, u) meets every stratum of ., transversally is open dense in V, the density of
the subset W, of V, of those points y for which x(¢, y, u), t€[0, T] meets
M e M, .\ M, transversally can be shown similarly as in [2, 3] or by the transversali-
ty theorem [1, 19.1]. To prove openness of W,, in V, assume that there exists
a sequence of points y, € V,\Wy,, y.— o€ Wy. If dim M =n —1 this means that
there exists a sequence {4}, 4 €[0,T], t.—>te€[0, T] such that x(t, y,
u)eTeo.y.;M. Since McMulJ#;, we have x(t, y., u)—>x(to, Yo,
u)e MulJAM,. Thus, ¢, is not a switching point and % (to, yo, 4) = ll_rg X(te, yi, u). If

x(to, Yo, u) € M, we obtain x(t,, yo, 1) € Ty, yo..»M, Which violates y, € Wy,. If x(¢o,
Yo, u) € N € M;, then necessarily dim N =n — 1, since by the assumed transversality
x(t, yo, u) does not meet any stratum of 4 of dimension <n —1. Passing to
a subsequence if necessary we may assume that T, .,...,M converges and,

consequently, from the Whitney property if follows that T, ,...,N < lim T,
k—»

(tk. yico u)

Since dim N=n —1=dim M, this is possible only if T, ,, .,=lim T
k —» o

x(t Yi,u)e

Consequently, X (fo, Yo, 4) € T, yo. )N, contrary to the induction hypothesis.

If dim M <n — 1, then there exists a sequence {t}, & €[0, T], t,—[0, T] such
that x (&, y«, ) € M. We have x(to, yo, u) e M c MU|JM; and, since yo € Wy, , x(to,
Yo, u)UAM;. Since by Lemma 5 all the strata of ./, intersecting M have to be of
dimension <n —1, this again violates the induction hypothesis. If dim M =n,
V\W,, =0 trivially.
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Now, the set V=" V, is open dense and every trajectory x(t, y, u), t € [0, T] for

y € Vmeets anyM € # transversally and, consequently, at isolated points. Since .#
is finite, this means that the number of intersection points of x(¢, y, u), t €[0, T]
and G' (which coincide with the intersection points of x(¢, y, u), t €[0, T] and
UA) is finite.

5. Normal linear control systems

Consider a linear control system
4 ¥=Ax+u, uelU,

x, u€R", A constant, with a polyhedral control domain U =co {w,, ..., w,} (w,
being the extremal points of U and co standing for the convex huli), containing the
origin in its relative interior. The system (4) is called normal ([7, 10]) or in general
position ([3]) if for any 1=<i, j<p, i#j the vectors w,—w;, A(w,—w,), ...,
A""'(w, —w;) are linearly independent, or, equivalently, if no vector y+ 0 such
that (1, w, — w;) = 0 belongs to any proper invariant subspace of A* (where (-, -)
stand for scalar product, * for transpose). As a consequence of normality one
obtains that for any i#j, any non-zero solution ¥ (t) of the adjoint equation

(5) Yy=-A*y

satisfies (y(¢), w; —w;) =0 only at isolated points.

We recall some well known properties of normal systems, for which [3, 6, 10] can

serve as a general reference, and we draw some simple corollaries from them:
. N1. The set G of points from which the system can be steered to 0 is an open
convex set containing O in its interior. The set G(T) of points from which the
system can be steered to 0 in time not exceeding T is a convex compact subset of G
for every T=0; G(T,)=G(T,) for 0<T,<T..

N2. For every x € G there exists a unique optimal control u,(t), t €[0, T(x)],
which steers the system from x to 0 in minimum time T(x) (the unicity of the
optimal control needs an agreement that as the value of a piecewise continuous
function at any point its right-hand limit is understood). This optimal control is
piecewise constant with vertices w,, ..., w, as values. The minimal steering time
T(x) is a continuous function of x.

N3. The (open-loop) optimal control u,(t) satisfies Pontrjagin’s maximum
principle: There exists a non- zero solution ¥ (¢) of the adjoint equation (5) such
that

© (W(), u(£)) =max (1), u)
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(we also say that u,(¢) is extremal with respect to y(¢) for all ¢t € [0, T(x)]). The
open- loop optimal controls can be synthesized into a closed-loop control v(x), i.e.
there exists a function v: G— U such that for every x € G and ¢€[0, T(x)],
u.(t)=v(&(1)), where & (t)=x(t, x, u.) is the optimal trajectory with the initial
point x. The function v can be obtained as v(x)=1,(0). If we denote by W, the
normal cone of U at w;,i.e. W,={y eR"| (y,w,) = max (y, u)}, then (6) can

be re-formulated as follows: vy (¢) e W, as soon as u,(t)=w;.

Let us note that W, are convex closed polyhedral cones and W,nW, <
AW, NnaW, for all i#j (cf. [4]).

N4 (cf. [4]). For x € G, x# 0, denote E(x) the set of 9 € R" such that u,(t) is
extremal with respect to the solution y(¢) of (5) with ¢ (0)=1vy ; for x =0 denote
E(0)=R". The set E(x) is a closed convex cone for every x € G and v(x)=w,
implies E(x)c W,.

N5 (cf. [4]). Let y(¢) be any solution of the equation (5). Let u¥(t) be the
extremal control with respect to y(¢) for all t<0. Let x(¢)=x(¢, 0, u*) for t<0.
Then, for every t<0, y(t)e E(x(1)), u*(t)=u.,(t—7), &w(t)=x(—T1),
T(x(t))=1, for 0st<-—r1.

Coroliary 1. Let ¢ () be a solution of (5) such that ¢ (0) e E(x) for some x € G.
Let x(¢)=x(¢, x, u*), where u*(t) is the extremal control with respect to (),
—ow<t=<T(x). Then, for every te(—, T(x)), w(r)eE(x(r)), u(t)=
Uey(t = T), Ecoy(®)=x(t—7) for 0st<T(x)—71, T(x(7))=T(x)—7.

We denote by X' the linear vector field x—»Ax+w;, j=1, ..., p.

Lemma 6. Let the problem (4) be normal. Then there exi ts no submanifold
M of R" of dimension <n such that two vector fields X' and X', i+ j are both
everywhere tangent to M.

Proof. Independence of w, -w;, A(w, —w;), ..., A" '(w, —w,) means that the
dimension of the Lie algebra spanned by the vector fields X', X’ is n. Thus, by [9],
in any neighbourhood V of any point x there exists an open ball, each point of
which can be joined with x by a curve in V consisting of a finite number of
trajectories of X' and X’. This however, is impossible if dim M <n and X', X’ are
both tangent to M, since by moving along trajectories of X’ and X’ we cannot leave
M.

Corollary 2. If ¥ is a flow consistent partition of M < R" (as defined in
Lemma 4) with respect to X', ., X?, then for every N € /' with dim N <n at most
one of the vector fields is tangent to N.

Lemma 7. Consider a linear differential equation in R"
(7) x=Ax,
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A constant, and denote by ¢ the flow of (7). Further, denote by o the radial
projection of R"\{0} on its unit sphere S"~', o(x)=x/|x|, where |x| is the
Euclidean norm of x. Then, there exists a unique flow @° on S"' such that
oo (x)=@0(x) for all t and x+ 0 and this flow is analytic on S™"'.

We shall call ¢° the unit projection of @.

Proof. Let x(¢) be a non- zero solution of (7), y(t)=x(t)/|x(¢)|. Then,

dy(_d x(0) _ , x(0) _(x(1), Ax(0))x (1) _
de dr |x()] 7 |x () lx ()]

=Ay(t)—(y(t), Ay(t))y(2).

If we denote X°(y)=Ay—(y, Ay)y for yeS"™', then the flow @° of X° is
obviously the unit projection of .

Remark 1. Because the maximum principle (6) is homogeneous in v, the
trajectories of the adjoint equation (5) in the definition of the extremal control and
in the properties N3—NS5 can be replaced in an obvious way by the trajectories of
the unit projection of (5), W,, E(x) replaced by W{=W,nS""', E°%x)=
E(x)nS""', respectively. Since in the proof of Theorem 1 we shall mostly move
backwards along the trajectories of (5) and (4), we denote by ¢@* the unit
projection of the backwards flow of (5), i.e. the projection of the flow of the
equation ¢ = A*y. Then, the maximum principle N4 can be reformulated as
follows: there exists a 9 € S"~' such that if u,(¢)=w;, then @*'(y)e W{ and NS5,
N6 can be reformulated in a corresponding way.

For x € G denote #(x) the number of switchings (discontinuities) of the optimal
control u,.(¢). We have

Lemma 8. For every T,>0 there exists a @ >0 such that #(x)<© as soon as
T(x)< To.

Proof. From N3 it follows that the switching points are found among the zeros
of the functions (y(t), w; —w;), where vy(¢) is the solution of (5) with respect to
which u,(¢) is extremal. Therefore, the lemma will be proved if we show that for
given T,, i, j there exists an N > 0 such that the number of zeros of (¥ (¢), w, — w;)
on any interval of length T, does not exceed N for any non-zero solution y(t) of
(5).

For given i, j denote w =w, - w;. We have
d
dr <'lp, w)=<_.A*w, w): —(w, AW),

&y
dtz (W, W) _d_t (wa AW) = —<—A*w, AW)= (w, A2w>y ey
dn—l

a0 = o, vty T aw) = (= 1 (A
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From the Cayley—Hamilton theorem it follows that
A"=—a, A" = .. —a,l,

where A" +a,_,A" '+ ...+a, is the characteristic polynomial of A and I is the
unity matrix. Thus, if we denote (—1Y(y, A'w)=y,.,, j=0, ..., n —1, we have
Yi=Y2 Y2=V¥35 ey Yaot=VYur Yn = —0Gu_1Yn-1— ... —doY:, Which means that
(y,w) =y, is a non-zero solution of the n-th order differential equation

(8) y&W+a,_,y" P+ . +ay, =0.

By de la Vallé—Poussin’s theorem (cf. [12, IV, §1.2]), there exists an h >0 such

that if a solution of (8) has n zeros on an interval of length /4, then it is identically

zero. As a consegence we obtain that on an interval of length To, y,(¢) — (y (¢), w)

cannot have more than n([To/h]+ 1) zeros ([ ] standing for the integer part).
From the continuity of the function T(x) and Lemma 8 we obtain

Corollary 3. The function T(x)+ ¢#(x) is bounded on any K < G compact.

6. Main theorem

Theorem 1. Every normal system (4) with target point O admits a regular time
— optimal synthesis (¢, v) which has the following additional property

F. For every cell S € & of dimension <n, every vector field X’ = Ax + w, such
that w,# v(x) for x € S 1s everywhere transversal to S.

Let us note that from N3 and B it follows that for a given S € ¥, v(x) must be
constant and equal to some vertex of U which we denote by w,s,.

Proof. Denote G the set of points from which the system can be steered to 0. By
N1, G is an open neighbourhood of 0. We take v as in N3. Following the optimal
trajectories backwards we shall construct inductively the cells of the partition &
We show that they aie CASA sets satisfying B—D and F and that each compact
subset of G is covered by a finite number of those cells. Property A then follows
from Lemma S and E holds by N2.

Since we shall mostly follow the trajectories of the vector fields X’ backwards,
we denote by @’ the backwards flow of X', j=1, ., p, i.e. the flo of the
differential equation X — — Ax — w,.

A synthesis cell S will be called a descendant of a cell S’ if the optimal
trajectories of the points of S pass S'. Also, S’ will be called an ancestor of S

We shall call the cells constructed at the k-th induction step cells of order k, the
only cell of order 0 being {0}. We denote by &, the set of cells of order <k and by
G, their union. Among the cells of ¥, we distinguish a certain class &, of cells of
type II which we shall call border cells.
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Assume now that we have constructed &, and that &, satisfies the following
induction hypotheses:

I1. G, is closed and % is a finite partition of G, into CASA sets.

12. With every cell S € %, there is an associated integer 1(S)€([1, p] such that
v(x)=w,es for xeS.

13. &, satisfies B—F.

I4. T(x)<k for every x € G,.

I5. The set Es={(x, ¥)|x €S, y € E°(x)} is subanalytic.

16. If S is a border cell of order k, then &, (t)e G:\G,_, for t€[0, 1), §.(1) € G, _,
for every x €S. »

17. If u.(¢) is constant for 0<t<t,<1 and &,(¢,)eGi-,, then x € G,.

18. If S is order i <k, its descendants are of order =i, its immediate descendant
being of order <i+ 1. If S’ is a descendant of S of order i, then u(S')=u(S).

19. If S € % and not a border cell, u.(¢t) €S for some x € G and t>0 and u, is
constant in the neighbourhood of ¢, then &, (s) € Gi for s <t sufficiently close to ¢.

Each cell of order k+1 will be a descendant of some cell of order k. The
descendants of a particular cell will be grouped into families associated with
particular vertices w;, j =1, ..., p (some of which may be empty). We specify how
to obtain descendants of order k +1 of a given cell S of order k associated with
a given vertex w;. All the cells of order k + 1 are then obtained if S runs through all
cells of order k and j through 1, ..., p, the pair (S, j) excluded if both j = u(S) and
S is not a border cell. Why we exclude such pairs we shall explain later.

The general idea behind the construction is the following one:

We denote by L the set of points y for which the optimal control satisfies
u,(t)=w, for te[0, ) for 0<t=<1 and the optimal trajectory satisfies §,(7) €S,
E ()¢S for 0<t<rt. By Corollary 1, L is precisely the set filled by the pieces of
trajectories x(¢, x, u¥), t €[, 0) (in the notation of Corollary 1), where 7 is such
that u¥(t)=w; for te[r, 0) or, equivalently, y(t)e W,, for ¥ (0) running over
E°(x) and x over S (for the definition of E°(x), W, cf. Remark 1 and N4 of §4,
respectively). We prove that L is subanalytic and we obtain the descendants of S of
order k + 1 associated with w; as the components of the partition of L into CASA
sets. In order to satisfy C and F we have to split L in such a way that the partition
of L into cells is flow consistent with respect to the flows X', ..., X* and that all
cells have uniquely defined ancestors. Let us note that the restriction r <1 is made
for technical reasons to enable us to prove the subanalyticity of L. The bound 1
could be replaced by any other positive constant.

Throughout the proof we shall keep the following notation: If A=
A/ XA, X... XA, and 1=<i,<...<i,<r, by x,, , we shall denote the natural
projection of A, X...X A, on A, X... X A,. Note that if A, are analytic manifolds
for j=1,...,r and compact for je{l, ..., r}\{iy, ..., i}, then =, . is proper
analytic.
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For given S, j denote
H ={(t. ¢ix), p2(@))|(x, y)eE,, 0<t <1},
Ha={(s, 1, 9i(x), 92 (W))|(x, ) e E,, 0<s <1 <1,
P¥(¥)eS"\WY},
B = 7m:3(H\rx,,,(H,)),
K=n,B)
Hi={(@i(x), ¥(¥))|(x, p) e Es},
H:={(s, pi(x) @i (y))|0o<s<1, p*(w)eS" ' W},
B'=H\m»(H3),
K'=m(B'),
L=KuK',
L =m,(H\ms(H2))U({1) X K”).

Analysing these expressions we see that B(B') is the set of points (@!(x), ¢ ¥(y))
for which ¥ e E°(x), x€S, 0<t<1 (t=1) and ¢*(y)e W’ for 0<s <t. From
Corollary 1 it follows that its projection on the first compound, K(K'), is the set of
points x for which u,(¢)=w, for t€[0, 7(x)), T(x)>0, where 7(x) is such that
E(t(x))eS (u.(t)=w; forte|0, 1), E.(1) € S, respectively). Of course, K, K’ may
be empty. The sets B, B’ can be considered as fibred sets over K, K', respectively,
the fiber over x being E°(x). The set L is a subset of R' X L of the points (7(x), x),
xeL.

We show that B, K are subanalytic; the subanalyticity of B’, K’ follows in
a similar way. First, we note that H,=F((0,1)XE ), where F(t,x,y)
= (¢, @i(x), @*(x)). Since F is an analytic diffeomorphism, it is proper and H, is
subanalytic by SA4. To prove the subanalyticity of H we first note that
Wo={y|(y,y)=1,(y,w;—w,)=0,v=1, ..., p} 1s semianalytic and, by SA1,
so is S""'"\W9. By SA3, the set {(7, ¥)|@*(y¥) e S" '} is semianalytic and, by SA2,
it is subanalytic. The subanalyticity of H, now follows in a similar way as that of H,
The set B is subanalytic by Lemma 2 and K is subanalytic because S” ' 1s compact
and, consequently, the projection map x,;: R*XS"'—>R" i proper

The descendants of § of order k+1 associated with j will be obtained by
a sequence of partitions of K and K', the subsets of K’ becoming the border cells.

We first split K and K’ (each of them separately) according to Lemma 4 to
obtain a flow-consistent partition R, of L into CASA sets with respect to the vector
fields X', ..., X”. We call the components of ®, to which X’ is tangent (transver-
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sal) components of type I (II) and denote by R (R1, respectively) the set of those
components. ‘

We could take the components of &, as cells of order k + 1 if they had uniquely
defined ancestors. This, however, is not necessarily true and in order to achieve
this, further partitioning may be necessary. This will be done as follows:

We project all the components of &, on S along the trajectories of ¢/, split the
projections into pairwise disjoint sets to obtain a partition ? of S, the components
of which are subsets of all the projections of components of R, they intersect.
Finally, we take as the components of the refinement R, of R, the intersections of
the components of %, with pre-images (under the projection map) of the
components of . We show that this can be done in such a way that the
components of R, are CASA sets.

Denote by @ the projection map of L on S along the trajectories of ¢’ and note
that @(x) =@’ .,(x), where t(x) is the least ¢ such that &, () € S. The projection
@(R) of a set ReR, can be written as P(R)=m,{(¢t, ¢_(x)|(t,x) €
LN (R'X R)}. From this expression it follows that & (R) is subanalytic. Denote by
P, the partition of S into the sets @(R,)N... P(R)N(S\P(Ri.1)) N...N
(S\®(R,)), where k<! run through all nonnegative integers and R,, ..., R,
through all finite sequences of components of %,. Obviously, 2, consists of
subanalytic sets and has the property

) If Pe?,,PNn®(R)+0forsome R € R,, then P = ®(R).

We can further refine 2, to obtain a partition ? of S into CASA sets having
property (9) and we define the refinement %, of %, by taking the connected
components of the sets @ '(P)NR, Re®R,, Pe?P as its components. The
subanalyticity of the components of R, follows from the expression

@ '(P)NR = m,({(t, @!(x))|0<t<1,xeP}nLN(R'xR).

Furthermore, we show that @~'(P)nR is also an analytic submanifold of R",
which implies that R, consists of CASA sets.
For this proof we need

Lemma 9. The function t is continuous.
Proof. Assume the contrary. Then there exists a sequence of points x, — xo,
x,eL,v=0,1,..., such that

(10) 7(x,) - 1(X0).

Since {7(x,)} is a bounded sequence we may assume 7(x,)— T*.

Since G is closed, t(x,)<7*. To prove that 7(x,)<t*, two cases have to be
distinguished, namely j = u(S) and j+# u(S).

Let first j# u(S). Since u,, is right-hand continuous we have u,(t)=w (s, for
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t € [t(xo), T(x0) + €] for some £ >0 (here we understand (S) =@ if S is of type I).
By [5, Lemma 3.2] the open-loop controls u, (if extended by 0 beyond T(x,))
convergence weakly towards u,, for x —x,, which implies u, (¢t,)=w, for some
t, > 1(x,). This is impossible if T*>7(x,).

If j=u(S), then S is a border cell. It follows from 16 that if i is the largest
possible integer such that the closest ancestor S’ of S of order i is not a border cell
and 7,(x) is the time at which &.(¢) enters S’ for xe L, then 7,(x,)—7(x,)
= 1,(xo) — t(x0) =k —i. Therefore, if 7(x,)+ t(x,), then also 7,(x,)+> 7,(x0).
However, since S’ is not a border cell, we have by 19 u, (t,)# u.(t;) for
t, <7,(x,) <t, and the contradiction to weak convergence follows similarly as in the
case j# u(S). This proves the lemma.

Since S is transversal to X', from Lemma 9 and the implicit function theorem it
follows that 7 is analytic and, consequently, that @ is analytic.

Let now R, € R!. Since R, is transversal to ¢’, the projection map @ is a local
diffeomorphism R,— ®@(R,). Let x e R. Then, ®(x)e P and, since P is a sub-
manifold of R", it can locally at @(x) be represented as P = {y|f.(y)=0, ...,
f.(y)=0}, where r=n—dim P and the differentials Df, of f, at ®(x) are
independent, v=1,...,r. Since @ is a diffeomorphism, the differentials
D(f,o®)=Df,-D® are independent. As R can locally at x be represented as
R={y|fio®(y) = O, ...,f.o®(y)=0}, this proves that R is an analytic sub-
manifold.

If R, e R}, then every x € R, has a neighbourhood V such that R,nV = @}(Z),
where I=(—¢,€), €¢>0 and Z is an analytic submanifold transversal to X'.
Similarly as in the case R, e &7 (R, replaced by Z) it can be shown that @ ~'(P)
NV =@i(Zn®~'(P)) is an analytic submanifold.

The fact that the components of R, have uniquely defined ancestors (and
descendants as well) follows from the property (9) of % and the fact that the
partitioning of &, has been done along the trajectories of ¢’. Moreover, it follows
from the construction that every component of R, is isomorphic with all its
ancestors and descendants of the same type in &®,. However, by the partition of &,
we may have destroyed flow consistency. More precisely, by partitioning
a component R, of &Y to which some X", v#j was parallel, a component R, of R,
may be obtained with which X" is not flow consistent. This cannot happen forj=v
(i.e. R, € R}), since splitting has been done along the trajectories of ¢’ (because of
the construction of & and Lemma 6).

If this is the case, we repeat the cycle of flow consistent partitioning and
subsequent partitioning into sets with uniquely defined ancestors. We show that
every such cycle of two partitionings lowers the maximum of the dimensions of flow
inconsistent components by at least one. This means that after a finite number of
repetitions a flow consistent partition & with uniquely defined ancestors will be
obtained.
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Let R be a flow inconsistent component of &,. Then it is necessarily of type II. If
we partition R into flow consistent subsets according to Lemma 4, from the
subsequent partition into CASA sets with uniquely defined ancestors this will
require at most a partition of the descendants and ancestors of R. Since those of
them which are of type II are isomorphic to R their dimensions do not exceed
dim R. Consequently, since transversality is not destroyed by partitioning and
parallelity can be lost only on the parts of lower dimension the flow inconsistent
sets resulting from their partition will have dimension <dim R. The assertion now
follows if we let R run through all flow inconsistent components of #, and if we
admit for R, the partition obtained after any repetition of the cycle.

As the cells of order k +1 we take the components of #, the components of
type I (II) becoming cells of order I (II, respectively), the subsets of K' becoming
border cells. For R € ® we denote Er =(BUB’) n (R XS8""'). As mentioned at
the beginning of the proof, to obtain all the cells of order k + 1 we let S run through
all the cells of order k and j through 1, ..., p, the pair (S, j) excluded if S is not
a border cell and j = pu(S).

Next we show that ¥, ., satisfies the induction hypothese 11—I9.

To prove that Gi., is closed assume x; € Gi+1, X; = X,. Since G, is closed and %, .,
is finite we may assume x; € S’ for some S’ € &..,. Let S be the closest ancestor of
S’ of order k and let T be defined as in Lemma 9. By Lemma 9, t is continuous and
therefore 7(x;)—t* for some 0<t*=<1. Since u, converge weakly to u,, and
u, (1) =wyus, for tel0, 7;), u,(t)=w,s, for t€[0, t*] and & (r;)— &, (t*). This
implies &,,(7*) € G and x,€ L for the set L associated with the pair (S", u(S")),
where S” is the cell of order k containing &, (t*).

The rest of 11, as well as 12, B and I8 are satisfied trivially. Due to Corollary 2,
C and F are immediate consequences of the flow consistency of the partition of L
into cells and the fact that each cell has uniquely defined ancestors. The property
D (for x € Gi..) follows from the finiteness of ¥, and ®, 14 follows from the
restriction ¢ <1 in the definition of H,. The property IS5 follows directly from the
definition of Eg, R € ® and 16 is a consequence of the fact that the border cells are
subsets of K'. .

Since G, is closed, we may assume for the proof of 17 without loss of generality
that x' =&,(t,) e S = Gi, but &,(¢t) ¢ G« for t<t¢,. Let u,(t) =w; for t €[0, t,). Then
there exists a Y € E°(x) such that u,(¢t)=u" (¢t —¢,) in the notation of Corollary 1.
Since ¢, <1 and u,(t) = w; on [0, t,), this means &, (t) € L for the pair (S, j). Because
of the induction hypothesis I9 either j# u(S) or S is a border cell, which means that
the pair (S, j) is admissible.

To prove 19 observe that if x' =E&,(¢) €S, where S is of order k +1 and not
a border cell, then x' € L for some admissible pair (S’, j), where S’ is of order k.
This means x = ¢! -(t) for some x’' €S’ and 0<t < 1. Since u, is constant in the
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neighbourhood of ¢ and t<1, @}.(0)eL for o>t sufficiently close to T or,
equivalently, & (s) e L for s <t sufficiently close to ¢.

Now, by induction it follows that ¥ = U % is a regular synthesis provided we
k=0

prove that every C = G compact is covered by a finite number of cells of &. This is
an immediate consequence of Corollary 3 and the following lemma, which con-
cludes the proof of the theorem.

Lemma 10. Let x € G. Then, x € Gruy+oiy, I-€. X Is contained in some cell of
order <T(x)+ ®(x), where T, © are defined in Section 5.

Proof. We prove this lemma by induction in T(x)+ ¢#(x).If T(x) =0, thenx =0
and the statement is trivial. Assume that the statement of the lemma holds for all x
with T(x)+#(x)<i+1.

Let x € G be such that T(x) + ¢(x)<i + 1. Denote ¢, the first switching point of
u,, t=min {1, t,} and x' =&,(tr). Then, T(x')+?(x')<i and by the induction
hypothesis x’ € G;. By 17, x € G;.,, which proves the lemma.

7. Filippov trajectories

As we have mentioned in Section 1, the existence of regular synthesis has an
application to the problem of coincidence of the open-loop optimal trajectories of
(4) and the Filippov trajectories of the equation

(11) i=Ax+uv(x).

This problem has been studied in [4—6]. As shown in [6] it is not always true that
the Filippov trajectories of (11) coincide with the optimal trajectories of (4) and in
[4] the problem, for which systems the coincidence does take place, is completely
solved for systems of dimension 2. The results demonstrate that the class of systems
for which coincidence does not take place is not exceptional. While there is no
general solution to the problem for systems of higher dimension, in [5] it is proved
that for systems of arbitrary dimension with scalar control (i.e. U = {bu | |u|<1},
" beR") the optimal trajectories are Filippov trajectories of (11), provided the
system admits a regular synthesis. The converse statement is proved under the
additional hypothesis requiring that for each cell S of typel Ax —bv(x) is
everywhere transversal to S.

Because this hypothesis is a consequence of property F, using Theorem 1 we
obtain from [5]

Theorem 2. For any normal system with scalar control all optimal trajectories of
(4) are Filippov trajectories of (11) and, conversely, all Filippov trajectories of
(11) are optimal trajectories of (4).
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8. Concluding remarks.

If a system admits a regular synthesis, then it admits infinitely many regular
syntheses. Indeed, if (¥, v) is a regular synthesis and &’ is a flow consistent locally
finite refinement of ¥ the components of which have uniquely defined ancestors,
then (&', v) is again a regular synthesis. This suggests an ordering in the family of
regular syntheses: (%, v)=(¥",v')if v =v'and ¥ is a refinement of &. It is quite
obvious that every increasing sequence of syntheses has a maximal element, which
by Zorn’s lemma implies the existence of a maximal synthesis, i.e. a synthesis
(&%, ©) such that no other synthesis (¥, v) satisfies (¥, v)= (%, v).

In the constructions of Section 6 we have done many redundant splittings, which
have not been dictated by the structure of the closed-loop optimal control but
rather by the technique of proof. Simple examples for which the closed loop
optimal control can be explicitely constructed indicate the existence of a unique
“natural” synthesis (¥, 9), which satisfies (¥, ¥)= (¥, v) for all regular syntheses
(&, v). Such a synthesis reflects the structure of the closed-loop optimal control in
the most adequate way. Although all the regular syntheses which have been
constructed for particular systems are of this natural type, we have not been able to
prove that such a synthesis exists in general.

The author is thankful to Drs. V. and J. Soucek for information and references concerning the theory
of subanalytic sets.
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BCSIKASl IMHEMHAS CUCTEMA B OBIUEM IOJOXEHUU OBJIAJAET
PETr'YJIAPHBIM OIITUMAIJIBHBIM I1O BBICTPOOEMCTBUIO CMHTE30M

[TaBon BpyHoBCKH
Pesome

JOKa3bIBaeTCA, YTO €CIIH HECYLUECTBEHHBIM 06Pa30M U3MEHUTDb MOHATHE peryaspHoro (no boaTsuc-
KOMY) CHMHTE3a ONTHMAaJbHOTO YNPAaBNEHUsA, TO BCAKas JHHEHHAs CHCTEMA C MHOrOrPaHHHMKOBOH
06acThi0 ynpaBneHust 061aaaeT perynspHbIM CHHTE30M yNpaBleHUs, ONTHMAIBHOTO MO GbICTPO €#-
ctBui0 B foka3satenbcTBe Hcnonb3yeTcs TeopeMa XHPOHAaKM O pa3bHeHMM CYGAHAIMTUYECKOro
MHOXECTBA Ha JIOKAJbHO KOHEYHOE CEMENCTBO aHAJIUTHYECKUX MOAMHOro06pa3suii.

OnQHOBPEMEHHO NO0Ka3bIBAETCHA, YTO MOXHO PEryIspHbIH CHHTE3 MOCTPOUTH TaK, YTO OH MMEET
HEKOTOpbIe alIbHEHLIHE CBONCTBA, KOTOPbIE NMO3BOJAIOT A0Ka3aTh, YTO B CJly4ae CUCTEMbI CO CKasp-
HbIM YNpaBJieHHEM B OOLUEM MONOXEHHH, BCE ONTUMANIbHbIE TPAEKTOPHH SBJISIOTCA TPACKTOPHAMM
CHCTEMbI C ONTUMAILHOW OOPAaTHOM CBA3BIO B CMbicae Puaunnosa U Hao6OPOT.
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