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I. INTRODUCTION 

In [l] sufficient conditions for the existence of a regular optimal control 
synthesis for an abstract optimal control problem have been given. It has been 
indicated that the theorem is modelled after the linear-quadratic optimal 
control problem with linear control constraints. In this paper we prove a theorem 
which says that if a certain non-degeneracy (or, as we shall say, normality) 
condition is satisfied then the latter problem satisfies the hypotheses of the 
theorem of [l] and, therefore, it admits a regular synthesis of the optimal 
control. The proof includes a proof of a result of independent interest: under 
the normality assumption, every optimal control passes only finitely many 
times from one face of the control domain to another (or, as we shall say, 
has finitely many switching points). A general result of this kind has so far been 
known for the linear time-optimal control problem only [3,4]. Recently, it 
has been extended to a certain class of nonlinear problems [5]. 

Although the paper is closely related to [l], most of its auxiliary results can 
be well understood without referring to the concepts of [l]. Therefore, the 
auxiliary results have been separated from the verification of the hypotheses 
of the abstract synthesis theorem of [l]. The former are contained in Sections 3, 
4; the latter in Section 5. Section 2 contains the formulation of the optimal con- 
trol problem as well as a summary of some of its known properties. 

2. THE LINEAR-QUADRATIC OPTIMAL CONTROL PROBLEM WITH LINEAR CONTROL 

CONSTRAINTS 

We consider the optimal control problem given by the linear system 

2 = Ax + Bu 
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with x E Rn, u E R”, the performance index 

/ = lo (x*Qx + u*Ru) dt 

(asterisk standing for transpose), the control domain 

U={u~R~l(cj,u) <di,i=l ,..., p} (3) 

and the target point x = 0. We assume that Q, R are symmetric, Q > 0, R > 0, 
U is compact and contains the origin in its interior. Further, we assume that the 
time-optimal control problem for the system (1) and the control domain (3) 
is normal in the sense of [3,4]. 

Note that U is a polytope but we do not express it (as usual in optimal control 
theory) as the convex hull of its vertices. Rather, we characterize it in the dual 
way, as a finite intersection of halfspaces. A sufficient condition for normality 
says that for no 0 # 4 E Rn and no choice of n - 1 distinct linearly independent 
vectors ci, ,..., ciCml , det(cil ,..., c~,-~ , e-fA*#) is identically zero. 

By a control we understand any piecewise continuous function u:[r, 0] --t U. 
Given a point (T, y) E Rn+l and a control u on [T, 01, by x(t, ~,y, U) we denote 
the solution of (1) with II = u(t) such that x(7, 7, y, U) = y. We say that the 
control u steers the system from y to 0 on [I, 0] if x(0, 7, y, U) = 0. We denote 

j(~, u, y) = j-7’ [x*(t, 7, y, u) Qx(t, 7, y, u) + u*(t) R@)l dt. 

The control II on [T, 0] is called optimal (for the-initial state y) if it minimizes 
J among all controls steering the system from y to 0 on [T, 01. 

We recall some well known properties of the linear-quadratic optimal control 
problem that are valid under our assumptions, for which [4] is a good reference. 

LQl. The set w(T) of the points from which the system can be steered 
to 0 on [T, 0] is convex closed and has a non-empty interior for any 7 < 0. 
Further, for any T1 < T2 < 0 we have g(T2) c inta(Tl) (in the terminology of 
[3], 9(-T) is expanding). 

LQ2. For every 7 < 0, y Ed there exists a unique optimal control 
(we denote it by urel/). The optimal control IL,,, satisfies the Pontrjagin maximum 
principle: there exists a non-zero solution #(t) = (#O, T(t)) of the adjoint system 

y9 = 0, 

ti = -Qx(t)a,bO - A*77 
(4) 

such that u ,,Y is extremal (with respect to 9(t)), i.e., 

(5) 
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where 

if u(t) is extremal and steers y to 0 on [T, 0] then u(t) = ~,,~(t) for a.e. t E [T, 0] 
[4, Corollaries to Theorems 12 and 13, Chap. 31. 

LQ3. For every 7 < 0, the boundary OR of R(T) coincides with the set of 
points which cannnot be steered to 0 in time <T. Also, x E int w(T) if and only 
if (0, 7) # E(T, y) for any 71 E R”, where E(T, y) is the set of the initial values of 
the non-zero solutions of (4) with respect to which u,,~ is extremal. 

The first part of LQ3 is well known and follows e.g. from [3]. The second part 
follows from the maximum principle for the time-optimal control problem. 
Indeed, if y E k%!(T), then any control that steers y to 0 on [T, 0] is time-optimal 
and, therefore, there exists a solution 7(t) of the adjoint equation 

rj = -Ll*q (7) 

for the time-optimal control problem such that 

If we denote $0 = 0, 4(t) = (0, y(t)), then G(t), ~~,~(t) satisfy (4), (5) which 
implies 0, v(O)) E E(T, y). Convversely, if $(t) = (0, q(t)) and Jr(O) E E(T, y), 
then 4(t), ~~,~(r) satisfy (7), (8). S’ mce under our assumptions the maximum 
principle is a sufficient condition of optimality [3, Theorem 17. I], u,,, is time- 
optimal and, consequently, y E ai%(~). 

Let us note that the assumption of compactness of CJ can be easily dropped 
and we have made it only for the sake of simplicity. Also, --I, B, ci , di can be 
allowed to vary analytically with time, but the normality conditions become more 
complicated. 

3. THE SOLUTION OF THE h’hxmun~ CONDITION 

To verify the hypotheses of the theorem of [l] we have to express the solution 
of the maximum condition (5) as a function of #. By Rifl we denote the set of 
those (#O, 7) E Rn+l for which 4” < 0. 

LEMMA 1. Lor a given 4 E Rg+‘, there is a unique solution w = w(4) of the 
equation 

L(h 4 = yEg-W 4. (9) 

The function w is continuous in RE+l. 
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Proof. The existence and uniqueness of w follow immediately from the 
compactness of U and the strict concavity of L in u respectively. For the proof 
of continuity assume &, 16 E Rt+l, & -+ I,L Since U is compact, without loss 
of generality we may assume w(&) -+ w,, E U. From the continuity of L in 4 
and u we have for any u E U 

So, ws is a solution of (9). From the unicity of its solutions it follows that w,-, = 
w(#), which completes the proof. 

We shall henceforth understand that among the inequalities defining U 
there are no redundant ones, i.e., for every 1 < i < p there exists a II E R” 
such that (ci , u) > di and (Cj , u) < di for j # i. The control domain U is a 
finite disjoint union of its (open) faces of different dimensions which can be 
expressed by the formula 

for I running through all subsets of the set {I,..., p} of cardinality <m such that 
ci , i E I are linearly independent. We shall call such sets I admissible. 

The sets U, are obviously relatively open. Since we have no redundant con- 
straints and int U # O, U, = o if the vectors ci , i E I are linearly dependent. 
For I = ~?i, lJ[ is the interior of U. 

Denote 

W, = {# E R,n+l 1 ~(9) E U,}. 

In a series of lemmas we prove that the sets W, , completed by the point 0, 
are polyhedral cones and we find the explicit expressions for the function w 
and the linear inequalites by which the sets W, are defined. 

LEMMA 2. The family 42 = (U, 1 I admissible} is a finite stra@cation of U 
by relatively open convex sets; U, C oJ if and only if J C I. 

Since we shall not need the fact that ??L is a stratification, we do not introduce 
its precise definition, for which the reader is referred to [I]. The verification 
of the lemma is straightforward. 

Given I admissible, we denote by 

the affine hull of the face U, . For z/ E Rt+’ we define w,(4) E Pr by 
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Since L is strictly concave in u and tends to -co for 1 u 1 + co for any fixed 
t/5 E R;+l, w,(4) is well defined. This follows also from the following lemma which 
gives an explicit expression for w, . 

LEMMA 3. Let 4 = (#O, v) E Rg+‘, I = {il , . . . , i,} admissible. Then, 

w,($l) = (2$PR)-‘[CK-l(2ljW + C*R-lB*v) - B*T] 

= R-l[CK-ld + $(CK-lC*R-lB* - B*)(t/P-l~], (10) 

where C = (ci, ,..., cc,), d = (dil ,..., dir)*, K = C*R-1C > 0. 

PYOO~. By the Lagrange multiplier rule there are constants hi , i E I which, 
together with u = w,(I/), satisfy the system of equations 

(WW(4, u) - c ~@/~U>(Ci , u> = 0, io1 
<G , u> = 4 , iEI. 

(11) 

(12) 

Substituting for L and computing the derivatives in (11) we obtain 

241ORu + B*q - 1 Xici = 0 
ia 

from which we obtain 

u = (2#“R)-1(Ch - B*r)), (13) 

where X = (hi1 ,..., Xi )*. I Substituing (13) into (12) we obtain 

(Ci 9 (2$00R)-1(Ch - B*v)> = di 9 i E I, 

or 

(2~“)-‘(c7PCh - c,*R-‘B*v) = di , iEI, 

which is the same as 

(2@‘)-1 KA = d + (214O)-’ C*R-1B*7. 

From this expression we can eliminate A: 

h = K-1(2#Od + C*R-1B*7)). 

Substituting for A into (13) we obtain (10). 

COROLLARY I. The function #Ow is globally Lipschitz continuous on Rt+l. 
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This follows immediately from the continuity of w on Ron+‘, the linearity of 
the functions I/I~W, and the formula 

~(4) = max{w,(#) 1 I admissible}. 

LEMMA 4. We have W, = X,\Y, , where X, is the set of those I/I for which 
w,(#) E U, and Yr is the set of those #for which 

(14) 

for some J C I. 

Proof. If w,(4) 6 U, then L($, w,(I/I)) > L(+,’ U) and the function &.A) = 
L(#, (1 - /J) u + pw,(#)) is increasing for each u E U, . Let cl0 = sup{p 1 

(1 -PCL)~+PwIw~~Il* s ince U is closed and U, is open in U, we have 
(1 - po) u + ~owl(#) E U\U, but, since p is increasing, q(po) > L($, u). Since 
u E U, was arbitrary, w($) 4 U, and, consequently, # $ W, . This proves W, C X1. 
The fact that W, is contained in the complement of Y, follows directly from 
the definition of Y1 . Thus, W, C X,\Y, . 

To prove the converse inclusion, assume that it is not valid. Then, there exists 
a 4 E X,\Y, such that w(#) E U, for some J # I, J $ I. Since # E X, , w,(+) E U, . 

Denote z = *(w,(4) + w($)). Since L(#, w,(4)) < L(#, w(#)) and L is concave 
in u, we have 

However, if j G J\I, then (cj , w(9)) = dj > (ci , w,(#)) from which it follows 
that (cj , z) < dj . Consequently, z E UK for some KC 1, so (15) contradicts 
I# $ Y1 . This completes the proof. 

LEMMA 5. For every IE{~,..., p} admissible we have W, = X, n Z, , where 
X, is &fmed in Lemma 4 and 

For the proof of this lemma we shall need two further lemmas. 

LEMMA 6. Let cl ,..., c, E R” be linearly independent and let x0 ,. . ., x, E Rn, 
d 1 ,.--, d, E R be such that (ci , xr) > di , (ci , xj) = d,., <ci , x0) < di , 
i,j = 1 ,..., p, i # j. Then, there exists a point in the convex hull of the points 
x,, ,..., xg such that 

(ci , x) = di for i = l,..., p. (16) 
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Furthermore, x can be expressed as a convex combination x = A,,x,, + ... + h,x, 
with A,, > 0. 

Proof. We prove this lemma by induction in p. For p = 1 the lemma is 
obvious. Given p > I, assume that it is valid for p - 1. Then, by the induction 
hypothesis there exist numbers p,, ,..., pFLzr-r such that 0 < pj < 1, p0 > 0, 
ps + ... + pLLD-r = 1 and the point y = pax,, + ... + ~+,-rx~-~ satisfies 
<ci, y) = di for i = l,..., p - 1. Obviously, it satisfies also (c, , y) < d, . 
Since the lemma is valid for p = 1, there exists a h > 0 such that the point 
x = Xy + (1 - h) xg satisfies (16) for i = p. Since (ci , yj = di and 
(ca , xD) = di for all 1 < i <p, (16) is satisfied also for 1 < i ,< p. We have 

x = ~p&l+ ... + h/.L9-lXD-l + (1 - A) x1,, 

&, > 0, which proves the lemma. 

LEMMA 7. Let f: Rn -+ R be d~$%mntiable and strictly cmqave and let x E R”, 
SCRn,x~Sbesllchthatforeachy~Stherearevectorsxi,i=l,...,pand 
non-negative constants A, , . . . , A, such that y = x + h,x, + ... + h,x, and the 
functions p),(t) = f (X + txi) are strictly decreasing for ea-h i -= l,..., p. Then, 
f(y) < f(x) for each y E S. 

Proof. Let y E S. We have 0 > (d&dt)(O) = df (x) xi . Because of the strict 
concavity off we have 

f(y) -f(x) < df(x)(y - x) = df(x) i Xixi = i &df(x) xi < 0 
i=l i=l 

which proves the lemma. 

Proof of Lemma 5. First we prove W, C XI n Z, . 
Let 4 E W, . Then, by Lemma 4, zj E Xr\Y, . Assume that for some JC Z, 

card J = card I - 1, i E Z\ J we have (ci , w&j)) < di . Since ZJ, C PJ and 
~~(4) $ VI, for each u E U, we have L(#, U) < L(q& w&5)) and, consequently, 
L(aj, g(h)) > L(t), u) for 0 < h < 1, where g(h) = hw,(#) + (1 - h) u. For 
h > 0 sufficiently small we have g(h) E U, . Thus, for each II E U, there exists 
a v E UJ such that L(#, v) > L(#, ) h h u w ic im pl ies (14) and, consequently, 
4 E Yr , contrary to our assumption. 

Now, we prove that if # E X, n Z, then IJ $ Y, which will complete the proof 
of this lemma. 

Let f be the family of the sets J CZ satisfying card J = card Z - 1. We 
have to distinguish two cases: ~~(4) E U, (and, consequently, w,(q) = w,(4)) 
for all J E J and w&) 4 U, for at least one J E 2. 

In the first case let y E KC Z, K # Z. The set UK - w,(4) (algebraic minus) 
is obviously contained in the convex cone spanned by the sets U, - w,(4), 
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J E f. Therefore, there exist vectors x, E U, - w,(#) and non-negative constants 
h, , J E f, such that 

Y = WIN4 + c x,x, * 
JEd 

The application of Lemma 7 yields L(#, y) < L(#, w,(4)). Since y E KC Z 
was arbitrary, this means # 6 Y, . 

In the second case denote J1 ,..., J,. those elements of f for which 

(Cj, , WJ~(#)> > djv for jy E Z\Jy . 

By assumption, I > 0. Since # E X, , we have w,(4) E U, . Since ZJ, C PJV 
and wJ,(#) $ VI , we have Uf4 wJv(#)) > W, w&W 

Assume #E Y, . Then, there exist a KC I and a point u0 E U, such that 
L(#, uO) > Z(#, w,(4)). Applying Lemma 6 to the points u,, , u, = wJy(t,b), 

v = l,..., T we obtain that there exists a point u = &u,, + h,w,,($) + ... + 
h~wJ~#), ‘+ + ~~~+h,=l,h,>O,/\,>Ofor~>Osuchthat 

(cj, 9 ui = djv 9 v = l,..., 7. 

Obviously, we have also (ci , u) < dj for i E Z\{ jl ,..., jr} since these inequalities 
are satisfied by wJ,(#), v = I,..., Y as well as u0 . We have 

From this inequality it follows that u $ P, . Consequently, there exists an 
i. E I\{ jl ,..., jr} such that (ci, , U) < di, . The point II - w,(#) is obviously 
contained in the convex cone spanned by the sets UJ - w,(9), J E f\{ J1 ,..., Jr}. 
Therefore, we can apply the same argument as in the first case to complete the 
proof. 

As a consequence of Lemmas 3, 5 we obtain 

THEOREM 1. For every Z C { 1 ,..., p} admissible and 4 E W, we have 

w,(t,b) = R-‘[C,K;‘d, + $(C,K;‘C;R-‘B* - B*)(Q)-%& 

where q.4 = (#O, q) and 

W, = (4 E R,“+’ 1 (c*R-‘C,Ki’di - d,) (CI” 

+ +cfR-‘(C,K;‘C;R-‘B* - B*)T < 0 

for all i $ I and (c:R-‘C,K;‘d, - dj) $” 

+ &TR-‘(CJKY’CTR-‘B* - B*)q 3 0 

forafl JCZ, card J = cardZ- l,j~l\J} (17) 
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(the capital subscript attached to C, K, d indicates the index set to which these 
quantities defined in Lemma 3 refer). 

COROLLARY 2. The collection of sets W, for I admissible is a finite covering 
of R;+l by closed, convex cones with non-intersecting interiors. 

4. BOUNDEDNESS OF THE NUMBER OF SWITCHINCS 

In this section we shall not refer to the optimal control problem at all. We 
shall prove a de la VallC-Poussin type theorem [2] bounding the number of 
zeros of a component of a solution of a differential equation, for a piecewise 
linear differential equation. This result will be used for the proof of the uniform 
local boundedness of the number of the switching points of the extremals which 
is assumed in the synthesis theorem of [l]. 

Let K, be a cone in Rn and let X = {K,}L, be a covering of K, by convex 
closed polyhedral cones with non-intersecting interiors. Let Fi : Rn + R”, 
i = l,..., r be linear operators such that if x E Ki n Ki then Fix = Fix for i, j = 
1 ,***, r. Then, the function F: K,, + Rn given by F(x) = Fix for x E Ki , 
i = l,..., r is well defined and continuous. We shall say that F is normal, if 
for any i,j and any normal c of any (n - l)-dimensional face of Ki the pair 
(Fj , c) is observable, i.e., det(c, FTC ,..., FF”-‘c) # 0. 

Consider the differential equation 

on K, . Let x(t) be a solution of (18). We shall call t* a switching point of x(t), 
if x(t*) lies in some face of dimension <n of some of the cones Kj , i = I,..., r. 
W e prove 

THEOREM 2. Let F be normal. Then, there are constants N, 6 > 0 such that 
the number of switching points of any non-trivia2 solution x(t) of (18) on any interval 
of length <6 does not exceed N. 

For the proof of this theorem we shall need the following 

LEMMA 8. Let vr : I, --f R*, k = 1, 2, 3 ,... be a sequence of functions defined 
on intervals Ik . Assume that the number of points at which the value of ot least 
one of the components of ‘plc is zero tends to infnity as k + CO. Then, for every N 
there exists a k and an interval Jk C I, such that the number of zeros of any com- 
ponent of (Pi on Jk is either zero or >N. 

Proof. We prove the lemma by induction in n. For n = 1 the statement of 
the lemma is trivial. Assume that for a given n > 1 it is valid for all positive 
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integers up to n - 1. By passing to a subsequence if necessary we may achieve 
that the number of zeros of each of the components of plk either tends to infinity 
or is bounded. This follows by induction from the obvious fact that if 
the sequence (P)~} has been reduced in such a way that the number of zeros of 
the components l,..., m is either bounded or tends to infinity then there is a 
subsequence of (‘pk} whose m + 1st component shares this property. 

Thus, without loss of generality we may assume that the components are 
ordered in such a way that the number of zeros of the components I,..., m 
(m > 0) is bounded while the numbers of zeros of the components m + l,..., 11 
tend to infinity as k -+ co. If m = 0, the statement of the lemma is trivial. 
If m > 0, we remove the zeros of the components I,..., m from the intervals 
Ik to obtain for each k a finite collection of subintervals of Ik which are free of 
zeros of the components I ,..., m and the number of which is bounded for k -+ CO. 
Therefore, we can choose for every k one of those subintervals (we denote it 
by 1;) in such a way that the number of points, in which at least one of the com- 
ponents m + I,..., n is zero, tends to infinity as k ---f UZ. By the induction hypoth- 
esis there exist a k and Jk C 1; such that the number of zeros of each of the com- 
ponents m + I,..., n is either >N or zero on Jk . Since none of the components 
1 ,*.., m has a zero on Jk, this completes the proof. 

Proof of Theorem 2. Assume that the statement of the theorem does not hold. 
Then, for any fixed 6 > 0 there exists a sequence of intervals Ik of length 
<S and trajectories .vk(t) of (18) on Ik such that the numbers of switching points 
of xk tend to infinity as k - cc. 

Let ci ) i = I,..., S, be the normal vectors of all the (n - I)-dimensional 
faces of the cones Kj , j = l,..., Y. We apply Lemma 8 to the functions 
vn: = (vkl I..., pks): I, + R8 defined by vpi(t) = (ci , x,(t)>, i = I ,..., s. 
Obviously, every switching point of sir is a zero of pki for some i. By Lemma 8, 
for every m we may find a k and an interval Jk C 1, in such a way that the number 
of zeros of each vki, i = I,..., s, is either zero or >h’. Henceforth we shall fix 
this k, drop the subscripts k at sk(t) and Jn and assume that I,..., a are the com- 
ponents having zeros on J. 

We associate with the covering X a labeled edge graph G with vertices I ,..., Y 
corresponding to the sets Ki , i = I,..., Y, (p, r~) being an edge labeled by i if 
and only if K,, , K, have an (n - I)-dimensional intersection the normal vector 
of which is cj . 

Let &, V) be an edge of G labeled by j. Then, Ku n K, contains an open 
subset of the linear subspace (cj , s) = 0. Since F is continuous, we have 
F,x = Fp for x E K,, n K, and, consequently, also for each K such that 
(ci , X) = 0. It follows that there exists a er E Rn such that 

F,,x = F,,x + v(cj , x). (19) 

Let us choose a cone Ki which is passed by r(t); let it be KI . Denote by G’ 
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the subgraph of G generated by the edges labeled by I,..., U. It is obvious that 
if x(l) passes some K,,, then there is a path in G’ joining the vertices 1 and m. 
It follows from (19) that there are vectors Q, j = I,..., u such that 

F,,,x = F,x + i e~,,&cj, x), 
j=l 

Denote zii = zij(x) = (ci , Ff’x), i = I,.,., u, j = I,..., n. Instead of Zij(x(t)) 
we shall briefly write zij(t). Let 1 E J be such that x(t) E K,,, . Then, we have 

$$ (f) = Ccj ,Flx(f)) + i {Cj 9 z'mj>(Cj f x(t)) 

j=l 

= Zj2(t) + i (Ci I z’7nj) Zil(f)* 
j=l 

2: (t) = <ci yF:x(t)) + i (ci ,Flvmj)<Cj 1 x(t)> (20) 
i=l 

= Zis(t) + i (ci 9 FlOmj> zjl(t), etc., 
j=l 

2 (t) = (Ci , Fl”x(t)) + i <Ci ,F~-‘zlmj) zjl(t)- 
i=l 

(21) 

By the Cayley-Hamilton theorem we have F,” = o~,-~F;-~ + ... + qp!? for 
suitable 0~s ,..., OL,+~ . Substituting for Flfl into the last equation of (20) we obtain 

%(t) = gl aj-lZij(f) $- i (Cl p F~-bmj) Zjl(f). 
i=l 

Denote Zi = CO~(Z, ,..., zin), z = CO~(Z, ,..., z,), 

0 1 0 **a 0 0 
0 0 1 ..*o 0 

A= . . . . . . . . . . . . . . 

ooo***o 1 
Lx0 a1 Lx* ... an-2 %-I 

‘Cci 

( 

9 vn2i> 0 0 . . . 

Bmij = . . . . . . . . . . . . . 

(ci 9 F,“-%,j) 0 0.. 0 i 

A + &an Bmn a.* Bm~o 
. . . . . . . . . . . . . . . . . . 

B . . . 
WZUl A + &mm 
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We can write (20) in the form 

g(t) = D&z(t). 

Denote &r(z) = ai1 , i = l,..., D and define inductively the family of linear 
forms LKl*...7m~-l for i = I,..., CJ, j = 2 ,..., n, 1 < m, < r for v = l,..., j by 

The forms are defined in such a way that if x(t) E K, for some m then 

Also, it follows immediately from the structure of D, that for j < n and any 
ml ,..., mj-1 

L;l*.“-“j-l(z) = zij + h7*...-mj-1(,z11 ,..., Zol ,..., Zlj-1 ,..., z,,j-l), (22) 

i.e., the coefficient at xii is one and the form does not contain any other variable 
z,, with v > j. 

Let M be the maximum of the absolute values of the coefficients of all the 
forms L and let Q be the maximum of the absolute values of the entries of all 
the matrices D,,, . We complete the proof of the theorem by specifying a 6 > 0 
such that if J has length <6 then it is impossible that all sir(t), i = l,..., u, have 
more than N = an + (n - l)an-l zeros on J. 

Assume the contrary. Then, (dZir/dt)(t) = (d/dt) Li,(Z(t)) has more than 
CP+(n-l)on-‘- 1 zero. Since for each t, (d/dt)L,,(z(t)) is equal to some 
Lz(z(t)), there exists an m such that L31 has more than u-l(an + (n - 1) x 

un--l - 1) > un--l + (?I - 2) on-2 zeros. Again, this means that (d/dt) L$(z(t)) 
has more than un--l + (n - 2) CP-~ - 1 zero from which we conclude that there 
exists an m2 such that L2l*“+z(t)) has more than CJ~-~ + (n - 3) une3 zeros 
on J. By a straightforward induction argument we obtain that there exists a 
sequence mil ,..., mi,n-l such that Lii’ “tl*“.‘“i.j-l(z(t)) has more than #+1-j + 
un-j(n -j) zeros for j = l,..., n. In particular, Li, m~lP...*m+l(z(t)) has at least 
one zero on J. 

Denote pij = suptEJzij(t), pj = cb, pij, pj = & /.L”, j = l,..., n. From 
(20) it follows that 

I 2iAt)I G pi.j+l + 8~1 (23) 

for all TV J, i = I,..., u, j = I,..., n - 1 and from (21) it follows that 

I *in(f)I < Qh + ... + I*in + A)- (24) 
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For every i = I,..., o and j = I,..., IZ there exists a tij E J such that 

From this and (22) it follows 

I zij(fij)l d MFj-1 

and from (23), (24) it follows 

and, consequently, 

for j < 11, 

From the last inequality we obtain for 8 < Q-l 

(25) 

< M-I-SQ - 
Pin L 1 - SQ h-l 

and, since i is arbitrary, 

where R,(S) = a(1 - SQ)-l(M + SQ) is bounded for 8 --f 0. Assume now that 
for some 1 < j < PI we have 

pj < R,(S) Fj-1) 

where R,(S) is bounded for 6 - 0. Then, from (25) it follows 

and, since /i-r = ii-a + pj-r , 

pi-1 - 6Rj(6) pj-1 SZ rail-3 + SRj(S)] ii-1 f UQPI . 

For 6 > 0 so small that 6Rj(6) < 1 we obtain 
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R,- (s) 
11 

= 4M + W(*) + Q) 

1 - 6Rj(S) 

is bounded for 6 -+ 0. 
Since pFL1 = i;r , by induction we obtain 

where Ra(S) is bounded for 6 + 0; since j& = 0, we obtain from (25) (26) 

~1 G WW') + uQ) PI . (27) 

For 8 > 0 sufficiently small 6(&(S) + uQ) < 1, so (27) is possible only if 
pr = 0 which means (ci , x(t)) = 0 for all t E J and all i = I,..., u. 

Let t, E J be such a point that x(&J 1 ies in a face S of some set Ki . The linear 
hull of this face is defined by a part of the equalities (cj , x) = 0, j = I,..., (T, 
say (cr , x) = a** = (c,, x) = 0. Since the faces are relatively open, x(r) E 
SC I& for t near t, . Thus, x(t) satisfies k(t) = Fix(t) for t near t, from which it 
follows that 

for all j = I,..., u and v = 0 ,..., n - I. From the observability of the pair 
(Fi, ci) it follows that x(t,) = 0, contrary to our assumption. Since there is only 
a finite number of possible choices of the subgraphs G’ of G, this contradiction 
completes the proof of the theorem. 

5. EXISTENCE OF REGULAR SYNTHESIS 

As we mentioned in Section I, the regular synthesis theorem which we 
formulate and prove in this concluding section requires from the optimal control 
problem a certain normality condition. We formulate this condition first. 

Consider the optimal control problem (l)-(3), the associated cones W, and 
the functions 00, that we constructed in Section 3 (Theorem 1). For every 
I C {l,..., p} admissible we denote 

HI = -;R-‘CIK;‘C;R-‘B* - B*, 
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By F, we denote the (2n + 1) x (2n + 1) matrix 

We shall say that the problem (l)-(3) is normal if for every I admissible and any 
normal vector of any of the faces of the cones W, for J admissible the pair 
(F, , s) is observable. 

From the expression (17) of the sets W, it follows that any such normal s 
can be expressed in the form 

s = col(-di + (ci , h,), c:H,) for some i = l,..., p, y f 0. 

This means that the entries of s and F, are rational functions of the entries of 
the matrices A, B, Q, R, C = (cl ,..., cD), d = (dI ,..., d,). Consequently, the 
non-observability of some pair(F, , s) can be expressed in the form P(A, B, 
Q, R, C, 4 = 0, w h ere P is a polynomial in the entries of A, B, Q, R, C, d. We 
can consider the data of the problem (l)-(3), consisting of the matrices A, B, Q, 
C, d as elements of a finite-dimensional vector space of a suitable dimension. 
In this space the set of non-normal problems is contained in an algebraic variety 
that does not coincide with the entire space. Such a variety is nowhere dense 
and closed which implies that the set of normal problems contains an open dense 
subset of all problems given by data of the same dimension. In this sense it can 
be said that almost all problems are normal. 

Now we are able to formulate 

THEOREM 3. Let the problem (l)-(3) b e normal. Then, it admits a regular 
synthesis in the interior G of the domain of controllability of 0. 

For the concept of regular synthesis the reader is referred to [l]. Let us note 
that G is a subset of R”+l (the X, t-space), the closed-loop control e, will be a 
function of both x and t and t is considered as a state variable (cf. the paragraph 
preceding Example 1 in [I]). 

Proof. We prove this theorem by verifying the hypotheses of the Theorem 
of [l]. 

Hypothesis 1 is satisfied trivially. For the sets Ni and the functions wi of 
Hypothesis 2 we take the sets JV, = Rn+l x (p, x R)\(O)] and the functions 
w, respectively (recall that the state space is Rn+‘) for I admissible, where W, , 
w, are defined in Section 3. 

By Theorem 1 and Corollary 2 the sets W, cover Ron+’ and the functions w, 
are analytic in Ri+‘. Since #” < 0 and is constant along the solutions of the 
adjoint equation with respect to which the optimal trajectories in G are extremal 
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it is of no significance for the validity of the theorem that the sets m, do not 
cover all Rn+l and the functions w, are not defined for I,P = 0. 

To verify Hypotheses 3, 4 we first note that the system [1, (12)] in our case 
has the form 

ci = Ax + Bu, 

$0 =: I), 

7j = -f’Qx - A*77, 

(it is not necessary that we write down the equations for the state variable repre- 
senting time and the corresponding adjoint variable). By the transformation 
y = I/OX we can rewrite the system (29) to the form 

y = 4 + B(W” + Z-h), 

$0 = 0, (2% 

9 = -Qy - A*?, 

the matrix of which is F, . Obviously, the switching points in the sense of [I] 
are also switching points of the system (29) in the sense of Section 4 provided 
we take q+l as K, and SC = {r, 1 Z admissible}. By the normality assumption 
it follows from Theorem 2 that there exist positive constants 8, N such that no 
solution of (29) can have more than N switching points on an interval of length 
<S. In particular we obtain that a solution (t, x(f), #(t)) of (28) cannot stay in an 
intersection of two different sets N, , NJ on a non-trivial interval (all points of 
this interval would be switching points). From this and LQ2 we obtain Hypoth- 
esis 3. If we take into account that time is included into the state variables, 
from the existence of 8, N we obtain also Hypothesis 4. 

To verify Hypothesis 5 assume (ro, yo) E G, (TV, yK) E G for k = 1,2,..., 
(rk , yk) + (T,, , yo) and denote x*(t) the optimal trajectory of the initial point 
(TV , yK), K = I,2 ,... By LQ2, LQ3 and L emma 1, there are non-zero functions 
$40 = (k”, m(t)) on [Q , 01 with ho f 0 such that xJ~),, vk(t) satisfy the system 
of equations 

f, = Ax, + Bw&), 

7jk = -A*qk - t+h”Qxk . 
(30) 

Without loss of generality we may assume that the vectors & are normalized 
in such a way that I&O = - 1. W e prove that the sequence {qJ is bounded. 

Denote V(T,~) = J(T, y, u,.,) for (T, y) s G. From the boundedness of U 
it follows that V is bounded on G. By the transformation t = --t’ we can trans- 
form the problem (l)-(3) with target state 0 and variable initial point to the 
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endpoint problem on the interval [0, -T] with initial state 0 to which we can 
apply the results of [4, Sect. 3.51. In the notation of [4, Sect. 3.51 the set of points 
{( Y, WY Y) I Y E W)> coincides with the lower boundary of the convex set 
&, and we have # E E(T, y) f or some y E.%‘(T) (E(7, y) defined as in LQ3) if and 
only if # is an outer normal to 12, at the point (y, V(7, y)). Consequently, we 
have for every y, y’ E 9?(r) and (cr = ($O, 7) E E(T, y) 

VW,Y’) + 64Y’) B VW,Y) + MY). (31) 

Since Gis open, there exists a 8 > 0 such that (T, y) E Gas soon as 1 7 - To 1 < 
26, 1 y - y. I < 28. Assume 1 7r I + co. For K sufficiently large we have 
I TV - T, 1 < 6, I yk - y. 1 < 6, so (TV, yr -I- 6 1 Q 1-l qk) E G, By (31) we have 

from which it follows that 

which contradicts the boundedness of V on G. 
Since {vk) is bounded we may without loss of generality assume &(O) + x = 

(-1, [) for k -+ 03 for some [EP. Since w is Lipschitz continuous (Corol- 
lary 1) we have &(t), qk(l)) --f (x,(t), &t)), where @a(t), ~j~(t)) is the solu- 
tion of (30) satisfying (xo(To), ~~(7~)) = (y. , 5). In particular, we have ~~(0) = 0. 
This means that the control ~(4~(t)), h(l) = (-1, qO(t)) is an extremal control 
steering y,, to 0 on [TV , 01. By LQ2, ~($~,(i)) = ~,~,~,(t) for almost all t E [TV, 0] 
and, consequently, 

This completes the verification of Hypothesis 5. 
Since time appears as state variable in our case, Hypothesis 6 is satisfied 

trivially. Hypothesis 7 follows immediately from the fact that the system [I, (1211 
which has the form (28) in our case is linear in X, 7 for every I admissible. 
This completes the proof of the theorem. 
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