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EVERY NORMAL LINEAR SYSTEM HAS 
A REGULAR TIME-OPTIMAL SYNTHESIS 

PA VOL BRUNOVSKY 

1. Introduction 

In [2] (cf. also [3]) Bolfanskij introduced the concept of regular synthesis for the 
time-optimal control problem. This concept allowed him to formulate conditions 
under which Pontrjagin's maximum principle was a sufficient condition of op-
timality. Although all the known examples of time optimal synthesis for normal 
linear systems satisfy Bolfanskij's conditions, no proof has been given so far that 
this would be true in general. 

The main aim of this paper is to prove that every normal linear system (cf. 
Section 5 for definition) admits a regular time- optimal synthesis (Section 6). For 
this purpose, however, the definition of regular synthesis has to be slightly 
modified. In Section 4 we prove that this modification is not essential: it is still 
possible to prove the optimality of the regular synthesis under this modified 
definition. 

The proof of the existence of regular synthesis is largely based upon the theory of 
subanalytic sets. The necessary material is summarized in Sections 2, 3. 

Although the existence theorem of Section 6 does not contribute directly to the 
sufficient conditions of optimality (the sufficiency of Pontrjagin's maximum 
principle for normal linear systems can be proved by other, simpler means — cf. 
[3, 19]), it gives an insight into the structure of the closed-loop optimal control. 
Moreover, it can be required that the synthesis has an additional transversality 
property which appears in [5] as a restrictive condition under which the coincidence 
of the open-loop optimal trajectories and the Filippov trajectories of the system 
under the action of the closed-loop optimal control is proved for systems with 
scalar control (Section 7). 

2. W-stratification 

Let M be a differential manifold and (/, V be submanifolds of M such that 
V c U\U. We say that I/ , V have the Whitney property (a) if for every x e V and 
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every sequence of points {xk} from U such that xk —>x and TUXk (the tangent space 

of U at xk) converges, TVX cz lim TUXk (the limit to be understood in the topology 
k—>oo 

of the Grassmann manifolds of planes of dimension dim U in the tangent bundle 
L M o f M - cf. [11]). 

Let G be a subset of a differential manifold M. By a W-stratification of G we 
understand a locally finite (in M) partition ^ of G into submanifolds (called strata) 
of M such that if P, Q e & and PnQ±Q, then Q c P and P, Q have the Whitney 
property (a). By the dimension of & we understand the maximum of the 
dimensions of its strata. 

It is shown in [ 11 ] that if we denote P>Q if PZDQ, P -T- Q, then > is transitive 
and P>Q implies 0^>P. 

Lemma 1. Let ^ be a W-stratification of G czM. If P, Q e& and P>Q, then 
dim Q ^ dim P. 

Proof. Let n = dim M, K = dim P, x e Q. Then there exists a sequence xt —> x, 
x,eP. Since the set of k-dimensional planes through 0 is a compact subset of the 
Grassmann manifold of k-dimensional planes in Rn, we can choose the sequence 

{x{} in such a way that {TXiQ} converges. Therefore, TXQ czlim TXP, which is 
k—»oo 

possible only if d i m Q ^ d i m P . 

3. Subanalytic and semianalytic sets. 

Let A be a real analytic manifold (we shall drop the word "real" in the sequel) 
A subset M cz A is called semianalytic if for every x e A there exists a neighbour­
hood U of x such that MnU is a finite union of sets of type {y e U\ g,(y) = 0, 
/ ; ( y ) > 0 , / = 1, ..., p, j = 1, ..., q}, where gi9 f are analytic functions in U. A set 
M cz A is called subanalytic, if for every x e A there exists a neighbourhood U of x 
such that Mn U is a finite union of sets of type / i (y i ) \ / 2 (y 2 ) , where Yx and Y2 are 
analytic manifolds and /, , f2 are proper analytic maps Yx—>U, Y2^>U, respec­
tively. Recall that / is proper if f~\K) is compact for every K compact. 

For the following properties of semianalytic and subanalytic sets the reader is 
referred to [8]: 

SA 1. The closure and interior of a semianalytic (subanalytic) set, the intersec­
tion, union and difference of two semianalytic (subanalytic) sets are semianalytic 
(subanalytic, respectively). 

SA 2„ Every semianalytic set is subanalytic. 
SA 3. Let A, B be analytic manifolds, / : A —>B analytic. The pre-image / \M) 

of any semianalytic set MczB is semianalytic. 
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SA 4. Let A , B be as in SA 3, / : A ->B analytic proper. The image f(M) of any 
subanalytic set M cz A is subanalytic. 

SA 5. Every semianalytic (subanalytic) subset of a second countable analytic 
manifold A admits a W-stratification (in A) , the strata of which are connected 
analytic submanifolds of A , which are semianalytic (subanalytic, respectively). 

Henceforth we shall call a CASA set any connected analytic submanifold of A 
which is subanalytic in A . 

Lemma 2. Let A be an analytic manifold and let M be a subanalytic set in 
Rn x A, the natural projection of which on Rn is bounded. Then, the natural 
projection of M on A is subanalytic. 

Proof. Because of the boundedness of the projection of M on Rn we can 
consider M as a subanalytic subset of the product of the one-point compactification 
of Rn (which is the n-sphere S") and A , Sn x A . The statement of the lemma 
follows from SA 4, because the natural projection map of Sn x A on A is proper. 

Lemma 3. Let M be a subanalytic subset of an analytic manifold A. Let X be an 
analytic vector field on A. Then, M admits a locally finite partition £P into CASA 
sets such that for each P e&the set Px of those points x eP at which X is tangent to 
P is subanalytic. 

Proof. First assume that M is an analytic submanifold of A and that M = 
f(Y)\N, where N is closed subanalytic, Y is an analytic manifold and / is proper 
analytic on Y with Df of constant rank on f~l(M). Then we have 

(0) THy)M = Df(y)TyY 

for each y ef~l(M). We prove that the set M x of those points x e M at which X is 
tangent to M is subanalytic in A . 

Take any point x e A and any subanalytic coordinate neighbourhood U of x with 
compact closure. We identify U with a subset of Rm, m being the dimension of A . 
Then, f~l(U) can be covered by a finite family W of subanalytic compact 
coordinate neighbourhoods. It suffices to prove that the set M x = 
{x\x eMxnf(W)} is subanalytic for every WeW. 

We can consider W as a subanalytic subset of R", n being the dimension of Y. 
Let ex, ..., en be the coordinate basis of Rn. Consider the matrix O(y) = (Df(y)ex, 
..., Df(y)en, X(f(y))). It follows from (0) that the vectors Df(y)ex, ..., Df(y)en 

span 7}(y)M for every y ef~l(MnW). Therefore, M x can be characterized as the 
intersection of M with the /-image of the set of those points y e W for which all the 
subdeterminants of Q(y) of order >r are zero. The values of these determinants 
are analytic functions of y. Consequently, S is a semianalytic subset of W from 
which it immediately follows that f(S)nM = Mx is subanalytic. 

Now we prove the lemma by induction. Assume that the statement of the lemma 
holds for all subanalytic subsets of A of dimension ^ r (i.e. admitting a stratifica-
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tion of dimension ^ r ) . Let dim M = r + 1 . Due to SA 5 we may without loss of 
generality assume that M is a submanifold of A. By definition of subanalyticity we 
have M =f(Y)\g(Z), f, g analytic proper, Y, Z analytic manifolds. Denote 
Y, = {y e Y\ rank Df(y)^i}. Locally at any y eY, Y, can be characterized as the 
set of points at which all the subdeterminants of the Jacobian of / of order > / are 
zero. Since these subdeterminants are analytic, Yt is semianalytic in Y. Further, Y 
are obviously closed and Y = \jY>, M =f(Yr^)\g(Z) We have 

M-/(y)\^(z) = {/(y)\[/(yr)u^(z)]}u[/(y)\^(z)]. 

The set f(Yr)\g(Z) is subanalytic and of dimension ^ r Consequently, it admits 
the partition with required properties by the induction assumption. The set 
f(Y)\[f(Y )ug(Z)] is open in the submanifold M and therefore is a submanifold of 
A. The application of the first part of the proof to this set with N =f(Yr)ug(Z) 
concludes the proof. 

Lemma 4. Let M be a subanalytic subset of an analytic second countable 
manifold A and let X1, .. ,Xr be analytic vector fields on A. Then there exists 
a locally finite partition M of M into CASA sets such that for every NeM and 
l^i^r, X1 is either everywhere or nowhere tangent to N. 

We shall call M as well as its components flow consistent (to the vector fields 
X\ .,Xr) 

Proof. Due to SA 5 we can without loss of generality assume that M is a CASA 
set. By Lemma 3 there exists a partition ^ of M such that for every ? e ^ the set 
Px- = {xeP, X\x)eTxP} is subanalytic. Obviously, if Px» ±P, Px> = P\Px' is an 
open submanifold of P. 

By SA 5, Px' admits a partition JfP into CASA sets. We prove that if Px
l i=P, 

then dimjVp<dimP^dimM. 
Assume the contrary. Then there exists an NeJfP, N=£P, dimN = dimP and, 

consequently, N open in P. Let xeP be a boundary point of N . There exists 
a neighbourhood U of x such that Pn U is given by Pn U = {x e A n U\ fi(x) = 0, 
..., /S(JC) = 0 } , where n— s is the dimension of P and / are properly chosen 
coordinate functions for P. Consider the functions g,: PnU-+Rl given by 
g,(x) = Df(x)Xl(x), where Df is the differential of/ , / = 1, ..., s. Obviously, X1 

is tangent to P at x if and only if 

(1) gl(x) = Dfi(x)Xl(x) = 0, i = \,...,s. 

Since x is a boundary point of N, the set of points x ePnU for which (1) is 
satisfied as well as the set of points x ePnU for which (1) is not satisfied are not 
empty, the former being open in P. This, however, is impossible, because gt are 
analytic. 

As a result of the partition we have obtained a partition MxoiM into CASA sets, 
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consisting of the sets of MP and the connected components of Pi, Pe&. As the 
next step we partition every component of Mx which is not flow consistent with 
respect to X2 in the above way, X 1 replaced by X2 . Those components of Mx which 
are flow consistent are left unaltered. Then we take succesively X3 , X4 , ..., Xr and 
repeat the partition of M consisting of the components obtained by the preceding 
partition and those unaltered by it. If the resulting partition is not flow consistent, 
we repeat the cycle of r partitionings again. We show that after a finite number of 
repetitions of the cycle the flow consistent partition will be obtained. 

Indeed, if a component of some partition is flow consistent, it will not be affected 
by further partitionings. Furthermore, after every cycle the dimension of the 
components which are not flow consistent is lowered by at least one. This follows 
from the fact that if a vector field is everywhere transversal (parallel) to some 
submanifold of M, then it is so to every submanifold of M (open submanifold of M, 
respectively). 

Lemma 5. Let A be a second countable analytic manifold and let G be a locally 
finite union of CAS A sets in A of dimension ^ k. Then G admits a W-stratification 
of dimension ^k with CASA strata. 

Proof. As a locally finite union of CASA sets, G is obviously subanalytic and 
therefore it admits a W-stratification Sf with CASA strata. Since no submanifold of 
dimension >k can be contained in a locally finite union of submanifolds of 
dimension ^ k, the dimension of this stratification is ^ k. By SA 1, for each S eSf, 

S is subanalytic and so is G = | J S. Therefore, the statement of the lemma follows 
S 6 if 

from the above dimension argument provided we prove that S admits a stratifica­
tion of dimension ^ k . 

Let Sfx be a W-stratification of S into CASA strata. Assume that there exists an 
Sx e Sfx such that dim Sx >k. If Sx c S\S, then for x eSx there exists a sequence of 
points xk —i>x, xk e S. Because of local finiteness of Sfx we may assume that xk e S2 

for some S2eSfx. Then it follows from the definition of stratification that S,c=S2 

and, by Lemma 1, dim Si ̂  dim S2. Consequently, there exists a set S2eSfx such 
that S2nS=£0 and dim S2>k. 

Let xeS2nS. The set S is locally closed, i.e. for every xeS there exists 
a neighbourhood U of x such that Sn U is closed in U. This means that there exists 
a neighbourhood U of x such that S2nU = S2nSnU = S2nSnUczSnU. This 
implies dim S-^dim Si, which contradicts dim S^k. 
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<•». Regular synthesis 

Consider a control system 

x=f(x, u), 

xeRn, u e UaRm,f: Rn xRm-^>Rn being C1. Given an initial point JC0 and target 
point JC,, by an admissible control we understand a bounded measurable function u: 
[0, T]—> (7 such that the solution x(t, JC0, U) of the equation 

(2) x=f(x,u(t)) 

satisfying JC(0, JC0, u) =x0 exists on [0, T] and satisfies JC(T, JC0, W) = JC,. We say that 
the control u(t) steers the system from JC0 to JC,. An admissible control will be called 
optimal if it steers the system from JC0 to JC, in minimum time. 

Given a target point JC, and an open domain G containing JC,, by a regular 
synthesis we shall understand a pair (Sf, v), where Sf is a locally finite (in G) 
partition of G into C1 connected submanifolds of Rn (called cells) and v G-^U 
(the closed-loop optimal control) is a function satisfying the following properties: 

A. Trie set G' admits a VV-stratification of dimension <n, where G' = u{S eSf\ 
dim S<n} (if Sf is a family of sets, we shall use the notation \jSf = u{S |S eSf) 
= { x e S | S e ^ } ) . 

B. The set {JC,} is a cell, v(x) is C1 on each cell S and can be extended into a C1 

function on some neighbourhood of S. 
C. The cells of Sf are of two types, type I and type II. If S is a k-dimensional cell 

of type I, then f(x, v(x)) is everywhere tangent to S and through every point xeS 
there is a unique solution %x(t) of the differential equation 

(3) x=f(x,v(x)), 

which locally stays in S. There exists a (k — 1) — dimensional cell n(S) such that 
the vector field JC»-»/(JC, v(x)) is transversal to IJ(S) and every trajectory of (3) 
from any x eS enters iT(S), the entering time being a continuous function of JC. If S 
is of type II, there exists a unique cell Z(S) of dimension k + 1 of type I such that 
from every point of S a unique trajectory of (3) starts and locally stays in -T(S); 
U(JC) is C1 in Su-T(S). 

D. Every trajectory %x(t) of (3) starting at JC e G (which is uniquely defined by C 
until staying in G) reaches JC, in finite time, passing only a finite number of cells, 
and satisfies Pontrjagin's maximum principle with the control ux(t) = v(%x(t)). 

E. The time in which %x(t) reaches JC, is a continuous function of JC in G. 
To avoid misunderstandings we now specify in which sense we shall understand 

transversality, since this concept is being used in two different contexts. 
A vector field X on a manifold M is said to be transversal to a submanifold N of 
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M if X(M)nTN = 0 (X to be understood as a section map X from M to TM, the 
tangent bundle of M) or, in other words, if for every x eN, X(x)£ TXN. 

A C1 map / : M—>IV (M, IV manifolds) is said to be transversal to a submanifold 
S of N if Df(x) (TXM) + T/(JC)S = Tfix)N for every JC ef~\S) (cf. [1]). In particular, if 
dimM<codim 5, / transversal to S means f~l(S) = 0. 

In most cases it will be clear from the context which meaning of transversality we 
have in mind, since the first of them is used for vector fields, the second for maps. 
The only case which needs some amplification is the case of a trajectory of a vector 
field. If we say that a trajectory x(t), t el of a vector field X on M is transversal to 
some manifold N c M w e shall always understand this as transversality of the map 
JC: I-+M to N (and not as transversality of X to IV). 

Our definition of regular synthesis differs from that of Bolt'anskij ([2, 3]) in two 
ways. First it does not admit the exceptional set IV from which more than one 
trajectory of (3) is allowed to start. Such a set can be included without complica­
tions and we omit it only because it does not occur in linear systems we deal with in 
this paper. Secondly instead of assuming that the sets u { 5 e Sf\ dim S < k}, k = l, 
..., n are "piecewise smooth" we assume A. We show that the proof of optimality 
of the regular synthesis goes through under assumption A. 

In order to do so we note that the only place where piecewise smoothness is 
needed is the following lemma (which appears as Lemma VI.6 in [3]): 

Let M be a piecewise smooth set in G of dimension <n. Let u(t), t e [0, T] be 
a piecewise continuous control which steers the system from x0 to xx, the trajectory 
x(t, x0, u), te [0, T] of (2) lying entirely in G. Then, in any neighbourhood of x0 

there exists a point y0 such that the trajectory x(t, y0, u), t e [0, T] of (2) meets 
M for at most finitely many values of t. 

This lemma is applied to the set M = G'. We show now that from property A of 
the synthesis the statement of the lemma follows for M = G'. 

Let x0eG and let u(t), te[0, T] be a piecewise continuous control such that 
x(t, x0, u)e G for te[0,T]. Let K be a subanalytic neighbourhood of the 
trajectory {x(t, x0, u)\ t e [0, T]} such that K is compact and K cz G. There exists 
a neighbourhood V0 of x0 such that x(t, y, u)eK for all y eV0 and t e [0, T]. 

As the set KnG' is subanalytic and compact, it admits a finite W-stratification 
M of dimension < n. We associate with M an oriented graph as follows: we take 
the strata of M as vertices and the oriented pairs (M, IV), M, IV e M as edges if 
M < IV. Because of the property of the ordering mentioned before Lemma 1 this 
graph has no cycle. We define the height of MeM, h(M), as the length of the 
longest path ending in M (i.e. the number of edges in the longest connected 
oriented sequence of edges ending in M). Since the graph has no cycle, h(M) is 
defined for every MeM and h(N)^h(M) implies N^M. 

First we show by induction that the following statement holds: 
Denote M( = {M eM\h(M)^i}. Then the set of those points y0e V0 for which 
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x(t, y0, u), te[0, T] does not meet ul , - at switching points t of u(t) contains an 
open dense subset V, of V. Henceforth uJ,- etc. is understood in the sense 
specified in A, unless the index i appears below the union symbol. 

Assume that the i-th induction statement holds. Let M czMt+i\Mi and let T be 
a switching point of u(t). Since d imM<n and the map y »->JC(T, y, u) is 
a diffeomorphism of V, and X(T, V(, U), the set WT,M of points y eVt such that 
X(T, y, u)£M is dense in V,. On the other hand, since M<=MvMt, M is closed in 
X(T, Vi, u) and, consequently, WT,M is open in Vt. Thus, WT,M is open dense in Vt; 
since V, is open dense in V0, WT,M is open dense in V. 

We take Vi+l as the intersection of the sets WxM for T, M running through the 
switching points of u(t) and Mt+x\Mi, respectively; Since the number of switching 
points of u(t) as well as Mt + .\Mi are finite, Vi+l is open dense. The set V = f] Vt is 

open dense and for every y e V, x(t, y, u) does not meet uM if t is a switching 
point of u(t). 

Similarly, by induction in height we prove that the set of points y e V for which 
x(t,y, u), te[0, T] meets every stratum of M transversally is open dense in V 
(note that since x(t, y, u) does not meet uM if t is a switching point of u(t), 
transversality makes sense). Assuming that the set V, of points of V such that 
x(t, y, u) meets every stratum of M{ transversally is open dense in V, the density of 
the subset WM of V, of those points y for which x(t,y,u), te[0,T] meets 
M e Mi+]\Mi transversally can be shown similarly as in [2, 3] or by the transversali­
ty theorem [1, 19.1]. To prove openness of WM in V, assume that there exists 
a sequence of points yk e Vt\WM, y*—>0e WM. If dim M = n — 1 this means that 
there exists a sequence {tk}, tke[0,T], tk—>te[0, T] such that x(tk, yk, 
u)eTxUk,yk,u)M. Since MczMuLU*«> we have x(tk, yk, u)-*x(t0, y0, 
u)eMv\jMi. Thus, t0\s not a switching point and x(t0, y0,u) = lim x(tk, yk, u). If 

k—•«> 

JC(t(„ y(„ M) eM, we obtain *(t0, y0,u)e Tx(to,yo,U)M, which violates y0eWM.Ux(t0, 
y(), u)eN eMi, then necessarily dim N = n — 1, since by the assumed transversality 
x(t,y0,u) does not meet any stratum of Mi of dimension <n — 1. Passing to 
a subsequence if necessary we may assume that Tx(tk.yk.u)M converges and, 

consequently, from the Whitney property if follows that Tx(t(>, yo,u)N c lim T} *Uk. Уk. " ) 

Since dim N = n - 1 ̂ dim M, this is possible only if Tx(to y o , u ) = lim Tx(tk y t , u ) . 

Consequently, x(t0, y0, u)eTx(to,yiuU)N, contrary to the induction hypothesis. 
If dim M<n - 1, then there exists a sequence {tk}, tk e[0, T], tk—>[0, T] such 

that x(tk, yk,u)eM. We have x(t0, y0, u)eM<z.M\j\jMt and, since y0eWM, x(t0, 
yo, u)\jMi. Since by Lemma 5 all the strata of Mt intersecting M have to be of 
dimension <n — 1, this again violates the induction hypothesis. If dimM = n, 
V;\VVM = 0 trivially. 
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Now, the set V=f~l Vt is open dense and every trajectory jc(f, y, u), t e [0, T] for 

y e Vmeets anyMeM transversally and, consequently, at isolated points. Since M 
is finite, this means that the number of intersection points of jc(f, y, u), te[0, T] 
and G' (which coincide with the intersection points of x(t,y,u), te[09 T] and 
[JM) is finite. 

5. Normal linear control systems 

Consider a linear control system 

(4) JC=AJC + W, ueU9 

x, ueRn, A constant, with a polyhedral control domain U = co {wx, ..., wp) (wt 

being the extremal points of U and co standing for the convex hull), containing the 
origin in its relative interior. The system (4) is called normal ([7, 10]) or in general 
position ([3]) if for any l ^ i , j^p, i + ) the vectors w, — wi9 A(wi — wi), ..., 
An~x(wi — wi) are linearly independent, or, equivalently, if no vector t//=£0 such 
that (xp, w, - wi) = 0 belongs to any proper invariant subspace of A * (where (•, •) 
stand for scalar product, * for transpose). As a consequence of normality one 
obtains that for any /=£/, any non-zero solution \l>(t) of the adjoint equation 

(5) t / f = - A * t / ; 

satisfies (ip(t), Wi — Wj) = 0 only at isolated points. 
We recall some well known properties of normal systems, for which [3, 6, 10] can 

serve as a general reference, and we draw some simple corollaries from them: 
N l . The set G of points from which the system can be steered to 0 is an open 

convex set containing 0 in its interior. The set G(T) of points from which the 
system can be steered to 0 in time not exceeding T is a convex compact subset of G 
for every T ^ O ; G(T,)c :G(T 2 ) for O ^ T ^ T ^ 

N2. For every J C G G there exists a unique optimal control ux(t), te[0, T(JC)], 

which steers the system from JC to 0 in minimum time T(JC) (the unicity of the 
optimal control needs an agreement that as the value of a piecewise continuous 
function at any point its right-hand limit is understood). This optimal control is 
piecewise constant with vertices uli, ..., wp as values. The minimal steering time 
T(JC) is a continuous function of JC. 

N3. The (open-loop) optimal control ux(t) satisfies Pontrjagin's maximum 
principle: There exists a non- zero solution ty(t) of the adjoint equation (5) such 
that 

(6) < ^ ( 0 . Wx(0> =max (xp(t), u) 
u e U 
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(we also say that ux(t) is extremal with respect to \p(t) for all t e [0, T(x)]). The 
open- loop optimal controls can be synthesized into a closed-loop control v(x), i.e. 
there exists a function v: G-^U such that for every xeG and te[0, T(x)], 
ux(t) = v(t;x(t)), where t;x(t) = x(t, x, ux) is the optimal trajectory with the initial 
point x. The function v can be obtained as v(x) = ux(0). If we denote by W, the 
normal cone of U at wh i.e. W} = {T/> eRn\ (ip, w,) = max ^, u)}, then (6) can 

u e U 

be re-formulated as follows: rp(t)e Wf as soon as ux(t) = wj. 
Let us note that W, are convex closed polyhedral cones and WtnW, c 

dWindW, for all i±j (cf. [4]). 
N4 (cf. [4]). For xeG, x±0, denote £ ( * ) the set of ^peRn such that MX(0 is 

extremal with respect to the solution ^p(t) of (5) with ^p(0) = ^p ; for x = 0 denote 
E(0) = Rn. The set E(x) is a closed convex cone for every xeG and v(x) = w, 
implies E(x)czWj. 

N5 (cf. [4]). Let ^p(t) be any solution of the equation (5). Let uv(t) be the 
extremal control with respect to \p(t) for all t=^0. Let x(t) = x(t, 0, u*) for t^O. 
Then, for every r < 0 , rp(r)eE(x(r)), u*(t) = ux(T)(t — T), %x(T)(t) = x(t - T), 
T(X(T)) = T, for O ^ t ^ - r . 

Corollary 1. Let ^p(t) be a solution of (5) such that ^p(0)eE(x) for some xeG. 
Let x(t)-x(t, x, u*), where u*(t) is the extremal control with respect to ^p(t), 
-oo<t^T(x). Then, for every r e ( - oo, T(x)), ^p(T)eE(x(T)), uxp(t) = 
Ux(T)(t-T), %x(T)(t)=x(t-T)iOT 0^t^T(x)-T, T(X(T))=T(X)-T. 

We denote by X' the linear vector field jc»-*Ajt + wi, j = 1, ..., p. 

Lemma 6. Let the problem (4) be normal. Then there exi ts no submanifold 
M of Rn of dimension <n such that two vector fields X' and X', i±j are both 
everywhere tangent to M. 

Proof. Independence of w, — wt, A(w, — w,), ..., An l(w( - wt) means that the 
dimension of the Lie algebra spanned by the vector fields X', X' is n. Thus, by [9], 
in any neighbourhood V of any point x there exists an open ball, each point of 
which can be joined with x by a curve in V consisting of a finite number of 
trajectories of X' and X'. This however, is impossible if dim M<n and X', X1 are 
both tangent to M, since by moving along trajectories of X' and X1 we cannot leave 
M. 

Corollary 2. If Jf is a flow consistent partition of MczR" (as defined in 
Lemma 4) with respect to X1, . , Xp, then for every N eJf with dim N < n at most 
one of the vector fields is tangent to N. 

Lemma 7. Consider a linear differential equation in R" 

(7) x=Ax, 
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A constant, and denote by q> the flow of (7). Further, denote by o the radial 
projection of Rn\{0} on its unit sphere Sn~\ o(x) = xl\x\, where \x\ is the 
Euclidean norm of x. Then, there exists a unique flow q?° on S""1 such that 
oo(pt(x) = cp%o(x) for all t and x±0 and this flow is analytic on Sn~\ 

We shall call q>° the unit projection of q). 
Proof. Let x(t) be a non- zero solution of (7), y(t) = x(t)l\x(t)\. Then, 

dy(t)_ d_ _x(t)_= x(t) (x(t),Ax(t))x(t)_ 
dr dt \x(t)\ A \x(t)\ \x(t)Y'2 

= Ay(t)-(y(t),Ay(t))y(t). 

If we denote X°(y) = Ay-(y, Ay)y for yeSn~\ then the flow cp° of X° is 
obviously the unit projection of q). 

R e m a r k 1. Because the maximum principle (6) is homogeneous in t/;, the 
trajectories of the adjoint equation (5) in the definition of the extremal control and 
in the properties N3—N5 can be replaced in an obvious way by the trajectories of 
the unit projection of (5), Wl9 E(x) replaced by W°l = WlnSH-\ E°(x) = 
E(x)nSn~\ respectively. Since in the proof of Theorem 1 we shall mostly move 
backwards along the trajectories of (5) and (4), we denote by q>* the unit 
projection of the backwards flow of (5), i.e. the projection of the flow of the 
equation ^|> = A*^p. Then, the maximum principle N4 can be reformulated as 
follows: there exists a ^|>eSn~l such that if ux(t) = wt, then cp*'^)e W° and N5, 
N6 can be reformulated in a corresponding way. 

For x e G denote # (JC) the number of switchings (discontinuities) of the optimal 
control ux(t). We have 

Lemma 8. For every To>0 there exists a <9>0 such that ft(x)<& as soon as 
T(x)<T0. 

Proof. From N3 it follows that the switching points are found among the zeros 
of the functions (t//(t), w, - wf), where ^p(t) is the solution of (5) with respect to 
which ux(t) is extremal. Therefore, the lemma will be proved if we show that for 
given To, #, / there exists an N > 0 such that the number of zeros of <V(0, wi - Wi) 
on any interval of length T0 does not exceed N for any non-zero solution ^p(t) of 
(5). 

For given i, j denote w = w{, - w,. We have 

d / 
^ < V , H>) = ( -A*t / / , w) = - < T / / , Aw), 

-t/ / \ - d / 
dt2W, ">---; (V, Aw) = - (- A ^ , Aw) = ^ , A2w),..., 
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From the Cayley—Hamilton theorem it follows that 

An = -an . A " " 1 - ..-a0I, 

where kn+an-1k
n 1 + ...+a0 is the characteristic polynomial of A and I is the 

unity matrix. Thus, if we denote ( - l)'(i/>, Ajw) =y,+i, 1=0, ..., n - 1, we have 
y i=y 2 , y2 = y3, ..., y-,-i = y„, yn = - a , , - , y , l - i - . . . - a 0 y 1 , which means that 
( V , H ' ) = y , is a non-zero solution of the n-th order differential equation 

(8) yr + a^r"* .~ + a0yi = o. 

By de la Valle—Poussin's theorem (cf. [12, IV, § 1.2]), there exists an h > 0 such 
that if a solution of (8) has n zeros on an interval of length h, then it is identically 
zero. As a conseqence we obtain that on an interval of length T0, yi(f) - (ip(t), w) 
cannot have more than n([T0/h] + 1) zeros ([ ] standing for the integer part). 

From the continuity of the function T(x) and Lemma 8 we obtain 

Corollary 3 . The function T(x) + ft(x) is bounded on any KaG compact. 

6. Main theorem 

Theorem 1. Every normal system (4) with target point 0 admits a regular time 
— optimal synthesis (y,v) which has the following additional property 

F. For every cell S e Sf of dimension <n, every vector field X1 = Ax + wf such 
that w,£v(x) for xeS is everywhere transversal to 5 . 

Let us note that from N3 and B it follows that for a given S eSf, v(x) must be 
constant and equal to some vertex of U which we denote by wM(S). 

Proof. Denote G the set of points from which the system can be steered to 0. By 
N l , G is an open neighbourhood of 0. We take v as in N3. Following the optimal 
trajectories backwards we shall construct inductively the cells of the partition Sf 
We show that they aie CAS A sets satisfying B - D and F and that each compact 
subset of G is covered by a finite number of those cells. Property A then follows 
from Lemma 5 and E holds by N2. 

Since we shall mostly follow the trajectories of the vector fields X' backwards, 
we denote by qp' the backwards flow of X', 1 = 1, . , /?, i.e. the flo of the 
differential equation x — —Ax — w,. 

A synthesis cell S will be called a descendant of a cell S' if the optimal 
trajectories of the points of 5 pass 5 ' . Also, 5 ' will be called an ancestor of 5 

We shall call the cells constructed at the k-th induction step cells of order k, the 
only cell of order 0 being {0}. We denote by Sfk the set of cells of order ^ k and by 
Gk their union. Among the cells of Sfk we distinguish a certain class Sfk of cells of 
type II which we shall call border cells. 
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Assume now that we have constructed Sfk and that Sfk satisfies the following 
induction hypotheses: 

11. Gk is closed and Sfk is a finite partition of Gk into CAS A sets. 
12. With every cell SeSfk there is an associated integer ii(S)e[l, p] such that 

v(x) = w(i(S) for xeS. 
13. Sfk satisfies B - F . 
14. T(x) ^ k for every xsGk. 
15. The set Es = {(x, tp)\xeS, \peE°(x)} is subanalytic. 
16. If S is a border cell of order k, then ^UOeG^G*--, for t e [0, 1), £x(l) € Gfc_, 

for every x eS. 
17. If ux(t) is constant for 0^t<tx^l and %x(tx)eGk-u then xeGk. 
18. If S is order i ^ k , its descendants are of order *^i, its immediate descendant 

being of order -^i + l. If S' is a descendant of S of order i, then ju(S') = /i(S). 
19. If S e Sfk and not a border cell, ux(t) e S for some x e G and t>0 and ux is 

constant in the neighbourhood of t, then %x(s) e Gk for s < t sufficiently close to t. 
Each cell of order k + 1 will be a descendant of some cell of order k. The 

descendants of a particular cell will be grouped into families associated with 
particular vertices w,, / = 1, ..., p (some of which may be empty). We specify how 
to obtain descendants of order k + 1 of a given cell S of order k associated with 
a given vertex wt. All the cells of order k + 1 are then obtained if S runs through all 
cells of order k and / through 1, ..., p, the pair (S, / ) excluded if both / = //(S) and 
S is not a border cell. Why we exclude such pairs we shall explain later. 

The general idea behind the construction is the following one: 
We denote by L the set of points y for which the optimal control satisfies 

uy(t) = w, for te[0, T) for 0 < T ^ 1 and the optimal trajectory satisfies %y(r)eS, 
%y(t)£S for 0 < f < T . By Corollary 1, L is precisely the set filled by the pieces of 
trajectories x(t, x, u v) , t e [r, 0) (in the notation of Corollary 1), where T is such 
that u*(t) = wi for te[r,0) or, equivalently, xp(t)eWi9 for rp(0) running over 
E°(x) and x over S (for the definition of E°(x), Wf cf. Remark 1 and N4 of §4, 
respectively). We prove that L is subanalytic and we obtain the descendants of S of 
order k + 1 associated with w, as the components of the partition of L into CASA 
sets. In order to satisfy C and F we have to split L in such a way that the partition 
of L into cells is flow consistent with respect to the flows X\ ...,XP and that all 
cells have uniquely defined ancestors. Let us note that the restriction T ^ 1 is made 
for technical reasons to enable us to prove the subanalyticity of L. The bound 1 
could be replaced by any other positive constant. 

Throughout the proof we shall keep the following notation: If A = 
A, x A 2 x ... x Ar and 1 ^ix< . . .< / . ^ r , by -T,..,, we shall denote the natural 
projection of Ax x ... x Ar on Atl x ... x Ais. Note that if Ay are analytic manifolds 
for / = 1, ...,r and compact for je{l, ..., r}\{iu ..., is}, then JT,..,, is proper 
analytic. 
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For given 5, I denote 

Hx = {(t, <p[(x)9 cp*(<p))\(x, ip)eEs , 0<t< 1} , 

H2 = {(s, t, cpKx), <p*(xp))\(x, xp)eEs, 0<s^t<l, 

(PH^eS-^WV1;}, 

B=Jt22(Hx\Jt234(H2)), 

K = JTX(B) 

H[ = {(<p[(x), <p*x(V>))\(x, ip)eEs), 

H'2 = {(s,<p[(x) <p*x(\p))\0<s<l,<p*(xp)eSn ' W?}, 

B' = H[\jr22(H'2), 

K'=JXX(B'), 

L=KuK', 

L=JtX2(Hx\jt234(H2))u({l}xK'). 

Analysing these expressions we see that B(B') is the set of points (<p[(x), <p*(ty)) 
for which xpeE°(x), xeS, 0<t<l (t = l) and < p ! ( i ( / ) e ^ for 0 < s ^ * \ From 
Corollary 1 it follows that its projection on the first compound, K(K'), is the set of 
points x for which ux(t) = wf for te[0, T(X)), r( .r)>0, where T(X) is such that 
%x(T(x))eS (ux(t) = w, fortefO, 1), £ ( l ) e S , respectively). Of course, K, K' may 
be empty. The sets B, B' can be considered as fibred sets over K, K', respectively, 
the fiber over x being E°(x). The set L is a subset of R1 X L of the points (T(X), X), 

x eL. 
We show that B, K are subanalytic; the subanalyticity of B', K' follows in 

a similar way. First, we note that Hx =F((0, l)xE ), where F(t,x,tp) 
= (t, <p[(x), <p*(x)). Since F is an analytic diffeomorphism, it is proper and Hx is 
subanalytic by SA4. To prove the subanalyticity of H we first note that 
W°, = {i/>|(1/>, ty) = 1» (^> Wj - wv) ^ 0 , v = 1, ..., p) is semianalytic and, by SA1, 
so is Sn_1\W-. By SA3, the set { (T, i^)|(p*(^) e 5n_1} is semianalytic and, by SA2, 
it is subanalytic. The subanalyticity of H2 now follows in a similar way as that of Hx 

The set B is subanalytic by Lemma 2 and K is subanalytic because 5n _ 1 is compact 
and, consequently, the projection map JTX; Rn X5""1->Rn i proper 

The descendants of 5 of order k + 1 associated with j will be obtained by 
a sequence of partitions of K and K', the subsets of K' becoming the border cells. 

We first split K and K' (each of them separately) according to Lemma 4 to 
obtain a flow-consistent partition 9lxoiL into CAS A sets with respect to the vector 
fields X1, ..., Xp. We call the components of $lx to which X1 is tangent (transver-
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sal) components of type I (II) and denote by $l[ ($l"x, respectively) the set of those 
components. 

We could take the components of <3ix as cells of order k + 1 if they had uniquely 
defined ancestors. This, however, is not necessarily true and in order to achieve 
this, further partitioning may be necessary. This will be done as follows: 

We project all the components of $lx on 5 along the trajectories of <py, split the 
projections into pairwise disjoint sets to obtain a partition $P of S, the components 
of which are subsets of all the projections of components of $lx they intersect. 
Finally, we take as the components of the refinement <3l2 of 3l\ the intersections of 
the components of $lx with pre-images (under the projection map) of the 
components of 0>. We show that this can be done in such a way that the 
components of 0l2 are CASA sets. 

Denote by <Z> the projection map of L on S along the trajectories of q>' and note 
that <P(x) = <pLTix)(x), where T(X) is the least t such that %x(t)eS. The projection 
0 ( J R ) of a set Re$lx can be written as &(R) = jz2{(t, q)Lt(x)\(t, x) e 
Ln(Rl x jR)}. From this expression it follows that <P(R) is subanalytic. Denote by 
&x the partition of 5 into the sets <P(Rx)n... &(Rk)n(S\<P(Rk+x)) n...n 
(S\<P(R[)), where k^l run through all nonnegative integer and Rx,...,Ri 
through all finite sequences of components of $lx. Obviously, @>

x consists of 
subanalytic sets and has the property 

(9) If P e &u Pn&(R)± 0 for some R e 9tx, then P cz <P(R). 

We can further refine 0 \ to obtain a partition 0* of S into CASA sets having 
property (9) and we define the refinement $l2 of 3lx by taking the connected 
components of the sets <P~x(P)nR, Re$lx, Pe£P as its components. The 
subanalyticity of the components of £%2 follows from the expression 

0-1(P)nR=jt2({(t, (P
i
t(x))\0<t^l,xeP}nLn(R}xR). 

Furthermore, we show that &~1(P)nR is also an analytic submanifold of Rn, 
which implies that $l2 consists of CASA sets. 

For this proof we need 

Lemma 9. The function T is continuous. 
Proof. Assume the contrary. Then there exists a sequence of points xv—>x0, 

xveL, v = 0 , 1, ..., such that 

(10) T(JCV)-»->T(JC0). 

Since {T(* V )} is a bounded sequence we may assume T(JCV)—>T*. 

Since Gk is closed, T ( J C 0 ) ^ T * . TO prove that T (JC 0 )<T* , two cases have to be 
distinguished, namely j = ii(S) and y^ju(S). 

Let first j=fcfi(S). Since uXo is right-hand continuous we have uXo(t) = w (S) for 
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t e [T(JCO), T(JCO) + e] for some e > 0 (here we understand .T(S) = 0 if S is of type I). 
By [5, Lemma 3.2] the open-loop controls ux (if extended by 0 beyond F(jcv)) 
convergence weakly towards uXo for JC—>JC0, which implies uXy(tv) = w, for some 
tv—>T(JC0). This is impossible if T*>T(JC0). 

If j = fi(S), then S is a border cell. It follows from 16 that if / is the largest 
possible integer such that the closest ancestor S' of S of order i is not a border cell 
and TX(X) is the time at which %x(t) enters S' for JceL, then T,(JCV)- T(JCV) 

= T,(jc0)~T(jc0) = k - i. Therefore, if T(JCV)-»->T(JCO), then also T,(JCV)-»--> IT.(jt0). 
However, since S' is not a border cell, we have by 19 uXy(tx)± uXy(t2) for 
t\ < T,(JCV) ^ t2 and the contradiction to weak convergence follows similarly as in the 
case j±ii(S). This proves the lemma. 

Since S is transversal to X', from Lemma 9 and the implicit function theorem it 
follows that T is analytic and, consequently, that <P is analytic. 

Let now Rx e $l'[. Since Rx is transversal to <p', the projection map <P is a local 
diffeomorphism Rx —><P(RX). Let jcel*. Then, 0 ( jc )eP and, since P is a sub-
manifold of Rn, it can locally at <2>(JC) be represented as P= {y | /i(y) = 0, ..., 
/r(y) = 0}, where r = rz-dimP and the differentials Dfv of fv at <P(x) are 
independent, v = l, ...,r. Since 0 is a diffeomorphism, the differentials 
D(fv o0) = Dfv -D<P are independent. As R can locally at JC be represented as 
R = {y\fio(&(y) = 0, ..., fro<P(y) = 0}, this proves that R is an analytic sub-
manifold. 

If Rxe$l'x, then every x eRx has a neighbourhood V such that RxnV = cp\(Z), 
where I = ( — e, e), e>0 and Z is an analytic submanifold transversal to X'. 
Similarly as in the case Rxe9t'[ (Rx replaced by Z) it can be shown that <P~X(P) 
nV' = cp\(Zn<P~x(P)) is an analytic submanifold. 

The fact that the components of 0l2 have uniquely defined ancestors (and 
descendants as well) follows from the property (9) of 0* and the fact that the 
partitioning of 01 x has been done along the trajectories of q)'. Moreover, it follows 
from the construction that every component of 0l2 is isomorphic with all its 
ancestors and descendants of the same type in 9t2. However, by the partition of <3lx 

we may have destroyed flow consistency. More precisely, by partitioning 
a component Rx of 9t\ to which some Xv , v-r-I was parallel, a component R2 of £%2 

may be obtained with which Xv is not flow consistent. This cannot happen for / = v 
(i.e. Rx e$l\), since splitting has been done along the trajectories of cp' (because of 
the construction of 0l[ and Lemma 6). 

If this is the case, we repeat the cycle of flow consistent partitioning and 
subsequent partitioning into sets with uniquely defined ancestors. We show that 
every such cycle of two partitionings lowers the maximum of the dimensions of flow 
inconsistent components by at least one. This means that after a finite number of 
repetitions a flow consistent partition 9t with uniquely defined ancestors will be 
obtained. 

96 



Let R be a flow inconsistent component of 9t2. Then it is necessarily of type II. If 
we partition R into flow consistent subsets according to Lemma 4, from the 
subsequent partition into CASA sets with uniquely defined ancestors this will 
require at most a partition of the descendants and ancestors of R. Since those of 
them which are of type II are isomorphic to R their dimensions do not exceed 
dim R. Consequently, since transversality is not destroyed by partitioning and 
parallelity can be lost only on the parts of lower dimension the flow inconsistent 
sets resulting from their partition will have dimension <d im R. The assertion now 
follows if we let R run through all flow inconsistent components of 3l2 and if we 
admit for 9t2 the partition obtained after any repetition of the cycle. 

As the cells of order k + 1 we take the components of 01, the components of 
type I (II) becoming cells of order I (II, respectively), the subsets of K' becoming 
border cells. For R e9t we denote ER =(BuB') n (R xS""1). As mentioned at 
the beginning of the proof, to obtain all the cells of order k + 1 we let S run through 
all the cells of order k and / through 1, ..., p, the pair (S, /) excluded if S is not 
a border cell and j = n(S). 

Next we show that 5^ + i satisfies the induction hypothese II—19. 
To prove that Gk+1 is closed assume x},e G*+1, JC,—•-*,> Since Gk is closed and 5^ + 1 

is finite we may assume JC, e S' for some S' e Sfk + X. Let S be the closest ancestor of 
S' of order k and let r be defined as in Lemma 9. By Lemma 9, r is continuous and 
therefore r(jtf)—>r* for some 0 ^ r * ^ l . Since ux. converge weakly to uXo and 
uXl(0 = Wms) for te[0, r,), uXQ(t) = H>M(S) for te[0, r*] and ?X/(ry)->^0(r*). This 
implies §,0(r*)eG* and x0eL for the set L associated with the pair (S'\ ,u(S')), 
where S" is the cell of order k containing ?Xo(r*). 

The rest of II, as well as 12, B and 18 are satisfied trivially. Due to Corollary 2, 
C and F are immediate consequences of the flow consistency of the partition of L 
into cells and the fact that each cell has uniquely defined ancestors. The property 
D (for JC eGk + i) follows from the finiteness of ¥k and 91, 14 follows from the 
restriction t< 1 in the definition of H,. The property 15 follows directly from the 
definition of ER, R e 91 and 16 is a consequence of the fact that the border cells are 
subsets of K'. 

Since Gk is closed, we may assume for the proof of 17 without loss of generality 
that x' = %x(tl)eSc=Gk, but %x(t)6Gk for t<tx. Let ux(t) = Wj for te[0, t2). Then 
there exists a i// eE°(x) such that ux(t) = u"(t - tx) in the notation of Corollary 1. 
Since f , < l and ux(t) = w, on [0, r,), this means %x(t)eL for the pair (S , / ) . Because 
of the induction hypothesis 19 either j± \i(S) or S is a border cell, which means that 
the pair (S, / ) is admissible. 

To prove 19 observe that if JC' = %x(t)eS, where S is of order k + 1 and not 
a border cell, then JC' eL for some admissible pair ( S \ / ) , where S' is of order k. 
This means x = q)'x(T) for some jc'eS' and 0 < r < l . Since ux is constant in the 
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neighbourhood of t and r < l , q?'x(o)eL for a > r sufficiently close to r or, 
equivalentiy, %x(s)eL for s<t sufficiently close to t. 

Now, by induction it follows that SP = | j SPk is a regular synthesis provided we 
*3*0 

prove that every C cz G compact is covered by a finite number of cells of SP. This is 
an immediate consequence of Corollary 3 and the following lemma, which con­
cludes the proof of the theorem. 

Lemma 10. Let xeG. Then, x e GT(X)+&(X), i.e. x is contained in some cell of 
order ^T(x) + ft(x), where T, 1/ are defined in Section 5. 

Proof. We prove this lemma by induction in T(x) + ft(x). If T(x) = 0, then* = 0 
and the statement is trivial. Assume that the statement of the lemma holds for all x 
with T(x) + &(x)^i + l. 

Let x e G be such that T(x) + ft(x)^ i + 1. Denote tx the first switching point of 
ux, r = min { l , t i} and X'=%X(T). Then, T(x') + '&(x')^:i and by the induction 
hypothesis x' e G{. By 17, x e G,+i, which proves the lemma. 

7. Filippov trajectories 

As we have mentioned in Section 1, the existence of regular synthesis has an 
application to the problem of coincidence of the open-loop optimal trajectories of 
(4) and the Filippov trajectories of the equation 

(11) x=Ax + v(x). 

This problem has been studied in [4—6]. As shown in [6] it is not always true that 
the Filippov trajectories of (11) coincide with the optimal trajectories of (4) and in 
[4] the problem, for which systems the coincidence does take place, is completely 
solved for systems of dimension 2. The results demonstrate that the class of systems 
for which coincidence does not take place is not exceptional. While there is no 
general solution to the problem for systems of higher dimension, in [5] it is proved 
that for systems of arbitrary dimension with scalar control (i.e. U = {bu \ \u \ ^ 1}, 
beRn) the optimal trajectories are Filippov trajectories of (11), provided the 
system admits a regular synthesis. The converse statement is proved under the 
additional hypothesis requiring that for each cell S of type I Ax — bv(x) is 
everywhere transversal to 5. 

Because this hypothesis is a consequence of property F, using Theorem 1 we 
obtain from [5] 

Theorem 2. For any normal system with scalar control all optimal trajectories of 
(4) are Filippov trajectories of (11) and, conversely, all Filippov trajectories of 
(11) are optimal trajectories of (4). 
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8. Concluding remarks. 

If a system admits a regular synthesis, then it admits infinitely many regular 
syntheses. Indeed, if (Sf, v) is a regular synthesis and Sf' is a flow consistent locally 
finite refinement of Sf the components of which have uniquely defined ancestors, 
then (Sf', v) is again a regular synthesis. This suggests an ordering in the family of 
regular syntheses: (Sf, v)^ (Sf', v') if v = v' and Sf' is a refinement of Sf. It is quite 
obvious that every increasing sequence of syntheses has a maximal element, which 
by Zorn's lemma implies the existence of a maximal synthesis, i.e. a synthesis 
(Sf, v) such that no other synthesis (Sf, v) satisfies (Sf, v)^z(Sf, v). 

In the constructions of Section 6 we have done many redundant splittings, which 
have not been dictated by the structure of the closed-loop optimal control but 
rather by the technique of proof. Simple examples for which the closed loop 
optimal control can be explicitely constructed indicate the existence of a unique 
"natural" synthesis (Sf, v), which satisfies ($P, v)^(Sf, v) for all regular syntheses 
(Sf, v). Such a synthesis reflects the structure of the closed-loop optimal control in 
the most adequate way. Although all the regular syntheses which have been 
constructed for particular systems are of this natural type, we have not been able to 
prove that such a synthesis exists in general. 

The author is thankful to Drs. V. and J. Soucek for information and references concerning the theory 

of subanalytic sets. 
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ВСЯКАЯ ЛИНЕЙНАЯ СИСТЕМА В ОБЩЕМ ПОЛОЖЕНИИ ОБЛАДАЕТ 

РЕГУЛЯРНЫМ ОПТИМАЛЬНЫМ ПО БЫСТРОДЕЙСТВИЮ СИНТЕЗОМ 

Павол Б р у н о в с к и 

Р е з ю м е 

Доказывается, что если несущественным образом изменить понятие регулярного (по Болтянс­
кому) синтеза оптимального управления, то всякая линейная система с многогранниковои 
областью управления обладает регулярным синтезом управления, оптимального по быстро ей-
ствию В доказательстве используется теорема Хиронаки о разбиении субаналитического 
множества на локально конечное семейство аналитических подмногообразий. 

Одновременно доказывается, что можно регулярный синтез построить так, что он имеет 
некоторые дальнейшие свойства, которые позволяют доказать, что в случае системы со скаляр­
ным управлением в общем положении, все оптимальные траектории являются траекториями 
системы с оптимальной обратной связью в смысле Филиппова и наоборот. 
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